Skip to content
2000
image of Liquid Chromatography-Mass Spectrometry-Guided Isolation of Bioactive Solvent Fractions Derived from Oyster (Magallana Bilineata) Powder Residue

Abstract

Introduction

The slipper-shaped oyster , a species commonly farmed in the Philippines, is being processed into oyster extract powder, a shelf-stable product that can be easily incorporated into various food applications. Oyster powder residue, a by-product of oyster extract processing, is rich in essential amino acids and proteins. Our innovative study, which is the first of its kind, focuses on the potential bioactivity of residue, a promising novel metabolite source with significant biomedical applications.

Methods

Our approach, which included solvent extraction, fractionation by octadecylsilyl (ODS) column chromatography, and liquid chromatography-mass spectrometry (LC-MS)-guided profiling of the active fractions, was meticulously designed to be robust and reliable. The crude and active fractions, including those with antimicrobial, antioxidant, and cytotoxic activities, were rigorously studied in bioactivity assays, further ensuring the reliability of our findings.

Results

The results indicated that the solvent fractions of oyster residue may contain several bioactive compounds, such as alkaloids, terpenoids, peptides, and cytotoxic macrolides, which are responsible for their notable biological activities. The 80% methanol fraction exhibited better anticancer activity against MCF-7 human breast cancer cells, with an IC value of 58.77 ± 1.26 µg/mL, compared to the positive control, cisplatin (97.56 ± 0.31 g/mL). Moreover, the fractions also exhibited strong antibacterial activities against some pathogenic microorganisms and showed scavenging activity against the diphenyl-1-picrylhydrazyl (DPPH) radical.

Discussion

The significant bioactive characteristics exhibited by the methanol fractions may be due to the existence and availability of the essential chemical components within each fraction. Oysters, as filter feeders, can accumulate bioactive compounds from their environment as they actively filter water by absorbing and concentrating a variety of substances, including biologically active ones.

Conclusion

Our study has demonstrated the competency of LC-MS profiling in conjunction with bioassays in identifying bioactive components in oyster powder residue. This approach offers a reliable and promising perspective on utilizing waste from oyster processing as a rich and untapped source of bioactive compounds with significant pharmaceutical potential, opening new avenues for research and application.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968391883250728102420
2025-08-11
2025-09-14
Loading full text...

Full text loading...

References

  1. Philippine Fisheries Profile Bureau of Fisheries And Aquatic resources. Quezon City, Philippines 2023
    [Google Scholar]
  2. Andalecio M.N. Duncan P.F. Peralta E.M. Napata R.P. Laureta L.V. Consumer behavior towards cultured oysters and mussels in Western Visayas. Aquacult. Aquarium Conserv. Legis. 2014 7 2 116 136
    [Google Scholar]
  3. Samsin L. Oyster farming in the Philippines. In: Seminar report on the status of oyster culture in China, Indonesia, Malaysia, Philippines and Thailand Bangkok: Network of Aquaculture Centres in Asia; [https://www.fao.org/3/ab717e/AB717E06.htm# choy1]
    [Google Scholar]
  4. Lebata-Ramos M.J.H.L. Dionela C.S. Novilla S.R.M. Sibonga R.C. Solis E.F.D. Mediavilla J.P. Producing young, single and meaty oyster Crassostrea iredalei (Faustino, 1932) in growout culture using pouches suspended from rafts. Aquacult. Res. 2021 52 11 5270 5282 10.1111/are.15395
    [Google Scholar]
  5. Krishnan S. Chakraborty K. Functional properties of ethyl acetate-methanol extract of commonly edible molluscs. J. Aquat. Food Prod. Technol. 2019 28 7 729 742 10.1080/10498850.2019.1638857
    [Google Scholar]
  6. Subasinghe M.M. Jinadasa B.K.K.K. Navarathne A.N. Jayakody S. Variations in proximate composition and percentage edibility of wild and cultured Indian Backwater oyster (Crassostrea madrasensis) in Sri Lanka. Aquacult. Res. 2021 52 8 3949 3957 10.1111/are.15238
    [Google Scholar]
  7. Cho I.K. Seo B.S. Hwang S.Y. Lee Y.I. Moon J.S. Park S.J. Lee H.J. Hur Y.B. Choi Y.H. The annual reproductive cycle, proximate composition, fatty acid and amino acid content of Pacific oyster, Crassostrea gigas (Magallana gigas), in Gadeok-do, Korea. Dev. Reprod. 2023 27 3 101 115 10.12717/DR.2023.27.3.101 38074462
    [Google Scholar]
  8. Sousa H. Hinzmann M. Review: Antibacterial components of the Bivalve’s immune system and the potential of freshwater bivalves as a source of new antibacterial compounds. Fish Shellfish Immunol. 2020 98 971 980 10.1016/j.fsi.2019.10.062 31676427
    [Google Scholar]
  9. Chakraborty K. Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res. Int. 2020 137 109637 10.1016/j.foodres.2020.109637 33233216
    [Google Scholar]
  10. Chakraborty K. Joy M. Characterization and bioactive potentials of secondary metabolites from mollusks Crassostrea madrasensis and Amphioctopus marginatus. Nat. Prod. Res. 2019 33 22 3190 3202 10.1080/14786419.2018.1466131 29683354
    [Google Scholar]
  11. Harnedy P.A. FitzGerald R.J. Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods 2012 4 1 6 24 10.1016/j.jff.2011.09.001
    [Google Scholar]
  12. Asha K.K. Anandan R. Mathew S. Lakshmanan P.T. Biochemical profile of oyster Crassostrea madrasensis and its nutritional attributes. Egypt. J. Aquat. Res. 2014 40 1 35 41 10.1016/j.ejar.2014.02.001
    [Google Scholar]
  13. Hao G. Cao W. Hao J. Zhang C. In vitro antioxidant activity and in vivo anti-fatigue effects of oyster (Ostrea plicatula Gmelin) peptides prepared using neutral proteinase. Food Sci. Technol. Res. 2013 19 4 623 631 10.3136/fstr.19.623
    [Google Scholar]
  14. Umayaparvathi S. Meenakshi S. Vimalraj V. Arumugam M. Sivagami G. Balasubramanian T. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed. Preventive Nutr. 2014 4 3 343 353 10.1016/j.bionut.2014.04.006
    [Google Scholar]
  15. Krishnan S. Chakraborty K. Dhara S. Sulphated glycosaminoglycan isolated from the edible slipper oyster Magallana bilineata (Röding, 1798) attenuates inflammatory cytokines on lipopolysaccharide-prompted macrophages. Nat. Prod. Res. 2024 13 1 12 10.1080/14786419.2024.2377311 39001863
    [Google Scholar]
  16. Summer K. Liu L. Guo Q. Barkla B. Benkendorff K. Semi-purified antimicrobial proteins from oyster hemolymph inhibit pneumococcal infection. Mar. Biotechnol. (NY) 2024 26 5 862 875 10.1007/s10126‑024‑10297‑w 38430292
    [Google Scholar]
  17. OVCRE Feature Shelf-stable oyster? Available from: https:// ovcre.upv.edu.ph/shelf-stable-oysters/
    [Google Scholar]
  18. OVPAA Feature Oysters you can sprinkle. Available from: https://up.edu.ph/oysters-you-can-sprinkle/
    [Google Scholar]
  19. Peralta E. Monaya K.J. Simora R.M. Serrano A. Chemical composition and antioxidant properties of Philippine oyster Crassostrea iredalei residue. Phil J. Nat. Sci. 2017 22 1 1 9
    [Google Scholar]
  20. Peralta E. Tumbokon B.L. Serrano A.E. Use of oyster processing byproduct to replace fish meal and minerals in the diet of Nile tilapia Oreochromis niloticus fry. Israeli J. Aquat. 2016 68 1329
    [Google Scholar]
  21. Pratima N.A. Gadikar R. Liquid chromatography-mass spectrometry and its applications: A brief review. Archiv of Organic Inorg Chem. Sci. 2018 1 1 26 34 10.32474/AOICS.2018.01.000103
    [Google Scholar]
  22. Wenk D. Zuo C. Kislinger T. Sepiashvili L. Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers. Clin. Proteomics 2024 21 1 6 10.1186/s12014‑024‑09452‑1 38287260
    [Google Scholar]
  23. Kaur J. Dhiman V. Bhadada S. Katare O.P. Ghoshal G. LC/MS guided identification of metabolites of different extracts of Cissus quadrangularis. Food. Chemistry Advances 2022 1 100084 10.1016/j.focha.2022.100084
    [Google Scholar]
  24. Dzuman Z. Jonatova P. Stranska-Zachariasova M. Prusova N. Brabenec O. Novakova A. Fenclova M. Hajslova J. Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal. Bioanal. Chem. 2020 412 26 7155 7167 10.1007/s00216‑020‑02848‑6 32803302
    [Google Scholar]
  25. Banerjee S. Mazumdar S. Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012 2012 1 40 10.1155/2012/282574 22611397
    [Google Scholar]
  26. Ajani P.A. Sarowar C. Turnbull A. Farrell H. Zammit A. Helleren S. Hallegraeff G. Murray S.A. A Comparative analysis of methods (LC-MS/MS, LC-MS and Rapid Test Kits) for the determination of diarrhetic shellfish toxins in oysters, mussels and pipis. Toxins 2021 13 8 563 10.3390/toxins13080563 34437433
    [Google Scholar]
  27. España Amórtegui J.C. Pekar H. Retrato M.D.C. Persson M. Karlson B. Bergquist J. Zuberovic-Muratovic A. LC-MS/MS analysis of cyanotoxins in bivalve mollusks-method development, validation and first evidence of occurrence of nodularin in mussels (Mytilus edulis) and oysters (Magallana gigas) from the west coast of Sweden. Toxins 2023 15 5 329 10.3390/toxins15050329 37235362
    [Google Scholar]
  28. Thi Thanh Tong V. Dinh L.E. C.; Thi Hong LE, H. Simultaneous detection of three biotoxins causing diarrhetic shellfish poisoning (okadaic acid, dinophysistoxin-1, dinophysistoxin-2) in oyster by LC-MS/MS. Pharm. Sci. Asia 2018 45 3 161 173 10.29090/psa.2018.03.161
    [Google Scholar]
  29. Magrin C.P. Saldaña-Serrano M. Bainy A.C.D. Vitali L. Micke G.A. Analysis of the UV filter Benzophenone-3 assimilation in Crossostrea gigas oysters post-exposure in a controlled environment by LC-MS/MS. Chemosphere 2024 363 142725 10.1016/j.chemosphere.2024.142725 38945225
    [Google Scholar]
  30. Zhao G.H. Hu Y.Y. Liu Z.Y. Xie H. Zhang M. Zheng R. Qin L. Yin F.W. Zhou D.Y. Simultaneous quantification of 24 aldehydes and ketones in oysters (Crassostrea gigas) with different thermal processing procedures by HPLC-electrospray tandem mass spectrometry. Food Res. Int. 2021 147 110559 10.1016/j.foodres.2021.110559 34399536
    [Google Scholar]
  31. Simora R.M.C. Monaya K.J.M. Metabolite profiling and bioactivities of the solvent fractions derived from a marine clam Anadara compacta. Curr. Bioact. Compd. 2025 21 (6) in press 10.2174/0115734072345842241214091923
    [Google Scholar]
  32. Marine natural products research: Compounds. Available from:https://marinlit.rsc.org/
  33. Poynton E.F. van Santen J.A. Pin M. Contreras M.M. McMann E. Parra J. Showalter B. Zaroubi L. Duncan K.R. Linington R.G. The natural products atlas 3.0: Extending the database of microbially-derived natural products. Nucleic Acids Res. 2025 53 1 691 699 10.1093/nar/gkae1093 39588755
    [Google Scholar]
  34. Denizot F. Lang R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods 1986 89 2 271 277 10.1016/0022‑1759(86)90368‑6 3486233
    [Google Scholar]
  35. Wiegand I. Hilpert K. Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008 3 2 163 175 10.1038/nprot.2007.521 18274517
    [Google Scholar]
  36. Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958 181 4617 1199 1200 10.1038/1811199a0
    [Google Scholar]
  37. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2021 Available from: http://www.R-project.org/
  38. Science of chromatography. Available from: https://www.coleparmer.co.uk/tech-article/science-of-
  39. Zampella A. Giannini C. Debitus C. D’Auria M.V. Amphiasterins: A new family of cytotoxic metabolites from the marine sponge Plakortis quasiamphiaster. Tetrahedron 2001 57 1 257 263 10.1016/S0040‑4020(00)01009‑7
    [Google Scholar]
  40. Wang J. Liu L-Y. Liu L. Zhan K-X. Jiao W-H. Lin H-W. Pellynols MO, cytotoxic polyacetylenic alcohols from a Niphates sp. marine sponge. Tetrahedron 2018 74 27 3701 3706 10.1016/j.tet.2018.05.041
    [Google Scholar]
  41. Yosief T. Rudi A. Kashman Y. Asmarines A-F, novel cytotoxic compounds from the marine sponge Raspailia species. J. Nat. Prod. 2000 63 3 299 304 10.1021/np9902690 10757706
    [Google Scholar]
  42. Liu Z. Chen Y. Li S. Hu C. Liu H. Zhang W. Indole diketopiperazine alkaloids from the deep-sea-derived fungus Aspergillus sp. FS445. Nat. Prod. Res. 2022 36 20 5213 5221 10.1080/14786419.2021.1925271 33977842
    [Google Scholar]
  43. Yan L.H. Du F.Y. Li X.M. Yang S.Q. Wang B.G. Li X. Antibacterial indole diketopiperazine alkaloids from the deep-sea cold seep-derived fungus Aspergillus chevalieri. Mar. Drugs 2023 21 3 195 10.3390/md21030195 36976244
    [Google Scholar]
  44. Fukuzawa S. Hayashi Y. Uemura D. Nagatsu A. Yamada K. Ijuin Y. The isolation and structure of five new alkaloids, norzoanthamine, oxyzoanthamine, norzoanthaminone, cyclozoanthamine and epinorzoanthamine. Heterocycl. Commun. 1995 1 207 214 10.1515/HC.1995.1.2‑3.207
    [Google Scholar]
  45. Cen-Pacheco F. Martín M. Fernández J. Hernández Daranas A. New oxidized zoanthamines from a Canary Islands Zoanthus sp. Mar. Drugs 2014 12 10 5188 5196 10.3390/md12105188 25317536
    [Google Scholar]
  46. Berlinck R.G.S. Braekman J.C. Daloze D. Hallenga K. Ottinger R. Bruno I. Riccio R. Two new guanidine alkaloids from the mediterranean sponge crambe crambe. Tetrahedron Lett. 1990 31 45 6531 6534 10.1016/S0040‑4039(00)97109‑0
    [Google Scholar]
  47. Mugishima T. Tsuda M. Kasai Y. Ishiyama H. Fukushi E. Kawabata J. Watanabe M. Akao K. Kobayashi J. Absolute stereochemistry of citrinadins a and B from marine-derived fungus. J. Org. Chem. 2005 70 23 9430 9435 10.1021/jo051499o 16268618
    [Google Scholar]
  48. Lin W. Li H. Wu Z. Su J. Zhang Z. Yang L. Deng X. Xu Q. Paspalines C–D and Paxillines B–D: New indole diterpenoids from Penicillium brefeldianum WZW-F-69. Mar. Drugs 2022 20 11 684 10.3390/md20110684 36355007
    [Google Scholar]
  49. Ortega M.J. Zubia E. Luis Carballo J. Salvá J. New cytotoxic metabolites from the sponge Mycale micracanthoxea. Tetrahedron 1997 53 1 331 340 10.1016/S0040‑4020(96)00989‑1
    [Google Scholar]
  50. Stierle D.B. Faulkner D.J. Antimicrobial N-methylpyridinium salts related to the xestamines from the Caribbean sponge Calyx podatypa. J. Nat. Prod. 1991 54 4 1134 1136 10.1021/np50076a039 1791477
    [Google Scholar]
  51. Aiello A. Fattorusso E. Menna M. Pansini M. Further bioactive acetylenic compounds from the Caribbean sponge Cribrochalina vasculum. J. Nat. Prod. 1992 55 9 1275 1280 10.1021/np50087a015 1431945
    [Google Scholar]
  52. Lin Z.J. Zhang G.J. Zhu T.J. Liu R. Wei H.J. Gu Q.Q. Bioactive cytochalasins from Aspergillus flavipes, an endophytic fungus associated with the mangrove plant Acanthus ilicifolius. Helv. Chim. Acta 2009 92 8 1538 1544 10.1002/hlca.200800455
    [Google Scholar]
  53. Flieger N. Sedmera, P.; Vokoun, J.; eháek, Z.; Stuchlik, J.; Malinka, Z.; Cvak, L.; Harazim, P. New alkaloids from a saprophytic culture of Claviceps purpurea. J. Nat. Prod. 1984 47 6 970 976 10.1021/np50036a010
    [Google Scholar]
  54. Li H. Matsunaga S. Fusetani N. Fujiki H. Murphy P.T. Willis R.H. Baker J.T. Echinoclasterol sulfate phenethylammonium salt, a unique steroid sulfate from the marine sponge, Echinoclathria subhispida. Tetrahedron Lett. 1993 34 36 5733 5736 10.1016/S0040‑4039(00)73846‑9
    [Google Scholar]
  55. Fusetani N. Sugawara T. Matsunaga S. Bioactive marine metabolites. 41. Theopederins A-E, potent antitumor metabolites from a marine sponge, Theonella sp. J. Org. Chem. 1992 57 14 3828 3832 10.1021/jo00040a021
    [Google Scholar]
  56. Guo Y. Gavagnin M. Mollo E. Trivellone E. Cimino G. Fakhr I. Structure of the pigment of the Red Sea nudibranch Hexabranchus sanguineus. Tetrahedron Lett. 1998 39 17 2635 2638 10.1016/S0040‑4039(98)00225‑1
    [Google Scholar]
  57. Harms H. Kehraus, S.; Nesaei-Mosaferan, D.; Hufendieck, P.; Meijer, L.; König, G.M. A-42 lowering agents from the marine-derived fungus Dichotomomyces cejpii. Steroids 2015 104 182 188 10.1016/j.steroids.2015.09.012 26440473
    [Google Scholar]
  58. Kim C.K. Riswanto R. Won T.H. Kim H. Elya B. Sim C.J. Oh D.C. Oh K.B. Shin J. Manzamine alkaloids from an Acanthostrongylophora sp. sponge. J. Nat. Prod. 2017 80 5 1575 1583 10.1021/acs.jnatprod.7b00121 28452477
    [Google Scholar]
  59. Li C. Jiang M. La M.P. Li T.J. Tang H. Sun P. Liu B.S. Yi Y.H. Liu Z. Zhang W. Chemistry and tumor cell growth inhibitory activity of 11,20-epoxy-3Z,5(6)E-diene briaranes from the South China Sea gorgonian Dichotella gemmacea. Mar. Drugs 2013 11 5 1565 1582 10.3390/md11051565 23697947
    [Google Scholar]
  60. Dalisay D.S. Rogers E.W. Edison A.S. Molinski T.F. Structure elucidation at the nanomole scale. 1. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchus sanguineus. J. Nat. Prod. 2009 72 4 732 738 10.1021/np8007649 19254038
    [Google Scholar]
  61. Fusetani N. Yasukawa K. Matsunaga S. Hashimoto K. Isolation and identification of three hemolysins from the hydroid Solanderia secunda (inaba). Comp. Biochem. Physiol. B 1986 83 3 511 513 10.1016/0305‑0491(86)90288‑9 2869879
    [Google Scholar]
  62. Aimi N. Odaka H. Sakai S. Fujiki H. Suganuma M. Moore R.E. Patterson G.M.L. Lyngbyatoxins B and C, two new irritants from Lyngbya majuscula. J. Nat. Prod. 1990 53 6 1593 1596 10.1021/np50072a035 2128518
    [Google Scholar]
  63. Izumikawa M. Khan S.T. Komaki H. Takagi M. Shin-ya K. JBIR-31, a new teleocidin analog, produced by salt-requiring Streptomyces sp. NBRC 105896 isolated from a marine sponge. J. Antibiot. (Tokyo) 2010 63 1 33 36 10.1038/ja.2009.113 19927166
    [Google Scholar]
  64. Sorek H. Rudi A. Benayahu Y. Ben-Califa N. Neumann D. Kashman Y. Nuttingins A-F and malonganenones D-H, tetraprenylated alkaloids from the Tanzanian gorgonian Euplexaura nuttingi. J. Nat. Prod. 2007 70 7 1104 1109 10.1021/np060642l 17571903
    [Google Scholar]
  65. Guo X.C. Xu L.L. Yang R.Y. Yang M.Y. Hu L.D. Zhu H.J. Cao F. Anti-Vibrio indole-diterpenoids and C-25 epimeric steroids from the marine-derived fungus Penicillium janthinellum. Front Chem. 2019 7 80 10.3389/fchem.2019.00080 30891440
    [Google Scholar]
  66. Gul W. Hamann M.T. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci. 2005 78 5 442 453 10.1016/j.lfs.2005.09.007 16236327
    [Google Scholar]
  67. Meyer C.T. Wooten D.J. Paudel B.B. Bauer J. Hardeman K.N. Westover D. Lovly C.M. Harris L.A. Tyson D.R. Quaranta V. Quantifying drug combination synergy along potency and efficacy axes. Cell Syst. 2019 8 2 97 108.e16 10.1016/j.cels.2019.01.003 30797775
    [Google Scholar]
  68. Cheong K.L. Xia L.X. Liu Y. Isolation and characterization of polysaccharides from oysters (Crassostrea gigas) with anti-tumor activities using an aqueous two-phase system. Mar. Drugs 2017 15 11 338 10.3390/md15110338 29104211
    [Google Scholar]
  69. Zhang L. Liu Y. Tian X. Tian Z. Antimicrobial capacity and antioxidant activity of enzymatic hydrolysates of protein from Rushan bay oyster (Crassostrea gigas). J. Food Process. Preserv. 2015 39 4 404 412 10.1111/jfpp.12245
    [Google Scholar]
  70. Verlecar X.N. Pereira N. Desai S.R. Jena K.B. Marine pollution detection through biomarkers in marine bivalves. Curr. Sci. 2006 91 9 1153 1157
    [Google Scholar]
  71. Hussain Chan M.W. Hasan K.A. Balthazar-Silva D. Asghar M. Mirani Z.A. Surviving under pollution stress: Antibacterial and antifungal activities of the Oyster species (Magallana bilineata and Magallana cuttackensis). Fish Shellfish Immunol. 2021 108 142 146 10.1016/j.fsi.2020.11.021 33271318
    [Google Scholar]
  72. Shimada K. Fujikawa K. Yahara K. Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992 40 6 945 948 10.1021/jf00018a005
    [Google Scholar]
  73. Umayaparvathi S. Arumugam M. Meenakshi S. Balasubramanian T. Antioxidant properties of protein hydrolysate obtained from oyster Saccostrea cucullata (Born, 1778). J. Aquat. Food Prod. Technol. 2015 24 5 502 515 10.1080/10498850.2013.791740
    [Google Scholar]
  74. Wang Q. Li W. He Y. Ren D. Kow F. Song L. Yu X. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 2014 145 991 996 10.1016/j.foodchem.2013.08.099 24128574
    [Google Scholar]
  75. Chawech R. Pesnel S. Haddada M.B. Gauvin-Bialecki A. Morel A.L. Polyphenol characterization of the aqueous extract from Hubertia ambavilla L. (Asteraceae) by HPLC-DAD-ESI-MSn and assessment of its antioxidant activity. Chem. Biodivers. 2022 19 9 e202200217 10.1002/cbdv.202200217 35924460
    [Google Scholar]
  76. Kasmi S. Hamdi A. Atmani-Kilani D. Debbache-Benaida N. Jaramillo-Carmona S. Rodríguez-Arcos R. Jiménez-Araujo A. Ayouni K. Atmani D. Guillén-Bejarano R. Characterization of phenolic compounds isolated from the Fraxinus angustifolia plant and several associated bioactivities. J. Herb. Med. 2021 29 100485 10.1016/j.hermed.2021.100485
    [Google Scholar]
  77. Talarico I.R. Bartella L. Rocio-Bautista P. Di Donna L. Molina-Diaz A. Garcia-Reyes J.F. Paper spray mass spectrometry profiling of olive oil unsaponifiable fraction for commercial categories classification. Talanta 2024 267 125152 10.1016/j.talanta.2023.125152 37688893
    [Google Scholar]
  78. Salih E. Fyhrquist P. Abdalla A. Abdelgadir A. Kanninen M. Sipi M. Luukkanen O. Fahmi M. Elamin M. Ali H. LC-MS/MS Tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics 2017 6 4 37 10.3390/antibiotics6040037 29236070
    [Google Scholar]
  79. Chen Q. Zhang Y. Zhang W. Chen Z. Identification and quantification of oleanolic acid and ursolic acid in Chinese herbs by liquid chromatography-ion trap mass spectrometry. Biomed. Chromatogr. 2011 25 12 1381 1388 10.1002/bmc.1614 21465498
    [Google Scholar]
  80. Schweiggert U. Kammerer D.R. Carle R. Schieber A. Characterization of carotenoids and carotenoid esters in red pepper pods] (Capsicum annuum L.) by highperformance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2005 19 18 2617 2628 10.1002/rcm.2104 16124038
    [Google Scholar]
  81. Yang M. Wang X. Guan S. Xia J. Sun J. Guo H. Guo D. Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007 18 5 927 939 10.1016/j.jasms.2007.01.012 17379535
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968391883250728102420
Loading
/content/journals/ccb/10.2174/0122127968391883250728102420
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test