Current Chemical Biology - Volume 13, Issue 1, 2019
Volume 13, Issue 1, 2019
-
-
Biomarkers and Spectroscopic Methods: The Strategies for Diagnostics of Selected Diseases
Authors: Kristína Krajčíková, Gabriela Glinská and Vladimíra TomečkováBackground: There are many different tools for diagnostics of various diseases. One of the simplest approach for the early, rapid and accurate diagnosis represents determination of biomarkers. Focus: In the following text, we describe review of the latest discoveries in the field of biomarkers of selected diseases: intestinal ischemia and atherosclerosis. The aim of this review article is to show the problems which the researchers have been dealing with in the process of discovering and establishing novel biomarkers. This work describes the possibilities of monitoring biomarkers from noninvasive samples such as tears. Additionally, the actual possibilities of the spectroscopy techniques in monitoring and diagnostics of selected diseases are mentioned which might replace the need of biomarkers of several diseases. Prospect: For the most diagnostic purposes, biomarkers should be analyzed in body fluid samples. For the biofluids, metabolic signatures could be determined, although there is no consensus on possible biomarkers yet. Metabolomics, the comprehensive, qualitative, and quantitative study of secondary metabolites and signaling molecules reveal a wide range of dysregulated molecules in various diseases. However, using spectroscopic methods could contribute to the traditional view on biomarkers by monitoring the relevant tissues and body fluid samples.
-
-
-
Drugs for the Treatment of Mitochondrial Diseases
Authors: Diego F. Gomez-Casati and Maria V. BusiBackground: Mitochondrial diseases are a complex group of pathologies caused by mutations in genes coded in the nuclear and/or the mitochondrial DNA, which fulfill their function in the organelle. The diagnosis is also complex, since it depends on the integration of biochemical, histological and imaging data. Objective: In this paper we review the use of some of these substances and their efficacy in the treatment of these disorders. Conclusions: Currently, there is not a fully effective treatment, however, it was demonstrated that the use of some vitamins, amino acids, antioxidants along with a proper diet and exercise have an important effect that leads to improve the overall state of patients with mitochondrial disorders.
-
-
-
Natural Antimicrobial Agents as an Alternative to Chemical Antimicrobials in the Safety and Preservation of Food Products
Authors: Joana Gomes, Joana Barbosa and Paula TeixeiraBackground: Microbiological quality of food is of utmost importance in the food industry, so the use of food additives is essential to reduce microbial loads, which may result in food spoilage and poisoning. Objective: This study aimed to test the antimicrobial activity of three natural compounds – chitosan, ethanolic extract of propolis, and nisin – against 15 Gram-positive bacteria, 15 Gram-negative bacteria and two fungi and, also, to compare it with the antimicrobial activity of the chemical compound sodium nitrite, alone and in combination with sodium chloride. Methods: Antimicrobial activity was tested at different pH values and temperatures of incubation to simulate the presence of the pathogens in different food products and different storage conditions, as well as to determine their influence on the inhibition of microorganisms. Results: Most of the Gram-positive bacteria were inhibited at 25 μg/mL of nisin. Concentrations of 10 mg/mL of ethanolic extract of propolis inhibited fungi, most of the Gram-positive and some Gramnegative bacteria, and with concentrations of 0.65% (w/v) of chitosan, it was possible to inhibit most of the tested microorganisms. All the natural compounds tested had greater inhibitory effect against the various microorganisms compared with sodium nitrite alone and in combination with sodium chloride, in the different conditions of pH and temperature. Conclusion: This suggests that natural compounds could be good candidates for use as an alternative to chemical antimicrobials in food safety and preservation.
-
-
-
Effects of Deep Sea Water on Anti-Obesity Properties in Induction of Beige Adipocytes
Authors: Samihah Z.M. Nani, Abubakar Jaafar, Fadzilah A.A. Majid, Akbariah Mahdzir and Md. Nor MusaObjective: Deep sea water (DSW) accumulates many scientific shreds of evidence in treating obesity. Previous studies indicated that it reduces white adipose tissue (WAT) and body weight. WAT is energy storage fat, while beige adipose tissue is energy supply fat. In this study, the effects of DSW in the induction of beige adipocytes from mouse adipose tissue-derived stromal vascular fraction (SVF) cells are determined. Methods: Adipose tissue-derived SVF cells were isolated from mice and used for induction of beige adipocytes and treated with DSW at several concentrations. Results: During the course of beige adipocytes differentiation, DSW treatment increased lipid accumulation and upregulated adipogenic genes markers expression such as peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein a (C/EBP-α), and fatty acid binding protein 4 (FABP4), and also upregulated thermogenic genes markers such as the uncoupling protein 1 (UCP-1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and cell deathinducing DFFA-like effector A (Cidea) in beige adipocytes. Conclusion: DSW has the potential to promote browning of WAT and upregulates the thermogenic genes that are responsible for energy expenditure.
-
-
-
Thermostabilization of BSA in TMAO Water Mixtures by Infrared Spectroscopy
Authors: Arianna Adamo, Emanuele Calabrò and Salvatore MagazùBackground: Trimethylamine-N-Oxide (TMAO) is a small organic molecule derived from the metabolism of L-carnitine and choline after ingestion of animal food. TMAO has many functions such as electron acceptor, an osmolyte, stabilizer of macromolecules folding. It seems that TMAO plays an important role in nature but, in humans, it is a remnant of the evolution of the osmolyte system. Objective: The present paper is addressed on the study of thermal stability of hydrated Bovine Serum Albumins (BSA) in the presence of water and TMAO water solution by means of InfraRed spectroscopy. In particular, this work has investigated the protein amide I spectral regions, which is sensitive to protein secondary structure, and the intramolecular OH stretching region. Methods: The analysis has been performed by different approaches, namely by evaluating the Thermal Spectral Distance (SDT), the spectral shift (Δω), the spectral Fractal Dimension (FD) and the Wavelet Cross Correlation temperature variation (ΔTCXWT). Results: The obtained results revealed for BSA in TMAO, in respect to BSA, smaller values of SDT, Δω, FD and ΔTCXWT. Furthermore, the SDT, Δω and ΔTCXWT temperature trends to follow sigmoid trends that have been modeled by means of logistic functions; in all the above three cases BSA in TMAO shows a higher value of the inflection point temperature. Conclusion: These results can be interpreted by hypothesizing that TMAO influences the hydrogen bond network of water. In particular, the strengthening of the network intermolecular O-H interactions reduces the protein dynamic fluctuations and in turn leads to the stabilization of the protein tertiary structure.
-
-
-
PEG Acoustic Levitation Treatment for Historic Wood Preservation Investigated by Means of FTIR Spectroscopy and Wavelets
Authors: Maria T. Caccamo and Antonio CannuliBackground: The combination of Fourier Transform InfraRed and levitation techniques, both on levitated water mixtures of Polyethylene Glycols (PEG)s and on wood finds, allows to follow the polymeric drying process as a function of time through the O-H and C-H stretching contributions and to investigate the wood thermal response. Objective: The aim of this paper is to report the FTIR investigations on wood fines, extracted from a 700' dated wooden crucifix. Methods: At first, different acoustically levitated Polyethylene Glycol (PEG) aqueous solutions were investigated by FTIR in order to characterize the levitation induced dehydration process; then the wood fines, after having been treated by immerging them into the PEG aqueous solutions, were acoustically levitated and investigated; finally the treated fines were again studied by IR spectroscopy through a thermic cycle in the 25 ÷ 350 °C temperature range. Levitation technique furnishes an innovative approach to sample treatment allowing, in the case of solutions, to obtain highly concentrated mixtures starting from diluted solutions while, in the case of wood find treatments, to increase the polymer solution penetration within the wood matrix. Results: It clearly emerges that, in the PEG200/PEG600 comparison, the lighter polymer shows a higher effectiveness in terms of thermal restraint. Conclusion: Acoustic levitation, in combination with IR spectroscopy, reveals to be a very powerful technique in many applications concerning wood preservation and conservation. It clearly emerges that, in the comparison with PEG600, PEG200 shows a higher effectiveness in terms of thermal restraint.
-
-
-
RNAi-mediated Resistance against Plant Parasitic Nematodes of Wheat Plants Obtained In Vitro Using Bioregulators of Microbiological Origin
Background: Plant parasitic nematodes are dangerous pests that damage various agricultural crops and decrease their productivity. Objective: The resistance of new lines of wheat (Triticum aestivum L.) plants obtained under in vitro conditions on MS media containing microbial bioregulators to plant parasitic nematodes was studied under in vitro and greenhouse conditions. Methods: Here we conducted physiological and molecular-genetic studies of resistance of wheat plants to nematodes. Results: In vitro experiments showed that wheat plants grown on MS media with microbial bioregulators had 20-37 % of infestation with cereal cyst nematode Heterodera avenae, significantly lower when compared with 73 % of infestation of the control plants grown without bioregulators. Bioregulators increased morphometric parameters of the wheat plants obtained under in vitro conditions on MS media and further grown under greenhouse conditions on the natural invasive background: stem height increased 13.6-37.5 %, flag leaf length 18.0-19.3 %, ear length 6.8-24.6 %, and ear weight 27.0- 54.5 %, when compared with control wheat plants. The difference in the degree of hybridizated molecules mRNA and si/miRNA from control and experimental wheat plants increased: 15-39 % in plants grown under in vitro conditions on the invasive background created by H. avenae and 33-56 % in seeds of plants grown under greenhouse conditions on the natural invasive background. The silencing activity of si/miRNA from wheat plants grown on MS media with bioregulators increased: 20-51 % in plants grown under in vitro conditions on the invasive background created by H. avenae or 38-64 % in plants grown under greenhouse conditions on the natural invasive background. Conclusion: Our studies confirm the RNAi-mediated resistance to plant nematodes of wheat plants obtained on media with microbial bioregulators and grown under in vitro and greenhouse conditions.
-
-
-
Screening and Molecular Characterization of Cellulase Producing Actinobacteria from Litchi Orchard
Authors: Sanju Kumari, Utkarshini Sharma, Rohit Krishna, Kanak Sinha and Santosh KumarBackground: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud's agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 μmol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey's Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.
-
Volumes & issues
-
Volume 19 (2025)
-
Volume (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)
Most Read This Month
