Skip to content
2000
image of Thieno-quinoline Derivatives as Promising Antimicrobial Agents: In Vitro and In Silico Insights

Abstract

Introduction

The global rise in antimicrobial resistance demands innovative therapeutic approaches. This study investigates novel 2-Aryl-9-chloro-5,6,7,8-tetrahydrothieno[3,2-b]quinoline derivatives (2a-e) as potential dual-action agents, targeting both pathogenic microorganisms and the phospholipase C-γ (PLC-γ) signaling pathway implicated in inflammatory responses.

Methods

Five derivatives were synthesized through a single-step POCl3-catalyzed cyclocondensation of thiophene carboxylic acids with cyclohexanone, yielding 55-71% of purified products. Antimicrobial efficacy was evaluated against Gram-positive ( ATCC 25923, ATCC 10876), Gram-negative ( ATCC 25922, clinical isolate), and ATCC 10231 strains using standardized CLSI protocols. Computational studies employed molecular docking (MolDock) and binding free energy calculations against PLC-γ (PDB ID:5EG3).

Results

Among the tested compounds, compounds 2-c and 2-e showed strong antibacterial activity against , even surpassing gentamicin. Compounds 2-b and 2-d, on the other hand, showed significant antifungal activity against Candida albicans, equivalent to that of DEPTIL BFC. Molecular docking revealed compound 2d (L) as the most potent PLC-γ inhibitor (ΔG=-116.127 kcal/mol), forming π-alkyl interactions with Ala 567 in the catalytic pocket.

Discussion

The structure-activity relationship demonstrates that chloro-substitution at position 9 enhances antimicrobial potency, while aryl modifications at position 2 influence PLC-γ binding affinity. These findings suggest a unique dual mechanism of action distinct from conventional antimicrobials.

Conclusion

his study highlights the biological potential of [Aryl-CTTQ] derivatives (2a-e), in particular their marked antibacterial activity and, for some, moderate antifungal activity. Compound 2d (L) is distinguished by its high affinity for phospholipase C-γ, identified through and analyses. These results validate the effectiveness of a computer-aided design approach to develop new therapeutic agents.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968408290251007135735
2025-10-21
2025-12-16
Loading full text...

Full text loading...

References

  1. Terreni M. Taccani M. Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671 34063264
    [Google Scholar]
  2. Bouyahya A. Dakka N. Et-Touys A. Abrini J. Bakri Y. Charfi S. Abrini J. Dakka N. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac. J. Trop. Med. 2017 10 8 729 743 10.1016/j.apjtm.2017.07.021 28942821
    [Google Scholar]
  3. Mirzayans R. Murray D. What are the reasons for continuing failures in cancer therapy? Are misleading/inappropriate preclinical assays to be blamed? Might some modern therapies cause more harm than benefit? Int. J. Mol. Sci. 2022 23 21 13217 10.3390/ijms232113217 36362004
    [Google Scholar]
  4. Coates A. Hu Y. Bax R. Page C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 2002 1 11 895 910 10.1038/nrd940 12415249
    [Google Scholar]
  5. La Monica G. Pizzolanti G. Baiamonte C. Bono A. Alamia F. Mingoia F. Lauria A. Martorana A. Design and synthesis of novel thieno[3,2- c]quinoline compounds with antiproliferative activity on ret-dependent medullary thyroid cancer cells. ACS Omega 2023 8 38 34640 34649 10.1021/acsomega.3c03578 37779971
    [Google Scholar]
  6. Haverkate N.A. van Rensburg M. Kumara S. Reynisson J. Leung E. Pilkington L.I. Barker D. Improving the solubility of anti-proliferative thieno[2,3-b]quinoline-2-carboxamides. Bioorg. Med. Chem. 2021 37 116092 10.1016/j.bmc.2021.116092 33725562
    [Google Scholar]
  7. Mohammadi-Khanaposhtani M. Noori M. Valizadeh Y. Dastyafteh N. Ghomi M.K. Mojtabavi S. Faramarzi M.A. Hosseini S. Biglar M. Larijani B. Rastegar H. Hamedifar H. Mirzazadeh R. Mahdavi M. Synthesis, glucosidase Inhibition, in silico pharmacokinetic, and docking studies of thieno[2,3 b]quinoline acetamide derivatives as new anti diabetic agents. ChemistrySelect 2022 7 44 202104482 10.1002/slct.202104482
    [Google Scholar]
  8. Martins M.F. Ribeiro F. Borges A. Calhelha R.C. Santarém N. Cordeiro-da-Silva A. Queiroz M.J.R.P. Synthesis of tricyclic and tetracyclic lactone derivatives of thieno[2,3-b]pyrazine or Thieno[2,3-b]quinoline: Preliminary antitumor and antiparasitic activity evaluation. Molecules 2025 30 9 1999 10.3390/molecules30091999 40363805
    [Google Scholar]
  9. Charris J. Barazarte A. Domínguez J. Lobo G. Camacho J. Ferrer R. Gamboa N. Rodrigues J. Capparelli M.V. Synthesis and antimalarial activity of ethyl 3 amino 4 oxo 9 phenylsubstituted)thieno[2,3 8208; b]quinoline 2 carboxylate derivatives. J. Heterocycl. Chem. 2007 44 3 639 643 10.1002/jhet.5570440320
    [Google Scholar]
  10. Teja C. Nawaz Khan F.R. Recent advances in the synthesis of thienoquinolines (Quinoline fused heterocycle). Asian J. Org. Chem. 2020 9 12 1889 1900 10.1002/ajoc.202000427
    [Google Scholar]
  11. Mahajan P. Nikam M. Asrondkar A. Bobade A. Gill C. Synthesis, antioxidant, and anti inflammatory evaluation of novel thiophene fused quinoline based β‐diketones and derivatives. J. Heterocycl. Chem. 2017 54 2 1415 1422 10.1002/jhet.2722
    [Google Scholar]
  12. Mekheimer R.A. Al-Sheikh M.A. Medrasi H.Y. Sadek K.U. Advancements in the synthesis of fused tetracyclic quinoline derivatives. RSC Advances 2020 10 34 19867 19935 10.1039/D0RA02786C 35520416
    [Google Scholar]
  13. Medvedeva S.M. Shikhaliev K.S. Synthesis of 4,5-dihydro-1H-[1,2]dithiolo[3,4-c]quinoline-1-thione derivatives and their application as protein kinase inhibitors. Molecules 2022 27 13 4033 10.3390/molecules27134033 35807279
    [Google Scholar]
  14. Lamani D.S. Venugopala Reddy K.R. Bhojya Naik H.S. Prakash Naik H.R. Naik L.R. An efficient carbodiimide-mediated synthesis and DNA-binding studies of novel 2-chloro/mercapto-quinoline-fused 1,3-thiazolidinones via one-pot three-component condensation. J. Sulfur Chem. 2010 31 1 49 59 10.1080/17415990903295678
    [Google Scholar]
  15. Snehi V. Verma H. Saha S. Kumar S. Pathak D. An extensive review on biological interest of quinoline and its analogues. Inter J. Sci. Healthcare Res. 2023 8 1 45 66 10.52403/ijshr.20230105
    [Google Scholar]
  16. Abu-Hashem A.A. El-Gazzar A.B.A. Abdelgawad A.A.M. Gouda M.A. Synthesis and chemical reactions of thieno[3,2- c]quinolines from arylamine derivatives, part (V): A review. Phosphorus Sulfur Silicon Relat. Elem. 2022 197 7 665 688 10.1080/10426507.2021.2012176
    [Google Scholar]
  17. Datoussaid Y. Missoum H. Attar T. Messaoudi B. Benchadli A. Choukchou-Braham E. Choukchou-Braham N. Ziani-Cherif C. Experimental and theoretical studies of aminothiophene derivatives inhibitors on carbon steel corrosion in perchloric acid medium. Rev. Roum. Chim. 2024 69 3-4 139 148 10.33224/rrch.2024.69.3‑4.04
    [Google Scholar]
  18. Messaoud 305; B.; Datousa d, Y.; M ssoum, H.; Benchadl 305; A.; Chat 305; I.B.; Attar, T. Investigating the corrosion inhibition of copper using DFT theoretical study with three organic molecules. Turkish Computational and Theoretical Chemistry 2024 8 3 54 65 10.33435/tcandtc.1334817
    [Google Scholar]
  19. Datoussaid Y.G.K. Othman A.A. Abdillahi I. Synthesis of novel thieno[3,2-b]quinolines and thieno[3,2-d][1,3]thiazoles. S. Afr. J. Chem. 2012 65 5
    [Google Scholar]
  20. Abdelli I. Benariba N. Adjdir S. Fekhikher Z. Daoud I. Terki M. Benramdane H. Ghalem S. In silico evaluation of phenolic compounds as inhibitors of amylase and glucosidase. J. Biomol. Struct. Dyn. 2021 39 3 816 822 10.1080/07391102.2020.1718553 31955660
    [Google Scholar]
  21. Simon L. Imane A. Srinivasan K.K. Pathak L. Daoud I. In silico drug-designing studies on flavanoids as anticolon cancer agents: Pharmacophore mapping, molecular docking, and monte carlo method-based qsar modeling. Interdiscip. Sci. 2017 9 3 445 458 10.1007/s12539‑016‑0169‑4 27059855
    [Google Scholar]
  22. Yazid D. Tewfik A.D. Nawel M. Brahmi L. Zahira K. Rachida H. Noureddine C.B. Ecofriendly synthesis of formamidine derivatives catalyzed by Al-MCM -41 Mesoporous materials. Lett. Org. Chem. 2022 19 5 347 352 10.2174/1570178618666210218212300
    [Google Scholar]
  23. Missoum H. Datoussaid Y. Ziani-Cherif C. Seijas J.A. Vázquez-Tato M.P. Choukchou-Braham N. Vilsmeier–haack reagent catalyzed C 4 (sp 2) H formylation in thiophene derivatives: Insights into unexpected fluorescence properties. ChemistrySelect 2024 9 48 202404963 10.1002/slct.202404963
    [Google Scholar]
  24. Schofield C.B. Updating antimicrobial susceptibility testing. Methods. Clin. Lab. Sci. 2012 25 4 233 239 10.29074/ascls.25.4.233 23330514
    [Google Scholar]
  25. Balouiri M. Sadiki M. Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016 6 2 71 79 10.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  26. Clément G. Slenzka K. Fundamentals of space biology: Research on cells, animals, and plants in space; : Cham, 2006 18 10.1007/0‑387‑37940‑1
    [Google Scholar]
  27. Didier-jean C. Tête-Favier F. Introduction to protein science. architecture, function and genomics. Biol. Crystallogr 2016 72 12 1308 1309
    [Google Scholar]
  28. Laskowski R.A. Swindells M.B. LigPlot+: Multiple ligand protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011 51 10 2778 2786
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968408290251007135735
Loading
/content/journals/ccb/10.2174/0122127968408290251007135735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test