Skip to content
2000
image of Renoprotective Role of Thymol-loaded Chitosan Nanoparticles in Cholestatic Rats

Abstract

Introduction

Acute kidney damage (AKI) in cirrhosis, encompassing hepatorenal syndrome (HRS), is a prevalent and severe complication among cirrhotic patients, resulting in considerable morbidity and mortality. Thymol is derived from thyme extract and has numerous advantageous qualities, including antifungal, anti-inflammatory, antioxidant, anticancer, and antibacterial activities. The current study aims to augment the therapeutic efficacy of thymol against acute renal injury generated by bile duct ligation (BDL) through its encapsulation in chitosan nanoparticles.

Methods

Thirty rats were categorized into five groups: sham, BDL, and cholestatic rats administered chitosan NPs, thymol, and CS-thymol nanoparticles.

Results

The administration of CS-thymol nanoparticles significantly improved renal function, as indicated by decreased levels of urea, creatinine, and uric acid. Furthermore, CS-thymol nanoparticles induced an increase in glutathione reductase (GSH) and catalase (CAT), while simultaneously reducing the levels of malondialdehyde (MDA) and nitric oxide (NO). The administration of CS-thymol nanoparticles diminished DNA damage and partially rehabilitated the abnormal structure of renal tissues in cholestatic rats. The immunohistochemistry analysis revealed a significant reduction in tumor necrosis factor-alpha (TNF-α) and Caspase-3 expression.

Discussion

CS-thymol nanoparticles demonstrated their potential in antioxidant, anti-inflammatory, and anti-apoptotic capabilities that safeguard the kidneys against cholestatic damage.

Conclusion

The inclusion of thymol into chitosan nanoparticles improves their antioxidant, anti-inflammatory, and anti-apoptotic properties, ultimately enhancing kidney function and structure in cholestatic rats.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968401483251014085241
2025-11-05
2025-12-16
Loading full text...

Full text loading...

References

  1. Francoz C. Durand F. Kahn J.A. Genyk Y.S. Nadim M.K. Hepatorenal Syndrome. Clin. J. Am. Soc. Nephrol. 2019 14 5 774 781 10.2215/CJN.12451018 30996046
    [Google Scholar]
  2. Ranasinghe I.R. Sharma B. Bashir K. Hepatorenal Syndrome. StatPearls [Internet] Internet Treasure Island, FL StatPearls Publishing 2025 28613606
    [Google Scholar]
  3. Sarah Ali Q. Amel Mahmoud S. Sohair Ramadan F. Ayman Saber M. Renoprotective effects of eugenol-loaded chitosan nanoparticles on septic rats. Drug Deliv Lett 2025 15 1 14
    [Google Scholar]
  4. Flamm S.L. Brown K. Wadei H.M. Brown R.S. Jr Kugelmas M. Samaniego-Picota M. Burra P. Poordad F. Saab S. The current management of hepatorenal syndrome-acute kidney injury in the united states and the potential of terlipressin. Liver Transpl. 2021 27 8 1191 1202 10.1002/lt.26072 33848394 PMC8457138
    [Google Scholar]
  5. Loftus M. Brown R.S. El-Farra N.S. Owen E.J. Reau N. Wadei H.M. Bernstein D. Improving the Management of Hepatorenal Syndrome-Acute Kidney Injury Using an Updated Guidance and a New Treatment Paradigm. Gastroenterol. Hepatol. (N. Y.) 2023 19 9 527 536 37771795
    [Google Scholar]
  6. Pinter K. Rosenkranz A. Cholemic nephropathy: Role in acute kidney injury in cholestasis and cirrhosis. Advance Kidney Disease Health. 2024 31 2 111 126 10.1053/j.akdh.2023.07.001 38649215
    [Google Scholar]
  7. Ommati M.M. Attari H. Siavashpour A. Shafaghat M. Azarpira N. Ghaffari H. Moezi L. Heidari R. Mitigation of cholestasis-associated hepatic and renal injury by edaravone treatment: Evaluation of its effects on oxidative stress and mitochondrial function. Liver Res. 2021 5 3 181 193 10.1016/j.livres.2020.10.003 39957848
    [Google Scholar]
  8. Liu Y. Li M. Song Y. Liu X. Zhao J. Deng B. Peng A. Qin L. Association of serum bilirubin with renal outcomes in Han Chinese patients with chronic kidney disease. Clin. Chim. Acta 2018 480 9 16 10.1016/j.cca.2018.01.041 29408172
    [Google Scholar]
  9. Sakoh T. Nakayama M. Tanaka S. Yoshitomi R. Ura Y. Nishimoto H. Fukui A. Shikuwa Y. Tsuruya K. Kitazono T. Association of serum total bilirubin with renal outcome in Japanese patients with stages 3–5 chronic kidney disease. Metabolism 2015 64 9 1096 1102 10.1016/j.metabol.2015.06.006 26142826
    [Google Scholar]
  10. Li M. Li X. Liu Y. Liu X. Song Y. Zhao J. Mohan C. Wu T. Peng A. Qin L. Relationship between serum bilirubin levels s and the progression of renal function in patients with chronic kidney disease and hyperuricemia. Clin. Chim. Acta 2018 486 156 161 10.1016/j.cca.2018.07.045 30076802
    [Google Scholar]
  11. Tan W. Wang Y. Dai H. Deng J. Wu Z. Lin L. Yang J. Potential therapeutic strategies for renal fibrosis: Cordyceps and related products. Front. Pharmacol. 2022 13 932172 10.3389/fphar.2022.932172 35873549
    [Google Scholar]
  12. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  13. Khalaf M.L. Soliman A.M. Fahmy S.R. Mohamed A.S. Echinochrome-A attenuates arterial thrombosis complications in the liver and kidney in rats. Curr. Chem. Biol. 2025 19 1 50 64 10.2174/0122127968334087241210053042
    [Google Scholar]
  14. Khalaf M.L. Soliman A.M. Fahmy S.R. Mohamed A.S. Anti-thrombotic mechanisms of echinochrome a on arterial thrombosis in rats: In-silico, in-vitro and in-vivo studies. Cardiovasc. Hematol. Agents Med. Chem. 2024 39533475
    [Google Scholar]
  15. Zhou Z. Qiao Y. Zhao Y. Chen X. Li J. Zhang H. Lan Q. Yang B. Natural products: Potential drugs for the treatment of renal fibrosis. Chin. Med. 2022 17 1 98 10.1186/s13020‑022‑00646‑z 35978370
    [Google Scholar]
  16. Sakr H.I. Atia T. Mahmoud N.A. Abdelmawgood I.A. Khalaf M.L. Ebeed B.W. Abdelmohsen A.M. Kotb M.A. Al Shawoush A.M. Damanhory A.A. Elagali A.M. Mohamed A.S. Abdelfattah H.H. Echinochrome guarding effect against sodium arsenite-induced hepatorenal toxicity in rats. J. Trace Elem. Med. Biol. 2025 90 127682 10.1016/j.jtemb.2025.127682 40561904
    [Google Scholar]
  17. Mohamed R.G. Mohamed A.S. Dakrory A.I. Abdelaziz M.H. Protective impacts of quercetin and echinochrome on female fertility and pregnancy outcomes in polycystic ovary syndrome in rats. Birth Defects Res. 2025 117 5 e2487 10.1002/bdr2.2487 40396197
    [Google Scholar]
  18. Chen J. Li D.L. Xie L.N. Ma Y. Wu P.P. Li C. Liu W.F. Zhang K. Zhou R.P. Xu X.T. Zheng X. Liu X. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation. Phytomedicine 2020 78 153309 10.1016/j.phymed.2020.153309 32890914
    [Google Scholar]
  19. Laamari Y. Fawzi M. Hachim M.E. Bimoussa A. Oubella A. Ketatni E.M. Saadi M. Ammari L.E. Itto M.Y.A. Morjani H. Khouili M. Auhmani A. Synthesis, characterization and cytotoxic activity of pyrazole derivatives based on thymol. J. Mol. Struct. 2024 1297 136864 10.1016/j.molstruc.2023.136864
    [Google Scholar]
  20. Çakır M.A. İçyer N.C. Tornuk F. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2020 151 230 238 10.1016/j.ijbiomac.2020.02.096 32057871
    [Google Scholar]
  21. Xing Y. Wang X. Guo X. Yang P. Yu J. Shui Y. Chen C. Li X. Xu Q. Xu L.J.C. Comparison of antimicrobial activity of chitosan nanoparticles against bacteria and fungi. Coatings 2021 11 7 769 10.3390/coatings11070769
    [Google Scholar]
  22. El-Naggar N.E.A. Eltarahony M. Hafez E.E. Bashir S.I. Green fabrication of chitosan nanoparticles using Lavendula angustifolia, optimization, characterization and in vitro antibiofilm activity. Sci. Rep. 2023 13 1 11127 10.1038/s41598‑023‑37660‑6 37429892
    [Google Scholar]
  23. Wang X. Hu Y. Zhang Z. Zhang B. The application of thymol-loaded chitosan nanoparticles to control the biodeterioration of cultural heritage sites. J. Cult Herit 2022 53 206 211 10.1016/j.culher.2021.12.002
    [Google Scholar]
  24. Kotb M.A. Abdelmawgood I.A. WalyEldeen, A.A.; Abdelaziz, M.H.; Khalaf, M.L.; Mohamed, A.S.; Dakrory, A.E.; Ibrahim, S.A. Chrysin-loaded PLGA nanoparticles alleviate the implantation of endometriotic lesions via attenuation of peritoneal inflammation and downregulating NF-κB activation-driven expression of angiogenic factors. J. Drug Deliv Sci. Technol 2025 109 106984 10.1016/j.jddst.2025.106984
    [Google Scholar]
  25. Yang K. Shang Y. Yang N. Pan S. Jin J. He Q. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease. Front. Med. 2023 10 1132355 10.3389/fmed.2023.1132355 37138743
    [Google Scholar]
  26. Alnasraui A.H.F. Joe I.H. Al-Musawi S. Design and synthesize of folate decorated Fe3O4@Au-DEX-CP nano formulation for targeted drug delivery in colorectal cancer therapy: In vitro and in vivo studies. J. Drug Deliv. Sci. Technol. 2023 87 104798 10.1016/j.jddst.2023.104798
    [Google Scholar]
  27. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R.J.N.r.d. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608 PMC7717100
    [Google Scholar]
  28. Beh C.Y. Prajnamitra R.P. Chen L.L. Hsieh P.C. Advances in biomimetic nanoparticles for targeted cancer therapy and diagnosis. Molecules 2021 26 16 5052 10.3390/molecules26165052 34443638 PMC8401254
    [Google Scholar]
  29. Oluoch G. Matiru V. Mamati E.G. Nyongesa M. Nanoencapsulation of thymol and eugenol with chitosan nanoparticles and the effect against Ralstonia solanacearum. Adv. Microbiol. 2021 11 12 723 739 10.4236/aim.2021.1112052
    [Google Scholar]
  30. Oluoch G. Matiru V. Mamati E.G. Nyongesa M. Nanoencapsulation of thymol and eugenol with chitosan nanoparticles and the effect against Ralstonia solanacearum. Adv. Microbiol. 2021 11 12 723 739 10.4236/aim.2021.1112052
    [Google Scholar]
  31. Chinedu E. Arome D. Ameh F. A new method for determining acute toxicity in animal models. Toxicol. Int. 2013 20 3 224 226 10.4103/0971‑6580.121674 24403732
    [Google Scholar]
  32. Dajem S.B. Ali S.B. Abdelrady O.G. Salahaldin N.M. Soliman A.M. Kamal Y.M. Abdelazim A.Y. Mohamed A.F. Morsy K. Mohamed A.S. Fahmy S.R. Allolobophora caliginosa coelomic fluid ameliorates gentamicin-induced hepatorenal toxicity in rats. Asian Pac J. Trop. Biomed. 2020 10 9 411 416
    [Google Scholar]
  33. Baiomy A.A. Bahaaeldine M.A. Mohamed A.S. The therapeutic role of chitosan‐saponin‐bentonite nanocomposite on acute kidney injury induced by chromium in male Wistar rats. Biointerface Res. Appl. Chem. 2023 13 6 595 10.33263/BRIAC136.595
    [Google Scholar]
  34. Saber T.M. Arisha A.H. Abo-Elmaaty A.M.A. Abdelgawad F.E. Metwally M.M.M. Saber T. Mansour M.F. Thymol alleviates imidacloprid-induced testicular toxicity by modulating oxidative stress and expression of steroidogenesis and apoptosis-related genes in adult male rats. Ecotoxicol. Environ. Saf. 2021 221 112435 10.1016/j.ecoenv.2021.112435 34171690
    [Google Scholar]
  35. Mohamed A.S. Hosney M. Bassiony H. Hassanein S.S. Soliman A.M. Fahmy S.R. Gaafar K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep. 2020 10 1 378 10.1038/s41598‑019‑57252‑7 31942001
    [Google Scholar]
  36. Abdelaziz M.H. ElRakabawi M.S. Soliman A.M. Mohamed A.S. Freshwater Bivalve Coelatura aegyptiaca as a Sensitive Bioindicator for Zinc Oxide/Chitosan Nanocomposites Toxicity. Curr. Chem. Biol. 2025 19 2 141 150 10.2174/0122127968350685250325165915
    [Google Scholar]
  37. loannou, Y.A.; Chen, F.W. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res. 1996 24 5 992 993 10.1093/nar/24.5.992 8600475
    [Google Scholar]
  38. Sarah Ali Q. Amel Mahmoud S. Sohair Ramadan F. Ayman Saber M. Efficacy of eugenol loaded chitosan nanoparticles on sepsis induced liver injury in rats. 2024 18 1 15
    [Google Scholar]
  39. Thapaliya S. Wree A. Povero D. Inzaugarat M.E. Berk M. Dixon L. Papouchado B.G. Feldstein A.E. Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Dig. Dis. Sci. 2014 59 6 1197 1206 10.1007/s10620‑014‑3167‑6 24795036
    [Google Scholar]
  40. Wang G. Li P.W. Peng Z. Huang M.F. Kong L.X. Formulation of vanillin cross-linked chitosan nanoparticles and its characterization. Adv. Mat. Res. 2011 335-336 474 477 10.4028/www.scientific.net/AMR.335‑336.474
    [Google Scholar]
  41. Milovanovic S. Markovic D. Aksentijevic K. Stojanovic D.B. Ivanovic J. Zizovic I. Application of cellulose acetate for controlled release of thymol. Carbohydr. Polym. 2016 147 344 353 10.1016/j.carbpol.2016.03.093 27178940
    [Google Scholar]
  42. Zhao X. Zhang Y. Chen L. Ma Z. Zhang B. Chitosan-thymol nanoparticle with pH responsiveness as a potential intelligent botanical fungicide against Botrytis cinerea. Pestic. Biochem. Physiol. 2023 195 105571 10.1016/j.pestbp.2023.105571 37666600
    [Google Scholar]
  43. Amin A.A. Alabsawy E.I. Jalan R. Davenport A. Epidemiology, pathophysiology, and management of hepatorenal syndrome. Semin. Nephrol. 2019 39 1 17 30 10.1016/j.semnephrol.2018.10.002 30606404
    [Google Scholar]
  44. Ginès P. Solà E. Angeli P. Wong F. Nadim M.K. Kamath P.S. Hepatorenal syndrome. Nat. Rev. Dis. Primers 2018 4 1 23 10.1038/s41572‑018‑0022‑7 30213943
    [Google Scholar]
  45. Soliman A.M. Marie M.A.S. Saleh H.M. Mohamed A.S. Assessment of sepia ink extract role against the kidney dysfunction induced by bile duct ligation. J. Basic Appl. Zool. 2014 67 5 173 181 10.1016/j.jobaz.2014.04.001
    [Google Scholar]
  46. Fahmy S.R. Mohamed A.S. Holoturia arenicola extract modulates bile duct ligation-induced oxidative stress in rat kidney. Int. J. Clin. Exp. Pathol. 2015 8 2 1649 1657 25973050
    [Google Scholar]
  47. Wu J. Xu Y. Geng Z. Zhou J. Xiong Q. Xu Z. Li H. Han Y. Chitosan oligosaccharide alleviates renal fibrosis through reducing oxidative stress damage and regulating TGF-β1/Smads pathway. Sci. Rep. 2022 12 1 19160 10.1038/s41598‑022‑20719‑1 36357407
    [Google Scholar]
  48. Kowalczyk A. Twarowski B. Fecka I. Tuberoso C.I.G. Jerković I. Thymol as a component of chitosan systems—several new applications in medicine: A comprehensive review. Plants 2024 13 3 362 10.3390/plants13030362 38337895
    [Google Scholar]
  49. Wang Z.F. Wang M.Y. Yu D.H. Zhao Y. Xu H.M. Zhong S. Sun W.Y. He Y.F. Niu J.Q. Gao P.J. Li H.J. Therapeutic effect of chitosan on CCl4 induced hepatic fibrosis in rats. Mol. Med. Rep. 2018 18 3 3211 3218 10.3892/mmr.2018.9343 30085342
    [Google Scholar]
  50. Low G. Alexander G.J.M. Lomas D.J. Hepatorenal syndrome: Aetiology, diagnosis, and treatment. Gastroenterol. Res. Pract. 2015 2015 1 11 10.1155/2015/207012 25649410
    [Google Scholar]
  51. Mohamed A.F. Mohamed A.S. Abdel-Khalek A.A. Badran S.R. Synergistic impact of temperature rises and ferric oxide nanoparticles on biochemical and oxidative stress biomarkers in Oreochromis niloticus: Relevant environmental risk assessment under predicted global warming. Environ. Monit. Assess. 2025 197 4 409 10.1007/s10661‑025‑13789‑x 40095155
    [Google Scholar]
  52. Mohamed A. Ragheb M.A. Shehata M.R. Mohamed A.S. In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production. J. Trace Elem. Med. Biol. 2024 86 127516 10.1016/j.jtemb.2024.127516
    [Google Scholar]
  53. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  54. Abdelmawgood I.A. Badr A.M. Abdelkader A.E. Mahana N.A. Mohamed A.S. Abdelfattah H.H. Chrysin-loaded poly (lactic-co-glycolic acid) nanoparticles alleviate sepsis-induced splenic injury by regulating myeloid-derived suppressor cells. Immunol. Res. 2025 73 1 80 10.1007/s12026‑025‑09634‑5 40358797
    [Google Scholar]
  55. Gaber R. Mohamed A.S. Baiomy A.A.A. Ovothiol-A exhibited protective and therapeutic effect against hyperthyroidism in rats. Curr. Top. Med. Chem. 2025 25 23 2773 2786 10.2174/0115680266349656250318020702 40207760
    [Google Scholar]
  56. Fath-All A.A. Atia T. Mohamed A.S. Khalil N.M. Abdelaziz T.D. Mahmoud N.A. Elagali A.M. Sakr H.I. Abd El-Ghany M.N. Efficacy of yeast-mediated SeNPs on gastric ulcer healing and gut microbiota dysbiosis in male albino rats. Tissue Cell 2025 96 102953 10.1016/j.tice.2025.102953 40334393
    [Google Scholar]
  57. Moustafa M.A. Mohamed A.S. Dakrory A.I. Abdelaziz M.H. Lepidium sativum extract alleviates reproductive and developmental toxicity in polycystic ovary syndrome induced by letrozole and high-fat diet in rats. Reprod. Sci. 2025 32 4 1338 1361 10.1007/s43032‑025‑01820‑y 40048056
    [Google Scholar]
  58. Tomsa A.M. Alexa A.L. Junie M.L. Rachisan A.L. Ciumarnean L. Oxidative stress as a potential target in acute kidney injury. PeerJ 2019 7 e8046 10.7717/peerj.8046 31741796
    [Google Scholar]
  59. Abdelmawgood I.A. Mohamed A.S. Mahana N.A. Abdel Wahab A.H.A. Badr A.M. Abdelkader A.E. Chrysin-loaded PLGA nanoparticle attenuates ferroptosis in lipopolysaccharide-induced indirect acute lung injury by upregulating Nrf2-dependent antioxidant responses. Respir. Physiol. Neurobiol. 2025 336 104451 10.1016/j.resp.2025.104451 40379234
    [Google Scholar]
  60. Grattagliano I. Oliveira P.J. Vergani L. Portincasa P. Oxidative and Nitrosative Stress in Chronic Cholestasis. In: Liver Pathophysiology. Muriel P. Boston Academic Press 2017 225 237 10.1016/B978‑0‑12‑804274‑8.00017‑5
    [Google Scholar]
  61. Kumar R. Teo E.K. How C.H. Wong T.Y. Ang T.L. A practical clinical approach to liver fibrosis. Singapore Med. J. 2018 59 12 628 633 10.11622/smedj.2018145 30631885
    [Google Scholar]
  62. Nagoor Meeran M.F. Javed H. Al Taee H. Azimullah S. Ojha S.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 2017 8 380 10.3389/fphar.2017.00380 28694777
    [Google Scholar]
  63. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  64. Sheen-Chen S.M. Hung K.S. Ho H.T. Chen W.J. Eng H.L. Effect of glutamine and bile acid on hepatocyte apoptosis after bile duct ligation in the rat. World J. Surg. 2004 28 5 457 460 10.1007/s00268‑004‑7189‑7 15085397
    [Google Scholar]
  65. Steiner J.L. Lang C.H. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int. J. Biochem. Cell Biol. 2017 89 125 135 10.1016/j.biocel.2017.06.009 28606389
    [Google Scholar]
  66. Wang J.Y.J. Cell Death Response to DNA Damage. Yale J. Biol. Med. 2019 92 4 771 779 31866794
    [Google Scholar]
  67. Ebeed B.W. Abdelmawgood I.A. Kotb M.A. Mahana N.A. Mohamed A.S. Ramadan M.A. Badr A.M. Nasr M. Qurani O.M. Hamdy R.M. El-Hakiem N.Y.A. Fahim M.K. Fekry M.M. Eid J.I. β-glucan nanoparticles alleviate acute asthma by suppressing ferroptosis and DNA damage in mice. Apoptosis 2024 39305381
    [Google Scholar]
  68. Dou X. Yan D. Liu S. Gao L. Shan A. Thymol Alleviates LPS-Induced Liver Inflammation and Apoptosis by Inhibiting NLRP3 Inflammasome Activation and the AMPK-mTOR-Autophagy Pathway. Nutrients 2022 14 14 2809 10.3390/nu14142809 35889766
    [Google Scholar]
  69. Osawa Y. Hoshi M. Yasuda I. Saibara T. Moriwaki H. Kozawa O. Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells. PLoS One 2013 8 6 e65251 10.1371/journal.pone.0065251 23755201
    [Google Scholar]
  70. Nassef N. Abu-Shadi E. El Agaty S. Abdel Hamid G. Quercetin mitigates liver injury in a rat model of liver cholestasis. Bulletin of Egyptian Society for Physiological Sciences 2020 40 1 84 95 10.21608/besps.2019.14512.1026
    [Google Scholar]
  71. Gabbai-Armelin P.R. Sales L.S. Ferrisse T.M. De Oliveira A.B. De Oliveira J.R. Giro E.M.A. Brighenti F.L. A systematic review and meta‐analysis of the effect of thymol as an anti‐inflammatory and wound healing agent. Phytother. Res. 2022 36 9 3415 3443 10.1002/ptr.7541 35848908
    [Google Scholar]
  72. Abdelmawgood I.A. Kotb M.A. Hassan H.S. Badr A.M. Mahana N.A. Mohamed A.S. Khalaf M.L. Mostafa N.K. Diab B.E. Ahmed N.N. Alamudddin Z.A. Soliman L.A. Fahim M.K. Abdelkader A.E. 4-Hydroxychalcone attenuates ovalbumin-induced allergic airway inflammation and oxidative stress by activating Nrf2/GPx4 pathway. Respir. Physiol. Neurobiol. 2025 331 104348 10.1016/j.resp.2024.104348 39260757
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968401483251014085241
Loading
/content/journals/ccb/10.2174/0122127968401483251014085241
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: bill duct ligation ; Acute kidney injury ; thymol ; chitosan ; cholestasis ; nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test