Skip to content
2000
image of A Systematic Review on Pharmacological Activity and Novel Delivery Advances of Lycopene

Abstract

Introduction

Lycopene is a lipophilic red carotenoid pigment made up of eight isoprene units (octaprene) that are normally bound together head to tail, with the exception of the central part of the compound, wherein tail to tail attachment results in a symmetrical structure. Several physiological modes of action for lycopene have been investigated and documented in scientific research; the impacts on heart health, antineoplastic activity, and defence against oxidative stress are among the most extensively researched. Biological sources like , , and apricot all contain significant amounts of it.

Methods

Current data were collected from PubMed, Google Scholar, ACS, SciFinder, Springer Nature, Bentham Science, PLOS One, MDPI and MEDLINE.

Results

Much scientific evidence suggests that eating nutritious food can help avoid chronic illnesses. Novel drug formulation of lycopene has also been researched to increase stability and solubility. Nanoparticles, liposomes, neosomes, microparticles and other novel agents have been investigated after 2015. Here in the review, we also compiled the marketed formulation.

Discussion

Lycopene possesses various pharmacological aspects like anti-oxidant, anticancer, anti-inflammatory, antiulcer, hepatoprotective and cardiovascular approaches. Novel formulations enhanced its potency.

Conclusion

The Present review summarises pharmacological activities, delivery approaches of lycopene and marketed formulations.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968391576251016133433
2025-11-11
2025-12-25
Loading full text...

Full text loading...

References

  1. Mortensen A. Carotenoids and other pigments as natural colorants. Pure Appl. Chem. 2006 78 8 1477 1491 10.1351/pac200678081477
    [Google Scholar]
  2. Vogele A.C. Effect of environmental factors upon the color of the tomato and the watermelon. Plant Physiol. 1937 12 4 929 955 10.1104/pp.12.4.929 16653464
    [Google Scholar]
  3. Gerster H. The potential role of lycopene for human health. J. Am. Coll. Nutr. 1997 16 2 109 126 10.1080/07315724.1997.10718661 9100211
    [Google Scholar]
  4. Khalaf R.A. Awad M. Lycopene as a potential bioactive compound: Chemistry, extraction, and anticancer prospective. Curr. Cancer Drug Targets 2023 23 8 634 642 10.2174/1568009623666230131124236 36718971
    [Google Scholar]
  5. Inoue T. Yoshida K. Sasaki E. Aizawa K. Kamioka H. Effect of Lycopene intake on the fasting blood glucose level: A systematic review with meta-analysis. Nutrients 2022 15 1 122 10.3390/nu15010122 36615780
    [Google Scholar]
  6. Selamoglu Z. Biotechnological approaches on anticancer activity of flavonoids-mini review. Modern Approaches in Drug Designing 2017 1 2 2017 10.31031/MADD.2017.01.000510
    [Google Scholar]
  7. Selamoglu Z. Allantoin as metabolic compound. J. Tradit. Med. Clin. Naturop. 2018 7 1 1 10.4172/2573‑4555.1000e143
    [Google Scholar]
  8. Choudhari S.M. Ananthanarayan L. Enzyme aided extraction of lycopene from tomato tissues. Food Chem. 2007 102 1 77 81 10.1016/j.foodchem.2006.04.031
    [Google Scholar]
  9. Li N. Wu X. Zhuang W. Xia L. Chen Y. Wu C. Rao Z. Du L. Zhao R. Yi M. Wan Q. Zhou Y. Tomato and lycopene and multiple health outcomes: Umbrella review. Food Chem. 2021 343 128396 10.1016/j.foodchem.2020.128396 33131949
    [Google Scholar]
  10. Thies F. Masson L.F. Rudd A. Vaughan N. Tsang C. Brittenden J. Simpson W.G. Duthie S. Horgan G.W. Duthie G. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: A randomized controlled trial. Am. J. Clin. Nutr. 2012 95 5 1013 1022 10.3945/ajcn.111.026286 22492370
    [Google Scholar]
  11. Abdalla A.A. Knowledge, attitude and practice towards therapeutic lifestyle changes in the management of hypertension in Khartoum State. Cardiovasc. J. Afr. 2021 32 4 26 31 10.5830/CVJA‑2021‑011 33950069
    [Google Scholar]
  12. Heber D. Lu Q.Y. Overview of mechanisms of action of lycopene. Exp. Biol. Med. (Maywood) 2002 227 10 920 923 10.1177/153537020222701013 12424335
    [Google Scholar]
  13. Khan U.M. Sevindik M. Zarrabi A. Nami M. Ozdemir B. Kaplan D.N. Selamoglu Z. Hasan M. Kumar M. Alshehri M.M. Sharifi-Rad J. Lycopene: Food sources, biological activities, and human health benefits. Oxid. Med. Cell. Longev. 2021 2021 1 2713511 10.1155/2021/2713511 34840666
    [Google Scholar]
  14. John J.H. Ziebland S. Yudkin P. Roe L.S. Neil H.A.W. Oxford F. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: A randomised controlled trial. Lancet 2002 359 9322 1969 1974 10.1016/S0140‑6736(02)98858‑6 12076551
    [Google Scholar]
  15. Puah B.P. Jalil J. Attiq A. Kamisah Y. New Insights into Molecular mechanism behind anti-cancer activities of lycopene. Molecules 2021 26 13 3888 10.3390/molecules26133888 34202203
    [Google Scholar]
  16. Jiang S. Liu H. Li C. Dietary regulation of oxidative stress in chronic metabolic diseases. Foods 2021 10 8 1854 10.3390/foods10081854 34441631
    [Google Scholar]
  17. Tambunan R.Z. Rusmarilin H. Kaban J. Antioxidant activity of tomato juice rich in lycopene antioxidant as degenerative chemopreventive agents using citrus aurantifolia juice as a preservative. IOP Conf. Ser. Earth Environ. Sci. 2018 205 012035 10.1088/1755‑1315/205/1/012035
    [Google Scholar]
  18. Kelkel M. Schumacher M. Dicato M. Diederich M. Antioxidant and anti-proliferative properties of lycopene. Free Radic. Res. 2011 45 8 925 940 10.3109/10715762.2011.564168 21615277
    [Google Scholar]
  19. Tvrdá E. Kováčik A. Tušimová E. Paál D. Mackovich A. Alimov J. Lukáč N. Antioxidant efficiency of lycopene on oxidative stress - induced damage in bovine spermatozoa. J. Anim. Sci. Biotechnol. 2016 7 1 50 10.1186/s40104‑016‑0113‑9 27602206
    [Google Scholar]
  20. Kiokias S. Varzakas T. Oreopoulou V. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Crit. Rev. Food Sci. Nutr. 2008 48 1 78 93 10.1080/10408390601079975 18274966
    [Google Scholar]
  21. Bibi N. Khattak A.B. Mehmood Z. Quality improvement and shelf life extension of persimmon fruit (Diospyros kaki). J. Food Eng. 2007 79 4 1359 1363 10.1016/j.jfoodeng.2006.04.016
    [Google Scholar]
  22. Dasgupta A. Induced mutations for improved lycopene, total antioxidant properties and other quality factors in wild tomato (solanum pimpinellifolium). Int. J. Pharm. Tech. Res. 2012 5 4 1655 1663
    [Google Scholar]
  23. Nobre B.P. Gouveia L. Matos P.G.S. Cristino A.F. Palavra A.F. Mendes R.L. Supercritical extraction of lycopene from tomato industrial wastes with ethane. Molecules 2012 17 7 8397 8407 10.3390/molecules17078397 22785267
    [Google Scholar]
  24. Rao A.V. Agarwal S. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr. 2000 19 5 563 569 10.1080/07315724.2000.10718953 11022869
    [Google Scholar]
  25. Lü Z. Zhang Z. Wu H. Zhou Z. Yu J. Phenolic composition and antioxidant capacities of chinese local pummelo cultivars’. Peel. Hortic Plant. J. 2016 2 3 133 140 10.1016/j.hpj.2016.05.001
    [Google Scholar]
  26. Berni R. Romi M. Cantini C. Hausman J.F. Guerriero G. Cai G. Functional molecules in locally-adapted crops: The case study of tomatoes, onions, and sweet cherry fruits from tuscany in Italy. Front Plant. Sci. 2019 9 1983 10.3389/fpls.2018.01983 30697223
    [Google Scholar]
  27. Rao A.V. Ray M.R. Rao L.G. Lycopene. Adv. Food Nutr. Res. 2006 51 99 164 10.1016/S1043‑4526(06)51002‑2 17011475
    [Google Scholar]
  28. Handa P. Morgan-Stevenson V. Maliken B.D. Nelson J.E. Washington S. Westerman M. Yeh M.M. Kowdley K.V. Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2016 310 2 G117 G127 10.1152/ajpgi.00246.2015 26564716
    [Google Scholar]
  29. Hazewindus M. Haenen G.R.M.M. Weseler A.R. Bast A. The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and α-tocopherol. Food Chem. 2012 132 2 954 958 10.1016/j.foodchem.2011.11.075
    [Google Scholar]
  30. Amorim A.G.N. Souza J.M.T. Santos R.C. Gullón B. Oliveira A. Santos L.F.A. Virgino A.L.E. Mafud A.C. Petrilli H.M. Mascarenhas Y.P. Delerue-Matos C. Pintado M.E. Leite J.R.S.A. HPLC‐DAD, ESI–MS/MS, and NMR of Lycopene Isolated From P. guajava L. and Its Biotechnological Applications. Eur. J. Lipid Sci. Technol. 2018 120 3 1700330 10.1002/ejlt.201700330
    [Google Scholar]
  31. Vuong L.T. Franke A.A. Custer L.J. Murphy S.P. Momordica cochinchinensis Spreng. (Gac) fruit carotenoids reevaluated. J. Food Compos. Anal. 2006 19 6-7 664 668 10.1016/j.jfca.2005.02.001
    [Google Scholar]
  32. Patel A.S. Sasidharan N. Vala A.G. Genetic relation in Capcicum annum [L. cultivars through micro satellite markers: SSR and ISSR. Electron. J. Plant Breed. 2011 2 1 67 76
    [Google Scholar]
  33. Nabeel M. Abderrahman S. Papini A. Cytogenetic effect of Arum maculatum extract on the bone marrow cells of mice. Caryologia 2008 61 4 383 387 10.1080/00087114.2008.10589650
    [Google Scholar]
  34. Saini I. Aggarwal A. Kaushik P. Inoculation with mycorrhizal fungi and other microbes to improve the morpho-physiological and floral traits of Gazania rigens (L.) Gaertn. Agriculture 2019 9 3 51 10.3390/agriculture9030051
    [Google Scholar]
  35. Hesp P. McLachlan A. Morphology, dynamics, ecology and fauna of Arctotheca populifolia and Gazania rigens nabkha dunes. J. Arid Environ. 2000 44 2 155 172 10.1006/jare.1999.0590
    [Google Scholar]
  36. Mzabri I. Addi M. Berrichi A. Traditional and modern uses of saffron (Crocus sativus). Cosmetics 2019 6 4 63 10.3390/cosmetics6040063
    [Google Scholar]
  37. Thomas P.A. Polwart A. Taxus baccata L. J. Ecol. 2003 91 3 489 524 10.1046/j.1365‑2745.2003.00783.x
    [Google Scholar]
  38. Jan N. John R. Calendula officinalis-an important medicinal plant with potential Biological Properties. Proceedings of the Indian National 2017 93 10.16943/ptinsa/2017/49126
    [Google Scholar]
  39. Imran M. Ghorat F. Ul-Haq I. Ur-Rehman H. Aslam F. Heydari M. Shariati M.A. Okuskhanova E. Yessimbekov Z. Thiruvengadam M. Hashempur M.H. Rebezov M. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants 2020 9 8 706 10.3390/antiox9080706 32759751
    [Google Scholar]
  40. Mozos I. Stoian D. Caraba A. Malainer C. Horbańczuk J.O. Atanasov A.G. Lycopene and vascular health. Front. Pharmacol. 2018 9 521 10.3389/fphar.2018.00521 29875663
    [Google Scholar]
  41. Naz A. Butt M.S. Sultan M.T. Qayyum M.M. Niaz R.S. Watermelon lycopene and allied health claims. EXCLI J. 2014 13 650 660 26417290
    [Google Scholar]
  42. Sesso H.D. Liu S. Gaziano J.M. Buring J.E. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 2003 133 7 2336 2341 10.1093/jn/133.7.2336 12840203
    [Google Scholar]
  43. Riso P. Brusamolino A. Martinetti A. Porrini M. Effect of a tomato drink intervention on insulin-like growth factor (IGF)-1 serum levels in healthy subjects. Nutr. Cancer 2006 55 2 157 162 10.1207/s15327914nc5502_6 17044770
    [Google Scholar]
  44. Arain M.A. Mei Z. Hassan F.U. Saeed M. Alagawany M. Shar A.H. Rajput I.R. Lycopene: A natural antioxidant for prevention of heat-induced oxidative stress in poultry. Worlds Poult. Sci. J. 2018 74 1 89 100 10.1017/S0043933917001040
    [Google Scholar]
  45. Ozmen O. Topsakal S. Haligur M. Aydogan A. Dincoglu D. Effects of caffeine and lycopene in experimentally induced diabetes mellitus. Pancreas 2016 45 4 579 583 10.1097/MPA.0000000000000489 26418913
    [Google Scholar]
  46. Li W. Wang G. Lu X. Jiang Y. Xu L. Zhao X. Lycopene ameliorates renal function in rats with streptozotocin-induced diabetes. Int. J. Clin. Exp. Pathol. 2014 7 8 5008 5015 25197372
    [Google Scholar]
  47. Bayramoglu A. Bayramoglu G. Senturk H. Lycopene partially reverses symptoms of diabetes in rats with streptozotocin-induced diabetes. J. Med. Food 2013 16 2 128 132 10.1089/jmf.2012.2277 23347319
    [Google Scholar]
  48. Yin Y. Zheng Z. Jiang Z. Effects of lycopene on metabolism of glycolipid in type 2 diabetic rats. Biomed. Pharmacother. 2019 109 2070 2077 10.1016/j.biopha.2018.07.100 30551463
    [Google Scholar]
  49. Malekiyan R. Abdanipour A. Sohrabi D. Jafari Anarkooli I. Antioxidant and neuroprotective effects of lycopene and insulin in the hippocampus of streptozotocin induced diabetic rats. Biomed. Rep. 2018 10 1 47 54 10.3892/br.2018.1171 30588303
    [Google Scholar]
  50. Leh H.E. Mohd Sopian M. Abu Bakar M.H. Lee L.K. The role of lycopene for the amelioration of glycaemic status and peripheral antioxidant capacity among the Type II diabetes mellitus patients: A case–control study. Ann. Med. 2021 53 1 1060 1066 10.1080/07853890.2021.1943515 34180336
    [Google Scholar]
  51. Gao J.X. Li Y. Zhang H.Y. He X.L. Bai A.S. Lycopene ameliorates erectile dysfunction in streptozotocin-induced diabetic rats. Pharmazie 2012 67 3 256 259 22530309
    [Google Scholar]
  52. Shaw J.A. Koti M. Orange discoloration of the palms. CMAJ 2009 180 8 895 895 10.1503/cmaj.071335 19364801
    [Google Scholar]
  53. Sharma JB. Kumar A. Kumar A. Effect of lycopene on pre-eclampsia and intrauterine growth retardation in primigravidas. Int. J. Gynaecol. Obstet. 2003 81 3 257 262
    [Google Scholar]
  54. Bhuvaneswari V. Nagini S. Lycopene: A review of its potential as an anticancer agent. Curr. Med. Chem. Anticancer Agents 2005 5 6 627 635 10.2174/156801105774574667 16305484
    [Google Scholar]
  55. Dahan K. Fennal M. Kumar N.B. Lycopene in the prevention of prostate cancer. J. Soc. Integr. Oncol. 2008 6 1 29 36 18302908
    [Google Scholar]
  56. Yu L. Wang W. Pang W. Xiao Z. Jiang Y. Hong Y. Dietary lycopene supplementation improves cognitive performances in tau transgenic mice expressing p301l mutation via inhibiting oxidative stress and tau hyperphosphorylation. J. Alzheimers Dis. 2017 57 2 475 482 10.3233/JAD‑161216 28269786
    [Google Scholar]
  57. Bandeira A.C.B. da Silva T.P. de Araujo G.R. Araujo C.M. da Silva R.C. Lima W.G. Bezerra F.S. Costa D.C. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice. Chem. Biol. Interact. 2017 263 7 17 10.1016/j.cbi.2016.12.011 27989599
    [Google Scholar]
  58. Bayomy N.A. Elbakary R.H. Ibrahim M.A.A. Abdelaziz E.Z. Effect of lycopene and rosmarinic acid on gentamicin induced renal cortical oxidative stress, apoptosis, and autophagy in adult male albino rat. Anat. Rec. (Hoboken) 2017 300 6 1137 1149 10.1002/ar.23525 27884046
    [Google Scholar]
  59. Qu M. Jiang Z. Liao Y. Song Z. Nan X. Lycopene prevents amyloid [β]-induced mitochondrial oxidative stress and dysfunctions in cultured rat cortical neurons. Neurochem. Res. 2016 41 6 1354 1364 10.1007/s11064‑016‑1837‑9 26816095
    [Google Scholar]
  60. Pennathur S. Maitra D. Byun J. Sliskovic I. Abdulhamid I. Saed G.M. Diamond M.P. Abu-Soud H.M. Potent antioxidative activity of lycopene: A potential role in scavenging hypochlorous acid. Free Radic. Biol. Med. 2010 49 2 205 213 10.1016/j.freeradbiomed.2010.04.003 20388538
    [Google Scholar]
  61. Riccioni G. Mancini B. Di Ilio E. Bucciarelli T. D’Orazio N. Protective effect of lycopene in cardiovascular disease. Eur. Rev. Med. Pharmacol. Sci. 2008 12 3 183 190 18700690
    [Google Scholar]
  62. Sánchez M.C. Valencia C. Ciruelos A. Latorre A. Gallegos C. Rheological properties of tomato paste: influence of the addition of tomato slurry. J. Food Sci. 2003 68 2 551 554 10.1111/j.1365‑2621.2003.tb05710.x
    [Google Scholar]
  63. Agarwal S. Rao A.V. Carotenoids and chronic diseases. Drug Metabol. Drug Interact. 2000 17 1-4 189 210 10.1515/DMDI.2000.17.1‑4.189 11201295
    [Google Scholar]
  64. Agarwal A. Durairajanayagam D. Ong C. Prashast P. Lycopene and male infertility. Asian J. Androl. 2014 16 3 420 425 10.4103/1008‑682X.126384 24675655
    [Google Scholar]
  65. Rao A.V. Ray M.R. Rao L.G. Lycopene In Advances in Food. 2006
  66. Asase A. Akwetey G.A. Achel D.G. Ethnopharmacological use of herbal remedies for the treatment of malaria in the dangme west district of Ghana. J. Ethnopharmacol. 2010 129 3 367 376 10.1016/j.jep.2010.04.001 20382213
    [Google Scholar]
  67. Yang C.M. Yen Y.T. Huang C.S. Hu M.L. Growth inhibitory efficacy of lycopene and β‐carotene against androgen‐independent prostate tumor cells xenografted in nude mice. Mol. Nutr. Food Res. 2011 55 4 606 612 10.1002/mnfr.201000308 21462328
    [Google Scholar]
  68. Tang Y. Parmakhtiar B. Simoneau A.R. Xie J. Fruehauf J. Lilly M. Zi X. Lycopene enhances docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia 2011 13 2 108 119 10.1593/neo.101092 21403837
    [Google Scholar]
  69. Rao A.V. Fleshner N. Agarwal S. Serum and tissue lycopene and biomarkers of oxidation in prostate cancer patients: A case-control study. Nutr. Cancer 1999 33 2 159 164 10.1207/S15327914NC330207 10368811
    [Google Scholar]
  70. Tang FY. Pai MH. Wang XD. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model. J. Agric. Food Chem. 2011 59 16 9011 9021 10.1021/jf2017644
    [Google Scholar]
  71. Nkondjock A. Ghadirian P. Johnson KC. Krewski D. Canadian cancer registries epidemiology research group. Dietary intake of lycopene is associated with reduced pancreatic cancer risk. J. Nutr. 2005 135 3 592 597 10.1093/jn/135.3.592
    [Google Scholar]
  72. Jiang X. Wu H. Zhao W. Ding X. You Q. Zhu F. Qian M. Yu P. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells. Cancer Cell Int. 2019 19 1 68 10.1186/s12935‑019‑0789‑y 30948928
    [Google Scholar]
  73. Lu R. Dan H. Wu R. Meng W. Liu N. Jin X. Zhou M. Zeng X. Zhou G. Chen Q. Lycopene: Features and potential significance in the oral cancer and precancerous lesions. J. Oral Pathol. Med. 2011 40 5 361 368 10.1111/j.1600‑0714.2010.00991.x 21198870
    [Google Scholar]
  74. Fawzi W. Herrera M.G. Nestel P. Tomato intake in relation to mortality and morbidity among Sudanese children. J. Nutr. 2000 130 10 2537 2542 10.1093/jn/130.10.2537 11015486
    [Google Scholar]
  75. Satia J.A. Littman A. Slatore C.G. Galanko J.A. White E. Long-term use of beta-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: Results from the VITamins And Lifestyle (VITAL) study. Am. J. Epidemiol. 2009 169 7 815 828 10.1093/aje/kwn409 19208726
    [Google Scholar]
  76. Chen D. Huang C. Chen Z. A review for the pharmacological effect of lycopene in central nervous system disorders. Biomed. Pharmacother. 2019 111 791 801 10.1016/j.biopha.2018.12.151 30616078
    [Google Scholar]
  77. Bin-Jumah M.N. Nadeem M.S. Gilani S.J. Mubeen B. Ullah I. Alzarea S.I. Ghoneim M.M. Alshehri S. Al-Abbasi F.A. Kazmi I. Lycopene: A natural arsenal in the war against oxidative stress and cardiovascular diseases. Antioxidants 2022 11 2 232 10.3390/antiox11020232 35204115
    [Google Scholar]
  78. Ghavipour M. Saedisomeolia A. Djalali M. Sotoudeh G. Eshraghyan M.R. Moghadam A.M. Wood L.G. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br. J. Nutr. 2013 109 11 2031 2035 10.1017/S0007114512004278 23069270
    [Google Scholar]
  79. Mei H.D. Li Y.F. Ma X.Y. Yu M. Physiological function of lycopene and its application in swine and chicken production. Dongwu Yingyang Xuebao 2023 35 727 737 10.12418/CJAN2023.070
    [Google Scholar]
  80. Cao L. Zhao J. Ma L. Chen J. Xu J. Rahman S.U. Feng S. Li Y. Wu J. Wang X. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. Ecotoxicol. Environ. Saf. 2021 225 112737 10.1016/j.ecoenv.2021.112737 34482067
    [Google Scholar]
  81. Ledebur H.C. Parks T.P. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J. Biol. Chem. 1995 270 2 933 943 10.1074/jbc.270.2.933 7822333
    [Google Scholar]
  82. Hazewindus M. Haenen G.R.M.M. Weseler A.R. Bast A. Protection against chemotaxis in the anti-inflammatory effect of bioactives from tomato ketchup. PLoS One 2014 9 12 e114387 10.1371/journal.pone.0114387 25551565
    [Google Scholar]
  83. Davis A.R. Fis W.W. Perkins-Veazie P. A rapid hexane-free method for analyzing lycopene content in watermelon. J. Food Sci. 2002
    [Google Scholar]
  84. Ketnawa S. Reginio F.C. Thuengtung S. Ogawa Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2021 1 22 10.1080/10408398.2021.1878100 33511849
    [Google Scholar]
  85. Shen C.L. von Bergen V. Chyu M.C. Jenkins M.R. Mo H. Chen C.H. Kwun I.S. Fruits and dietary phytochemicals in bone protection. Nutr. Res. 2012 32 12 897 910 10.1016/j.nutres.2012.09.018 23244535
    [Google Scholar]
  86. Costa-Rodrigues J. Fernandes M.H. Pinho O. Monteiro P.R.R. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J. Nutr. Biochem. 2018 57 26 34 10.1016/j.jnutbio.2018.03.004 29655028
    [Google Scholar]
  87. Jain D. Katti N. Combination treatment of lycopene and hesperidin protect experimentally induced ulcer in laboratory rats. J. Intercult. Ethnopharmacol. 2015 4 2 143 146 10.5455/jice.20150314061404 26401402
    [Google Scholar]
  88. Conn P.F. Schalch W. Truscott T.G. The singlet oxygen and carotenoid interaction. J. Photochem. Photobiol. B 1991 11 1 41 47 10.1016/1011‑1344(91)80266‑K 1791493
    [Google Scholar]
  89. Jang S.H. Lim J.W. Morio T. Kim H. Lycopene inhibits Helicobacter pylori-induced ATM/ATR-dependent DNA damage response in gastric epithelial AGS cells. Free Radic. Biol. Med. 2012 52 3 607 615 10.1016/j.freeradbiomed.2011.11.010 22178412
    [Google Scholar]
  90. Locke G.R. Talley N.J. Fett S.L. Zinsmeister A.R. Melton L.J. Prevalence and clinical spectrum of gastroesophageal reflux: A population-based study in Olmsted County, Minnesota. Gastroenterology 1997 112 5 1448 1456 10.1016/S0016‑5085(97)70025‑8 9136821
    [Google Scholar]
  91. Jiménez P. Piazuelo E. Sánchez M.T. Ortego J. Soteras F. Lanas A. Free radicals and antioxidant systems in reflux esophagitis and Barrett’s esophagus. World J. Gastroenterol. 2005 11 18 2697 2703 10.3748/wjg.v11.i18.2697 15884106
    [Google Scholar]
  92. Lian F. Smith DE. Ernst H. Russell RM. Wang X-D. Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the A/J mouse model in vivo. Carcinogenesis 2007 28 7 1567 1574 10.1093/carcin/bgm076
    [Google Scholar]
  93. Johra F.T. Bepari A.K. Bristy A.T. Reza H.M. A Mechanistic review of β-carotene, Lutein, and zeaxanthin in eye health and disease. Antioxidants 2020 9 11 1046 10.3390/antiox9111046 33114699
    [Google Scholar]
  94. Kumar P. Banik S.P. Ohia S.E. Moriyama H. Chakraborty S. Wang C.K. Song Y.S. Goel A. Bagchi M. Bagchi D. Current insights on the photoprotective mechanism of the macular carotenoids, lutein and zeaxanthin: safety, efficacy and bio-delivery. J. Am. Nutr. Assoc. 2024 43 6 505 518 Epub ahead of print10.1080/27697061.2024.2319090 38393321
    [Google Scholar]
  95. Walallawita U.S. Wolber F.M. Ziv-Gal A. Kruger M.C. Heyes J.A. Potential role of lycopene in the prevention of postmenopausal bone loss: Evidence from molecular to clinical studies. Int. J. Mol. Sci. 2020 21 19 7119 10.3390/ijms21197119 32992481
    [Google Scholar]
  96. Koul A. Arora N. Tanwar L. Lycopene mediated modulation of 7,12 dimethlybenz (a) anthracene induced hepatic clastogenicity in male balb/c mice. Nutr. Hosp. 2010 25 2 304 310
    [Google Scholar]
  97. Abdel-Daim M.M. Eissa I.A.M. Abdeen A. Abdel-Latif H.M.R. Ismail M. Dawood M.A.O. Hassan A.M. Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ. Toxicol. Pharmacol. 2019 69 44 50 10.1016/j.etap.2019.03.016 30953933
    [Google Scholar]
  98. Ni Y. Zhuge F. Nagashimada M. Nagata N. Xu L. Yamamoto S. Fuke N. Ushida Y. Suganuma H. Kaneko S. Ota T. Lycopene prevents the progression of lipotoxicity-induced nonalcoholic steatohepatitis by decreasing oxidative stress in mice. Free Radic. Biol. Med. 2020 152 571 582 10.1016/j.freeradbiomed.2019.11.036 31790829
    [Google Scholar]
  99. Han R.M. Zhang J.P. Skibsted L.H. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 2012 17 2 2140 2160 10.3390/molecules17022140 22354191
    [Google Scholar]
  100. Sahoo S.K. Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 2003 8 24 1112 1120 10.1016/S1359‑6446(03)02903‑9 14678737
    [Google Scholar]
  101. Allen T.M. Liposomen. Drugs 1997 8 24 1112 11120 10.2165/00003495‑199700544‑00004 9361956
  102. Moia V.M. Leal Portilho F. Almeida Pádua T. Barbosa Corrêa L. Ricci-Junior E. Cruz Rosas E. Magalhaes Rebelo Alencar L. Savio Mendes Sinfronio F. Sampson A. Hussain Iram S. Alexis F. de OliveiraHenriques, M.; Santos-Oliveira, R. Lycopene used as anti-inflammatory nanodrug for the treatment of rheumathoid arthritis: Animal assay, pharmacokinetics, abc transporter and tissue deposition. Colloids Surf. B Biointerfaces 2020 188 110814 10.1016/j.colsurfb.2020.110814 31982791
    [Google Scholar]
  103. Shwetha H.J. Arathi B.P. Beto Mukherjee M. Ambedkar R. Shivaprasad S. Raichur A.M. Lakshminarayana R. Zein-alginate-phosphatidylcholine nanocomplex efficiently delivers lycopene and lutein over dietary-derived carotenoid mixed micelles in caco-2 cells. J. Agric. Food Chem. 2022 70 49 15474 15486 10.1021/acs.jafc.2c05008 36456189
    [Google Scholar]
  104. Li W. Yalcin M. Lin Q. Ardawi M.S.M. Mousa S.A. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery. J. Control. Release 2017 248 117 124 10.1016/j.jconrel.2017.01.009 28077264
    [Google Scholar]
  105. Zhao Y. Xin Z. Li N. Chang S. Chen Y. Geng L. Chang H. Shi H. Chang Y.Z. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic. Biol. Med. 2018 124 1 11 10.1016/j.freeradbiomed.2018.05.082 29807160
    [Google Scholar]
  106. Al-Brakati A. Alsharif K.F. Alzahrani K.J. Kabrah S. Al-Amer O. Oyouni A.A. Habotta O.A. Lokman M.S. Bauomy A.A. Kassab R.B. Abdel Moneim A.E. Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. Int. J. Nanomedicine 2021 16 4335 4349 10.2147/IJN.S306186 34234429
    [Google Scholar]
  107. Nazemiyeh E. Eskandani M. Sheikhloie H. Nazemiyeh H. Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv. Pharm. Bull. 2016 6 2 235 241 10.15171/apb.2016.032 27478786
    [Google Scholar]
  108. Jain A. Sharma G. Ghoshal G. Kesharwani P. Singh B. Shivhare U.S. Katare O.P. Lycopene loaded whey protein isolate nanoparticles: An innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity. Int. J. Pharm. 2018 546 1-2 97 105 10.1016/j.ijpharm.2018.04.061 29715533
    [Google Scholar]
  109. Xiao G. Zou J. Xiao X. Sialic acid‐conjugated PLGA nanoparticles enhance the protective effect of lycopene in chemotherapeutic drug‐induced kidney injury. IET Nanobiotechnol. 2020 14 4 341 345 10.1049/iet‑nbt.2019.0363 32463025
    [Google Scholar]
  110. Li M. Li X. Ren H. Shao W. Wang C. Huang Y. Zhang S. Han Y. Zhang Y. Yin M. Zhang F. Cheng Y. Yang Y. Preparation and characterization of agarose-sodium alginate hydrogel beads for the co-encapsulation of lycopene and resveratrol nanoemulsion. Int. J. Biol. Macromol. 2024 277 Pt 1 133753 10.1016/j.ijbiomac.2024.133753 39084974
    [Google Scholar]
  111. Shejawal K.P. Randive D.S. Bhinge S.D. Bhutkar M.A. Todkar S.S. Mulla A.S. Jadhav N.R. Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: Their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. J. Mater. Sci. Mater. Med. 2021 32 2 19 10.1007/s10856‑021‑06489‑8 33576907
    [Google Scholar]
  112. de Andrades E.O. da Costa J.M.A.R. de Lima Neto F.E.M. de Araujo A.R. de Oliveira Silva Ribeiro F. Vasconcelos A.G. de Jesus Oliveira A.C. Sobrinho J.L.S. de Almeida M.P. Carvalho A.P. Dias J.N. Silva I.G.M. Albuquerque P. Pereira I.S. do Amaral Rabello D. das Graças Nascimento Amorim, A.; de Souza de Almeida Leite, J.R.; da Silva, D.A. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. Int. J. Biol. Macromol. 2021 191 1026 1037 10.1016/j.ijbiomac.2021.09.116 34563578
    [Google Scholar]
  113. Wang Y. Lv J. Li C. Xu Y. Jin F. Wang F. Walnut protein isolate-epigallocatechin gallate nanoparticles: A functional carrier enhanced stability and antioxidant activity of lycopene. Food Res. Int. 2024 189 114536 10.1016/j.foodres.2024.114536 38876589
    [Google Scholar]
  114. Vasconcelos A.G. Valim M.O. Amorim A.G.N. do Amaral C.P. de Almeida M.P. Borges T.K.S. Socodato R. Portugal C.C. Brand G.D. Mattos J.S.C. Relvas J. Plácido A. Eaton P. Ramos D.A.R. Kückelhaus S.A.S. Leite J.R.S.A. Cytotoxic activity of poly-ɛ-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L.) on breast cancer cells. Food Res. Int. 2020 136 109548 10.1016/j.foodres.2020.109548 32846600
    [Google Scholar]
  115. Xia X. Li H. Xu X. Wu C. Wang Z. Zhao G. Du M. Improvement of physicochemical properties of lycopene by the self‐assembly encapsulation of recombinant ferritin GF1 from oyster (Crassostrea gigas). J. Sci. Food Agric. 2024 104 5 2783 2791 10.1002/jsfa.13163 38009805
    [Google Scholar]
  116. Jain A. Sharma G. Kushwah V. Thakur K. Ghoshal G. Singh B. Jain S. Shivhare U.S. Katare O.P. Fabrication and functional attributes of lipidic nanoconstructs of lycopene: An innovative endeavour for enhanced cytotoxicity in MCF-7 breast cancer cells. Colloids Surf. B Biointerfaces 2017 152 482 491 10.1016/j.colsurfb.2017.01.050 28196351
    [Google Scholar]
  117. Xia X. Li H. Xu X. Wu C. Wang Z. Yi J. Zhao G. Du M. LYC loaded ferritin nanoparticles for intracerebral delivery and the attenuation of neurodegeneration in D-gal-induced mice. Biomater. Adv. 2023 151 213419 10.1016/j.bioadv.2023.213419 37148595
    [Google Scholar]
  118. Alyami N.M. Almeer R. Alyami H.M. Role of green synthesized platinum nanoparticles in cytotoxicity, oxidative stress, and apoptosis of human colon cancer cells (HCT-116). Heliyon 2022 8 12 e11917 10.1016/j.heliyon.2022.e11917 36506358
    [Google Scholar]
  119. Chen B-H. Huang R-F.S. Wei Y-J. Stephen Inbaraj B. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int. J. Nanomedicine 2015 10 2823 2846 10.2147/IJN.S79107 25914533
    [Google Scholar]
  120. Okonogi S. Riangjanapatee P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int. J. Pharm. 2015 478 2 726 735 10.1016/j.ijpharm.2014.12.002 25479097
    [Google Scholar]
  121. Mennati A. Rostamizadeh K. Manjili H.K. Fathi M. Danafar H. Co-delivery of siRNA and lycopene encapsulated hybrid lipid nanoparticles for dual silencing of insulin-like growth factor 1 receptor in MCF-7 breast cancer cell line. Int. J. Biol. Macromol. 2022 200 335 349 10.1016/j.ijbiomac.2021.12.197 34999039
    [Google Scholar]
  122. Chang H. Li L. Deng Y. Song G. Wang Y. Protective effects of lycopene on TiO 2 nanoparticle‐induced damage in the liver of mice. J. Appl. Toxicol. 2023 43 6 913 928 10.1002/jat.4433 36632672
    [Google Scholar]
  123. Meng X. Li L. An H. Deng Y. Ling C. Lu T. Song G. Wang Y. Lycopene alleviates titanium dioxide nanoparticle-induced testicular toxicity by inhibiting oxidative stress and apoptosis in mice. Biol. Trace Elem. Res. 2022 200 6 2825 2837 10.1007/s12011‑021‑02881‑1 34396458
    [Google Scholar]
  124. More S.B. Mohan M. Kulkarni P. Ahire K.C. Lycopene attenuates silver nanoparticle‐induced liver injury in albino mice. J. Biochem. Mol. Toxicol. 2023 37 12 e23500 10.1002/jbt.23500 37555715
    [Google Scholar]
  125. Zhang D. Jiang Y. Xiang M. Wu F. Sun M. Du X. Chen L. Biocompatible polyelectrolyte complex nanoparticles for lycopene encapsulation attenuate oxidative stress-induced cell damage. Front. Nutr. 2022 9 902208 10.3389/fnut.2022.902208 35711553
    [Google Scholar]
  126. Ardawi M.S.M. Badawoud M.H. Hassan S.M. Ardawi A.M.S. Rouzi A.A. Qari M.H. Mousa S.A. Lycopene nanoparticles promotes osteoblastogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 2021 25 22 6894 6907 10.26355/eurrev_202111_27238 34859851
    [Google Scholar]
  127. Singh A. Neupane Y.R. Mangla B. Shafi S. Kohli K. PEGylated nanoliposomes potentiated oral combination therapy for effective cancer treatment. Curr. Drug Deliv. 2020 17 9 728 735 10.2174/1567201817666200724170708 32713341
    [Google Scholar]
  128. Riangjanapatee P. Müller R.H. Keck C.M. Okonogi S. Development of lycopene-loaded nanostructured lipid carriers: Effect of rice oil and cholesterol. Pharmazie 2013 68 9 723 731 24147340
    [Google Scholar]
  129. Tawfik M.S. Abdel-Ghaffar K.A. Gamal A.Y. El-Demerdash F.H. Gad H.A. Lycopene solid lipid microparticles with enhanced effect on gingival crevicular fluid protein carbonyl as a biomarker of oxidative stress in patients with chronic periodontitis. J. Liposome Res. 2019 29 4 375 382 10.1080/08982104.2019.1566243 30633595
    [Google Scholar]
  130. Kusdemir B.C. Kozgus Guldu O. Yurt Kilcar A. Medine E.I. Preparation and in vitro investigation of prostate-specific membrane antigen targeted lycopene loaded niosomes on prostate cancer cells. Int. J. Pharm. 2023 640 123013 10.1016/j.ijpharm.2023.123013 37149111
    [Google Scholar]
  131. Mashal M. Attia N. Puras G. Martínez-Navarrete G. Fernández E. Pedraz J.L. Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60. J. Control. Release 2017 254 55 64 10.1016/j.jconrel.2017.03.386 28347807
    [Google Scholar]
  132. Ge J. Ye L. Cheng M. Xu W. Chen Z. Guan F. Preparation of microgels loaded with lycopene/NMN and their protective mechanism against acute liver injury. Food Funct. 2024 15 2 809 822 10.1039/D3FO03293K 38131354
    [Google Scholar]
  133. Jhan S. Pethe A.M. Double-loaded liposomes encapsulating lycopene β-cyclodextrin complexes: Preparation, optimization, and evaluation. J. Liposome Res. 2020 30 1 80 92 10.1080/08982104.2019.1593450 31044628
    [Google Scholar]
  134. Zhu J. Hu Q. Shen S. Enhanced antitumor efficacy and attenuated cardiotoxicity of doxorubicin in combination with lycopene liposomes. J. Liposome Res. 2020 30 1 37 44 10.1080/08982104.2019.1580720 30741056
    [Google Scholar]
  135. Salem G.A. Mohamed A.A.R. Khater S.I. Noreldin A.E. Alosaimi M. Alansari W.S. Shamlan G. Eskandrani A.A. Awad M.M. El-Shaer R.A.A. Nassan M.A. Mostafa M. Khamis T. Enhancement of biochemical and genomic pathways through lycopene-loaded nano-liposomes: Alleviating insulin resistance, hepatic steatosis, and autophagy in obese rats with non-alcoholic fatty liver disease: Involvement of SMO, GLI-1, and PTCH-1 genes. Gene 2023 883 147670 10.1016/j.gene.2023.147670 37516284
    [Google Scholar]
  136. Najafi A. Taheri R.A. Mehdipour M. Farnoosh G. Martínez-Pastor F. Lycopene-loaded nanoliposomes improve the performance of a modified Beltsville extender broiler breeder roosters. Anim. Reprod. Sci. 2018 195 168 175 10.1016/j.anireprosci.2018.05.021 29880233
    [Google Scholar]
  137. Ali A. Saliem S. Abdulkareem A. Radhi H. Gul S. Evaluation of the efficacy of lycopene gel compared with minocycline hydrochloride microspheres as an adjunct to nonsurgical periodontal treatment: A randomised clinical trial. J. Dent. Sci. 2021 16 2 691 699 10.1016/j.jds.2020.09.009 33854720
    [Google Scholar]
  138. Pk S.P.S. Jaswanth A. Chalamaiah M. Tekade K.R. Novel encapsulation of lycopene in niosomes and assessment of its anticancer activity. J. Bioequivalence Bioavailab. 2016 8 5 224 232 10.4172/jbb.1000300
    [Google Scholar]
  139. Singh A. Neupane Y.R. Panda B.P. Kohli K. Lipid Based nanoformulation of lycopene improves oral delivery: Formulation optimization, ex vivo assessment and its efficacy against breast cancer. J. Microencapsul. 2017 34 4 416 429 10.1080/02652048.2017.1340355 28595495
    [Google Scholar]
  140. Chang C.W. Wang C.Y. Wu Y.T. Hsu M.C. Enhanced solubility, dissolution, and absorption of lycopene by a solid dispersion technique: The dripping pill delivery system. Powder Technol. 2016 301 641 648 10.1016/j.powtec.2016.07.013
    [Google Scholar]
  141. Li D. Li L. Xiao N. Li M. Xie X. Physical properties of oil-in-water nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene. Colloids Surf. A Physicochem. Eng. Asp. 2018 552 59 66 10.1016/j.colsurfa.2018.04.055
    [Google Scholar]
  142. Ha T.V.A. Kim S. Choi Y. Kwak H.S. Lee S.J. Wen J. Oey I. Ko S. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem. 2015 178 115 121 10.1016/j.foodchem.2015.01.048 25704691
    [Google Scholar]
  143. Su L. Yu Z. Zhao W. Cellular uptake and transport mechanism of lycopene‐loaded nanomicelles formed by amphiphilic peptide self‐assembly in the intestinal epithelium. J. Sci. Food Agric. 2025 105 7 3975 3982 10.1002/jsfa.14151 39854061
    [Google Scholar]
  144. Quagliariello V. Vecchione R. Coppola C. Di Cicco C. De Capua A. Piscopo G. Paciello R. Narciso V. Formisano C. Taglialatela-Scafati O. Iaffaioli R.V. Botti G. Netti P.A. Maurea N. Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients 2018 10 9 1304 10.3390/nu10091304 30223482
    [Google Scholar]
  145. Böhm V. Bitsch R. Intestinal absorption of lycopene from different matrices and interactions to other carotenoids, the lipid status, and the antioxidant capacity of human plasma. Eur. J. Nutr. 1999 38 3 118 125 10.1007/s003940050052 10443333
    [Google Scholar]
  146. Cohn W. Thürmann P. Tenter U. Aebischer C. Schierle J. Schalch W. Comparative multiple dose plasma kinetics of lycopene administered in tomato juice, tomato soup or lycopene tablets. Eur. J. Nutr. 2004 43 5 304 312 10.1007/s00394‑004‑0476‑0 15309451
    [Google Scholar]
  147. Arballo J. Amengual J. Erdman J.W. Lycopene: A critical review of digestion, absorption, metabolism, and excretion. Antioxidants 2021 10 3 342 10.3390/antiox10030342 33668703
    [Google Scholar]
  148. Moussa M. Landrier J.F. Reboul E. Ghiringhelli O. Coméra C. Collet X. Fröhlich K. Böhm V. Borel P. Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J. Nutr. 2008 138 8 1432 1436 10.1093/jn/138.8.1432 18641187
    [Google Scholar]
  149. Wu S. Guo X. Shang J. Li Y. Dong W. Peng Q. Xie Z. Chen C. Effects of lycopene attenuating injuries in ischemia and reperfusion. Oxid. Med. Cell. Longev. 2022 2022 1 9309327 10.1155/2022/9309327 36246396
    [Google Scholar]
  150. Giovannucci E. Ascherio A. Rimm E.B. Stampfer M.J. Colditz G.A. Willett W.C. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer Inst. 1995 87 23 1767 1776 10.1093/jnci/87.23.1767 7473833
    [Google Scholar]
  151. De Lima T.R. Martins P.C. Guerra P.H. Santos Silva D.A. Muscular strength and cardiovascular risk factors in adults: A systematic review. Phys. Sportsmed. 2021 49 1 18 30 10.1080/00913847.2020.1796183 32660293
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968391576251016133433
Loading
/content/journals/ccb/10.2174/0122127968391576251016133433
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test