Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Insulin resistance (IR) is a pathological condition of type-2 diabetes mellitus, a complex metabolic disorder with numerous mechanisms. Insulin is a nutrient-responsive hormone released into the blood from the pancreatic β cells and binds to the receptor kinase at the targeted sites . skeletal muscle, adipose tissue, and liver cells. Insulin acts through the phosphoinositide 3-kinase/Ak strain transforming (PI3/Akt) pathway to translocate Glut4 into the plasma membrane thus mediating the intake of glucose in the tissue from the blood. Insulin resistance is when either insulin binding to the receptor is inefficient or the activated insulin receptor cannot transmit the signal downstream effectively. Numerous molecular mechanisms lead to hampered downstream signalling and reduced response to insulin binding. This review gives a complete overview of the current knowledge and understanding of the mechanism of insulin signalling, factors affecting insulin resistance, and the role of bioactive compounds like curcumin, resveratrol, withaferin in managing insulin resistance.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968376217250324190715
2025-04-04
2025-12-16
Loading full text...

Full text loading...

References

  1. Hoang DoO. ThornP. Insulin secretion from beta cells within intact islets: Location matters.Clin. Exp. Pharmacol. Physiol.201542440641410.1111/1440‑1681.12368 25676261
    [Google Scholar]
  2. PetersenM.C. ShulmanG.I. Mechanisms of insulin action and insulin resistance.Physiol. Rev.20189842133222310.1152/physrev.00063.2017 30067154
    [Google Scholar]
  3. BoucherJ. KleinriddersA. KahnC.R. Insulin receptor signaling in normal and insulin-resistant states.Cold Spring Harb. Perspect. Biol.201461a00919110.1101/cshperspect.a009191 24384568
    [Google Scholar]
  4. DilworthL. FaceyA. OmoruyiF. Diabetes mellitus and its metabolic complications: The role of adipose tissues.Int. J. Mol. Sci.20212214764410.3390/ijms22147644 34299261
    [Google Scholar]
  5. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  6. FuZ. GilbertE.R. LiuD. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes.Curr. Diabetes Rev.201391255310.2174/157339913804143225 22974359
    [Google Scholar]
  7. GeraldesP. KingG.L. Activation of protein kinase C isoforms and its impact on diabetic complications.Circ. Res.201010681319133110.1161/CIRCRESAHA.110.217117 20431074
    [Google Scholar]
  8. LiuM. WeissM. A. ArunagiriA. YongJ. RegeN. SunJ. HaatajaL. KaufmanR. J. ArvanP. Biosynthesis, structure, and folding of the insulin precursor protein.Diabetes Obes. Metab.2018Suppl 2Suppl 2285010.1111/dom.13378
    [Google Scholar]
  9. GermanosM. GaoA. TaperM. YauB. KebedeM.A. Inside the insulin secretory granule.Metabolites202111851510.3390/metabo11080515 34436456
    [Google Scholar]
  10. YuE.Y.W. RenZ. MehrkanoonS. StehouwerC.D.A. van GreevenbroekM.M.J. EussenS.J.P.M. ZeegersM.P. WesseliusA. Plasma metabolomic profiling of dietary patterns associated with glucose metabolism status: The Maastricht Study.BMC Med.202220145010.1186/s12916‑022‑02653‑1 36414942
    [Google Scholar]
  11. LiuS. DaiZ. CooperD.E. KirschD.G. LocasaleJ.W. Quantitative analysis of the physiological contributions of glucose to the TCA cycle.Cell Metab.2020324619628.e2110.1016/j.cmet.2020.09.005 32961109
    [Google Scholar]
  12. TaneeraJ. DhaibanS. MohammedA.K. MukhopadhyayD. AljaibejiH. SulaimanN. FadistaJ. SalehiA. GNAS gene is an important regulator of insulin secretory capacity in pancreatic β-cells.Gene201971514402810.1016/j.gene.2019.144028 31374326
    [Google Scholar]
  13. KoepsellH. Glucose transporters in the small intestine in health and disease.Pflugers Arch.202047291207124810.1007/s00424‑020‑02439‑5 32829466
    [Google Scholar]
  14. RajasF. Gautier-SteinA. MithieuxG. Glucose-6 phosphate, a central Hub for liver carbohydrate metabolism.Metabolites201991228210.3390/metabo9120282 31756997
    [Google Scholar]
  15. ZhouY. GrekaA. Calcium-permeable ion channels in the kidney.Am. J. Physiol. Renal Physiol.201631011F1157F116710.1152/ajprenal.00117.2016 27029425
    [Google Scholar]
  16. LeT.K.C. DaoX.D. NguyenD.V. LuuD.H. BuiT.M.H. LeT.H. NguyenH.T. LeT.N. HosakaT. NguyenT.T.T. Insulin signaling and its application.Front. Endocrinol.202314122665510.3389/fendo.2023.1226655 37664840
    [Google Scholar]
  17. MaruyamaI. Mechanisms of activation of receptor tyrosine kinases: Monomers or dimers.Cells20143230433010.3390/cells3020304 24758840
    [Google Scholar]
  18. WernerH. The IGF1 signaling pathway: From basic concepts to therapeutic opportunities.Int. J. Mol. Sci.202324191488210.3390/ijms241914882 37834331
    [Google Scholar]
  19. NielsenJ. BrandtJ. BoesenT. HummelshøjT. SlaabyR. SchluckebierG. NissenP. Structural investigations of full-length insulin receptor dynamics and signalling.J. Mol. Biol.2022434516745810.1016/j.jmb.2022.167458 35074483
    [Google Scholar]
  20. JensenM. De MeytsP. Molecular mechanisms of differential intracellular signaling from the insulin receptor.Vitam. Horm.200980517510.1016/S0083‑6729(08)00603‑1 19251034
    [Google Scholar]
  21. SaltielA.R. Insulin signaling in health and disease.J. Clin. Invest.20211311e14224110.1172/JCI142241 33393497
    [Google Scholar]
  22. LiaoZ. ZhangC. DingL. MoyersJ.S. TangJ.X. BealsJ.M. Comprehensive insulin receptor phosphorylation dynamics profiled by mass spectrometry.FEBS J.202228992657267110.1111/febs.16299 34826178
    [Google Scholar]
  23. ZhangX. ZhuX. BiX. HuangJ. ZhouL. The insulin receptor: An important target for the development of novel medicines and pesticides.Int. J. Mol. Sci.20222314779310.3390/ijms23147793 35887136
    [Google Scholar]
  24. MardilovichK. PankratzS.L. ShawL.M. Expression and function of the insulin receptor substrate proteins in cancer.Cell Commun. Signal.2009711410.1186/1478‑811X‑7‑14 19534786
    [Google Scholar]
  25. WhiteM.F. KahnC.R. Insulin action at a molecular level – 100 years of progress.Mol. Metab.20215210130410.1016/j.molmet.2021.101304 34274528
    [Google Scholar]
  26. Martínez BáezA. AyalaG. Pedroza-SaavedraA. González-SánchezH.M. Chihu AmparanL. Phosphorylation codes in IRS-1 and IRS-2 are associated with the activation/inhibition of insulin canonical signaling pathways.Curr. Issues Mol. Biol.202446163464910.3390/cimb46010041 38248343
    [Google Scholar]
  27. AkinleyeA. AvvaruP. FurqanM. SongY. LiuD. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics.J. Hematol. Oncol.2013618810.1186/1756‑8722‑6‑88 24261963
    [Google Scholar]
  28. SetiabaktiN.M. LarssonP. HamiltonJ.R. Phosphoinositide 3-kinases as potential targets for thrombosis prevention.Int. J. Mol. Sci.2022239484010.3390/ijms23094840 35563228
    [Google Scholar]
  29. EcheverriaI. LiuY. GabelliS.B. AmzelL.M. Oncogenic mutations weaken the interactions that stabilize the p110α‐p85α heterodimer in phosphatidylinositol 3‐kinase α.FEBS J.2015282183528354210.1111/febs.13365 26122737
    [Google Scholar]
  30. ZhangL. LiY. WangQ. ChenZ. LiX. WuZ. HuC. LiaoD. ZhangW. ChenZ.S. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer.Mol. Cancer20201911010.1186/s12943‑019‑1112‑1 31952518
    [Google Scholar]
  31. OkkenhaugK. Signaling by the phosphoinositide 3-kinase family in immune cells.Annu. Rev. Immunol.201331167570410.1146/annurev‑immunol‑032712‑095946 23330955
    [Google Scholar]
  32. Mazloumi GavganiF. Smith ArnesenV. JacobsenR.G. KrakstadC. HoivikE.A. LewisA.E. ClassI. Class I phosphoinositide 3-kinase PIK3CA/p110α and PIK3CB/p110β isoforms in endometrial cancer.Int. J. Mol. Sci.20181912393110.3390/ijms19123931 30544563
    [Google Scholar]
  33. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  34. TruebesteinL. HorneggerH. AnratherD. HartlM. FlemingK.D. StarihaJ.T.B. PardonE. SteyaertJ. BurkeJ.E. LeonardT.A. Structure of autoinhibited Akt1 reveals mechanism of PIP 3 -mediated activation.Proc. Natl. Acad. Sci. USA202111833e210149611810.1073/pnas.2101496118 34385319
    [Google Scholar]
  35. MooreS.F. HunterR.W. HersI. mTORC2 protein complex-mediated Akt (Protein Kinase B) Serine 473 Phosphorylation is not required for Akt1 activity in human platelets [corrected].J. Biol. Chem.201128628245532456010.1074/jbc.M110.202341 21592956
    [Google Scholar]
  36. PanwarV. SinghA. BhattM. TonkR.K. AzizovS. RazaA.S. SenguptaS. KumarD. GargM. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease.Signal Transduct. Target. Ther.20238137510.1038/s41392‑023‑01608‑z 37779156
    [Google Scholar]
  37. QuerfurthH. LeeH.K. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration.Mol. Neurodegener.20211614410.1186/s13024‑021‑00428‑5 34215308
    [Google Scholar]
  38. Estrada-SotoS. Ornelas-MendozaK. Navarrete-VázquezG. Chávez-SilvaF. Almanza-PérezJ.C. Villalobos-MolinaR. Ortiz-BarragánE. Loza-RodríguezH. Rivera-LeyvaJ.C. Flores-FloresA. Perea-ArangoI. Rodríguez-CarpenaJ.G. Ávila-VillarrealG. Insulin sensitization by PPARγ and GLUT-4 overexpression/translocation mediates the antidiabetic effect of plantago australis.Pharmaceuticals202316453510.3390/ph16040535 37111292
    [Google Scholar]
  39. SchreiberI. DörpholzG. OttC.E. KragesteenB. SchanzeN. LeeC.T. KöhrleJ. MundlosS. RuschkeK. KnausP. BMPs as new insulin sensitizers: Enhanced glucose uptake in mature 3T3-L1 adipocytes via PPARγ and GLUT4 upregulation.Sci. Rep.2017711719210.1038/s41598‑017‑17595‑5 29222456
    [Google Scholar]
  40. ChenY. MaB. WangX. ZhaX. ShengC. YangP. QuS. Potential Functions of the BMP Family in Bone, Obesity, and Glucose Metabolism.J. Diabetes Res.2021202111010.1155/2021/6707464 34258293
    [Google Scholar]
  41. ChenY. WangY. JiW. XuP. XuT. A pre‐docking role for microtubules in insulin‐stimulated glucose transporter 4 translocation.FEBS J.2008275470571210.1111/j.1742‑4658.2007.06232.x 18190526
    [Google Scholar]
  42. Jaldin-FincatiJ.R. PavarottiM. Frendo-CumboS. BilanP.J. KlipA. Update on GLUT4 vesicle traffic: A cornerstone of insulin action.Trends Endocrinol. Metab.201728859761110.1016/j.tem.2017.05.002 28602209
    [Google Scholar]
  43. SeongJ. KangJ.Y. SunJ.S. KimK.W. Hypothalamic inflammation and obesity: A mechanistic review.Arch. Pharm. Res.201942538339210.1007/s12272‑019‑01138‑9 30835074
    [Google Scholar]
  44. VerdileG. KeaneK.N. CruzatV.F. MedicS. SabaleM. RowlesJ. WijesekaraN. MartinsR.N. FraserP.E. NewsholmeP. Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and alzheimer’s disease.Mediators Inflamm.20152015110582810.1155/2015/105828 26693205
    [Google Scholar]
  45. RingvoldH.C. KhalilR.A. Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders.Adv. Pharmacol.20177820330110.1016/bs.apha.2016.06.002 28212798
    [Google Scholar]
  46. TurbanS. HajduchE. Protein kinase C isoforms: Mediators of reactive lipid metabolites in the development of insulin resistance.FEBS Lett.2011585226927410.1016/j.febslet.2010.12.022 21176778
    [Google Scholar]
  47. KhoiC.S. LinT.Y. ChiangC.K. Targeting insulin resistance, reactive oxygen species, inflammation, programmed cell death, er stress, and mitochondrial dysfunction for the therapeutic prevention of free fatty acid-induced vascular endothelial lipotoxicity.Antioxidants20241312148610.3390/antiox13121486 39765815
    [Google Scholar]
  48. LanglaisP. YiZ. FinlaysonJ. LuoM. MapesR. De FilippisE. MeyerC. PlummerE. TongchinsubP. MatternM. MandarinoL.J. Global IRS-1 phosphorylation analysis in insulin resistance.Diabetologia201154112878288910.1007/s00125‑011‑2271‑9 21850561
    [Google Scholar]
  49. PahwaR. GoyalA. JialalI. Chronic Inflammation. In StatPearls.United StatesStatPearls Publishing2024
    [Google Scholar]
  50. KolliniatiO. IeronymakiE. VergadiE. TsatsanisC. Metabolic regulation of macrophage activation.J. Innate Immun.2022141516810.1159/000516780 34247159
    [Google Scholar]
  51. ZorenaK. Jachimowicz-DudaO. ŚlęzakD. RobakowskaM. MrugaczM. Adipokines and obesity. potential link to metabolic disorders and chronic complications.Int. J. Mol. Sci.20202110357010.3390/ijms21103570 32443588
    [Google Scholar]
  52. KawaiT. AutieriM.V. ScaliaR. Adipose tissue inflammation and metabolic dysfunction in obesity.Am. J. Physiol. Cell Physiol.20213203C375C39110.1152/ajpcell.00379.2020 33356944
    [Google Scholar]
  53. PüschelG.P. KlauderJ. HenkelJ. Macrophages, low-grade inflammation, insulin resistance and hyperinsulinemia: A mutual ambiguous relationship in the development of metabolic diseases.J. Clin. Med.20221115435810.3390/jcm11154358 35955975
    [Google Scholar]
  54. LiangW. QiY. YiH. MaoC. MengQ. WangH. ZhengC. The roles of adipose tissue macrophages in human disease.Front. Immunol.20221390874910.3389/fimmu.2022.908749 35757707
    [Google Scholar]
  55. BoutensL. StienstraR. Adipose tissue macrophages: Going off track during obesity.Diabetologia201659587989410.1007/s00125‑016‑3904‑9 26940592
    [Google Scholar]
  56. ShoelsonS.E. HerreroL. NaazA. Obesity, inflammation, and insulin resistance.Gastroenterology200713262169218010.1053/j.gastro.2007.03.059 17498510
    [Google Scholar]
  57. Clemente-SuárezV.J. Redondo-FlórezL. Beltrán-VelascoA.I. Martín-RodríguezA. Martínez-GuardadoI. Navarro-JiménezE. Laborde-CárdenasC.C. Tornero-AguileraJ.F. The role of adipokines in health and disease.Biomedicines2023115129010.3390/biomedicines11051290 37238961
    [Google Scholar]
  58. GibyV.G. AjithT.A. Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease.World J. Hepatol.20146857057910.4254/wjh.v6.i8.570 25232450
    [Google Scholar]
  59. BakerR.G. HaydenM.S. GhoshS. NF-κB, inflammation, and metabolic disease.Cell Metab.2011131112210.1016/j.cmet.2010.12.008 21195345
    [Google Scholar]
  60. ZatteraleF. LongoM. NaderiJ. RacitiG.A. DesiderioA. MieleC. BeguinotF. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes.Front. Physiol.202010160710.3389/fphys.2019.01607 32063863
    [Google Scholar]
  61. ZhouB. LuY. HajifathalianK. BenthamJ. Di CesareM. DanaeiG. BixbyH. CowanM.J. AliM.K. TaddeiC. LoW.C. Reis-SantosB. StevensG.A. RileyL.M. MirandaJ.J. BjerregaardP. RiveraJ.A. FouadH.M. MaG. MbanyaJ.C. McGarveyS.T. MohanV. OnatA. PilavA. RamachandranA. RomdhaneH.B. PaciorekC.J. BennettJ.E. EzzatiM. AbdeenZ.A. Abdul KadirK. Abu-RmeilehN.M. Acosta-CazaresB. AdamsR. AekplakornW. Aguilar-SalinasC.A. AgyemangC. AhmadvandA. Al-OthmanA.R. AlkerwiA. AmouyelP. AmuzuA. AndersenL.B. AnderssenS.A. AnjanaR.M. Aounallah-SkhiriH. ArisT. ArlappaN. ArveilerD. AssahF.K. AvdicováM. AziziF. BalakrishnaN. BandoszP. BarbagalloC.M. BarcelóA. BatiehaA.M. BaurL.A. RomdhaneH.B. BenetM. Bernabe-OrtizA. BharadwajS. BhargavaS.K. BiY. BjerregaardP. BjertnessE. BjertnessM.B. BjörkelundC. BlokstraA. BoS. BoehmB.O. BoissonnetC.P. BovetP. BrajkovichI. BreckenkampJ. BrennerH. BrewsterL.M. BrianG.R. BrunoG. BuggeA. Cabrera de LeónA. CanG. CândidoA.P. CapuanoV. CarlssonA.C. CarvalhoM.J. CasanuevaF.F. CasasJ.P. CasertaC.A. CastetbonK. ChamukuttanS. ChaturvediN. ChenC.J. ChenF. ChenS. ChengC.Y. ChetritA. ChiouS.T. ChoY. ChudekJ. CifkovaR. ClaessensF. ConcinH. CooperC. CooperR. CostanzoS. CottelD. CowellC. CrujeirasA.B. D’ArrigoG. DallongevilleJ. DanknerR. DauchetL. de GaetanoG. De HenauwS. DeepaM. DehghanA. DeschampsV. DhanaK. Di CastelnuovoA.F. DjalaliniaS. DouaK. DrygasW. DuY. DzerveV. EgbagbeE.E. EggertsenR. El AtiJ. ElosuaR. ErasmusR.T. EremC. ErgorG. EriksenL. Escobedo-de la PeñaJ. FallC.H. FarzadfarF. Felix-RedondoF.J. FergusonT.S. Fernández-BergésD. FerrariM. FerreccioC. FeskensE.J. FinnJ.D. FögerB. FooL.H. ForslundA.S. FouadH.M. FrancisD.K. Franco MdoC. FrancoO.H. FronteraG. FurusawaT. GaciongZ. GarnettS.P. GaspozJ.M. GasullM. GatesL. GeleijnseJ.M. GhasemianA. GhimireA. GiampaoliS. GianfagnaF. GiovannelliJ. GiwercmanA. GrossM.G. González RivasJ.P. GorbeaM.B. GottrandF. GrafnetterD. GrodzickiT. GrøntvedA. GrudenG. GuD. GuanO.P. GuerreroR. GuessousI. GuimaraesA.L. GutierrezL. HambletonI.R. HardyR. Hari KumarR. HataJ. HeJ. HeidemannC. HerralaS. HihtaniemiI.T. HoS.Y. HoS.C. HofmanA. HormigaC.M. HortaB.L. HoutiL. HowittC. HtayT.T. HtetA.S. HtikeM.M. HuY. HussieniA.S. HuybrechtsI. HwallaN. IacovielloL. IannoneA.G. IbrahimM.M. IkedaN. IkramM.A. IrazolaV.E. IslamM. IwasakiM. JacobsJ.M. JafarT. JamilK.M. JasienskaG. JiangC.Q. JonasJ.B. JoshiP. KafatosA. Kalter-LeiboviciO. KasaeianA. KatzJ. KaurP. KavousiM. Keinänen-KiukaanniemiS. KelishadiR. KengneA.P. KerstingM. KhaderY.S. KhaliliD. KhangY.H. KiechlS. KimJ. KolsterenP. KorrovitsP. KratzerW. KromhoutD. KujalaU.M. KulaK. KyobutungiC. LaatikainenT. LachatC. LaidY. LamT.H. LandroveO. LanskaV. LappasG. LaxmaiahA. LeclercqC. LeeJ. LeeJ. LehtimäkiT. LekhrajR. León-MuñozL.M. LiY. LimW.Y. Lima-CostaM.F. LinH.H. LinX. LissnerL. LorbeerR. LozanoJ.E. LuksieneD. LundqvistA. LytsyP. MaG. Machado-CoelhoG.L. MachiS. MaggiS. MaglianoD.J. MakdisseM. Mallikharjuna RaoK. ManiosY. ManzatoE. MargozziniP. Marques-VidalP. MartorellR. MasoodiS.R. MathiesenE.B. MatshaT.E. MbanyaJ.C. McFarlaneS.R. McGarveyS.T. McLachlanS. McNultyB.A. Mediene-BenchekorS. MeirhaegheA. MenezesA.M. MeratS. MeshramI.I. MiJ. MiquelJ.F. MirandaJ.J. MohamedM.K. MohammadK. MohammadifardN. MohanV. Mohd YusoffM.F. MøllerN.C. MolnárD. MondoC.K. MorejonA. MorenoL.A. MorganK. MoschonisG. MossakowskaM. MostafaA. MotaJ. MottaJ. MuT.T. MuiesanM.L. Müller-NurasyidM. MursuJ. NagelG. NámešnáJ. NangE.E. NangThetiaV.B. Navarrete-MuñozE.M. NdiayeN.C. NenkoI. NerviF. NguyenN.D. NguyenQ.N. Nieto-MartínezR.E. NingG. NinomiyaT. NoaleM. NotoD. NsourM.A. Ochoa-AvilésA.M. OhK. OnatA. OrdunezP. OsmondC. OteroJ.A. Owusu-DaboE. PahomovaE. PalmieriL. Panda-JonasS. PanzaF. ParsaeianM. PeixotoS.V. PelletierC. PeltonenM. PetersA. PeykariN. PhamS.T. PilavA. PitakakaF. PiwonskaA. PiwonskiJ. Plans-RubióP. PortaM. PortegiesM.L. PoustchiH. PradeepaR. PriceJ.F. PunabM. QasrawiR.F. QorbaniM. RadisauskasR. RahmanM. RaitakariO. RaoS.R. RamachandranA. RamkeJ. RamosR. RampalS. RathmannW. RedonJ. ReganitP.F. RigoF. RobinsonS.M. RobitailleC. Rodríguez-ArtalejoF. Rodriguez-Perez MdelC. Rodríguez-VillamizarL.A. Rojas-MartinezR. RonkainenK. RosengrenA. RubinsteinA. RuiO. Ruiz-BetancourtB.S. Russo HorimotoR.V. RutkowskiM. SabanayagamC. SachdevH.S. SaidiO. SakaryaS. SalanaveB. SalonenJ.T. SalvettiM. Sánchez-AbantoJ. SantosD. dos SantosR.N. SantosR. SaramiesJ.L. SardinhaL.B. SarrafzadeganN. SaumK.U. ScazufcaM. SchargrodskyH. Scheidt-NaveC. SeinA.A. SharmaS.K. ShawJ.E. ShibuyaK. ShinY. ShiriR. SiantarR. SibaiA.M. SimonM. SimonsJ. SimonsL.A. SjostromM. Slowikowska-HilczerJ. SlusarczykP. SmeethL. SnijderM.B. SoH.K. SobngwiE. SöderbergS. SolfrizziV. SonestedtE. SoumareA. StaessenJ.A. StathopoulouM.G. Steene-JohannessenJ. StehleP. SteinA.D. StessmanJ. StöcklD. StokwiszewskiJ. StronksK. StrufaldiM.W. SunC.A. SundströmJ. SungY.T. SuriyawongpaisalP. SyR.G. TaiE.S. TamosiunasA. TangL. TarawnehM. Tarqui-MamaniC.B. TaylorA. TheobaldH. ThijsL. ThuesenB.H. TolonenH.K. TolstrupJ.S. TopbasM. TorrentM. TraissacP. TrinhO.T. Tulloch-ReidM.K. TuomainenT.P. TurleyM.L. TzourioC. UedaP. UkoliF.A. UlmerH. UusitaloH.M. ValdiviaG. ValviD. van RossemL. van ValkengoedI.G. VanderschuerenD. VanuzzoD. VegaT. Velasquez-MelendezG. VeronesiG. VerschurenW.M. VerstraetenR. VietL. VioqueJ. VirtanenJ.K. Visvikis-SiestS. ViswanathanB. VollenweiderP. VoutilainenS. VrijheidM. WadeA.N. WagnerA. WaltonJ. Wan MohamudW.N. WangF. WangM.D. WangQ. WangY.X. WannametheeS.G. WeerasekeraD. WhincupP.H. WidhalmK. WiecekA. WijgaA.H. WilksR.J. WilleitJ. WilsgaardT. WojtyniakB. WongT.Y. WooJ. WoodwardM. WuF.C. WuS.L. XuH. YanW. YangX. YeX. YoshiharaA. Younger-ColemanN.O. ZambonS. ZargarA.H. ZdrojewskiT. ZhaoW. ZhengY. Zuñiga CisnerosJ. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants.Lancet2016387100271513153010.1016/S0140‑6736(16)00618‑8 27061677
    [Google Scholar]
  62. JernåsM. PalmingJ. SjöholmK. JennischeE. SvenssonP.A. GabrielssonB.G. LevinM. SjögrenA. RudemoM. LystigT.C. CarlssonB. CarlssonL.M.S. LönnM. JernåsM. PalmingJ. SjöholmK. JennischeE. SvenssonP-A. GabrielssonB.G. LevinM. SjögrenA. RudemoM. LystigT.C. CarlssonB. CarlssonL.M.S. LonnM. Separation of human adipocytes by size: Hypertrophic fat cells display distinct gene expression.FASEB J.20062091540154210.1096/fj.05‑5678fje 16754744
    [Google Scholar]
  63. LeeS. LeeH.C. KwonY.W. LeeS.E. ChoY. KimJ. LeeS. KimJ.Y. LeeJ. YangH.M. Mook-JungI. NamK.Y. ChungJ. LazarM.A. KimH.S. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes.Cell Metab.201419348449710.1016/j.cmet.2014.01.013 24606903
    [Google Scholar]
  64. Amaro-LealÂ. ShvachiyL. PintoR. GeraldesV. RochaI. Mota-FilipeH. Therapeutic effects of IkB kinase inhibitor during systemic inflammation.Int. Immunopharmacol.20208410650910.1016/j.intimp.2020.106509 32335479
    [Google Scholar]
  65. VerhelstK. VerstrepenL. CarpentierI. BeyaertR. IκB kinase ɛ (IKKɛ): A therapeutic target in inflammation and cancer.Biochem. Pharmacol.201385787388010.1016/j.bcp.2013.01.007 23333767
    [Google Scholar]
  66. El-SaadonyM.T. YangT. KormaS.A. SitohyM. Abd El-MageedT.A. SelimS. JaouniA.S.K. SalemH.M. MahmmodY. SolimanS.M. Mo’menS.A.A. MosaW.F.A. El-WafaiN.A. Abou-AlyH.E. SitohyB. El-HackA.M.E. El-TarabilyK.A. SaadA.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review.Front. Nutr.20239104025910.3389/fnut.2022.1040259 36712505
    [Google Scholar]
  67. NaL.X. ZhangY.L. LiY. LiuL.Y. LiR. KongT. SunC.H. Curcumin improves insulin resistance in skeletal muscle of rats.Nutr. Metab. Cardiovasc. Dis.201121752653310.1016/j.numecd.2009.11.009 20227862
    [Google Scholar]
  68. KaparF.S. CiftciG. The effects of curcumin and Lactobacillus acidophilus on certain hormones and insulin resistance in rats with metabolic syndrome.J. Diabetes Metab. Disord.202019290791410.1007/s40200‑020‑00578‑1 33553015
    [Google Scholar]
  69. SongZ. WangH. ZhuL. HanM. GaoY. DuY. WenY. Curcumin improves high glucose-induced INS-1 cell insulin resistance via activation of insulin signaling.Food Funct.20156246146910.1039/C4FO00608A 25474544
    [Google Scholar]
  70. GHorbaniZ. HekmatdoostA. MirmiranP. Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin.Int. J. Endocrinol. Metab.2014124e1808110.5812/ijem.18081 25745485
    [Google Scholar]
  71. KuršvietienėL. StanevičienėI. MongirdienėA. BernatonienėJ. Multiplicity of effects and health benefits of resveratrol.Medicina201652314815510.1016/j.medici.2016.03.003 27496184
    [Google Scholar]
  72. SzkudelskaK. SzkudelskiT. Resveratrol, obesity and diabetes.Eur. J. Pharmacol.20106351-31810.1016/j.ejphar.2010.02.054 20303945
    [Google Scholar]
  73. BrasnyóP. MolnárG.A. MohásM. MarkóL. LaczyB. CsehJ. MikolásE. SzijártóI.A. MéreiÁ. HalmaiR. MészárosL.G. SümegiB. WittmannI. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients.Br. J. Nutr.2011106338338910.1017/S0007114511000316 21385509
    [Google Scholar]
  74. MalikS.A. AcharyaJ.D. MehendaleN.K. KamatS.S. GhaskadbiS.S. Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation.Free Radic. Res.201953781582710.1080/10715762.2019.1635252 31223033
    [Google Scholar]
  75. HoseiniA. NamaziG. FarrokhianA. ReinerŽ. AghadavodE. BahmaniF. AsemiZ. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease.Food Funct.20191096042605110.1039/C9FO01075K 31486447
    [Google Scholar]
  76. PanX. LiuC. WangX. ZhaoM. ZhangZ. ZhangX. WangC. SongG. Resveratrol improves palmitic acid induced insulin resistance via the DDIT4/mTOR pathway in C2C12 cells.Mol. Med. Rep.202328418110.3892/mmr.2023.13068 37594055
    [Google Scholar]
  77. LamC.S. XiaY.X. ChenB.S. DuY.X. LiuK.L. ZhangH.J. Dihydro-resveratrol attenuates oxidative stress, adipogenesis and insulin resistance in in vitro models and high-fat diet-induced mouse model via ampk activation.Nutrients20231513300610.3390/nu15133006 37447331
    [Google Scholar]
  78. MirjaliliM.H. MoyanoE. BonfillM. CusidoR.M. PalazónJ. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine.Molecules20091472373239310.3390/molecules14072373 19633611
    [Google Scholar]
  79. AlanaziH.H. ElfakiE. The immunomodulatory role of withania somnifera (L.) dunal in inflammatory diseases.Front. Pharmacol.202314108475710.3389/fphar.2023.1084757 36909188
    [Google Scholar]
  80. BatumalaieK. AminM.A. MuruganD.D. SattarM.Z.A. AbdullahN.A. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.Sci. Rep.2016612723610.1038/srep27236 27250532
    [Google Scholar]
  81. KhalilpourfarshbafiM. Devi MuruganD. Abdul SattarM.Z. SucedaramY. AbdullahN.A. Withaferin A inhibits adipogenesis in 3T3-F442A cell line, improves insulin sensitivity and promotes weight loss in high fat diet-induced obese mice.PLoS One2019146e021879210.1371/journal.pone.0218792 31226166
    [Google Scholar]
  82. Abu BakarM.H. AzmiM.N. ShariffK.A. TanJ.S. WithaferinA. Withaferin a protects against high-fat diet–induced obesity via attenuation of oxidative stress, inflammation, and insulin resistance.Appl. Biochem. Biotechnol.2019188124125910.1007/s12010‑018‑2920‑2 30417321
    [Google Scholar]
  83. TrivediV.L. SoniR. DhyaniP. SatiP. TejadaS. SuredaA. SetzerW.N. RazisF.A.A. ModuB. ButnariuM. Sharifi-RadJ. Anti-cancer properties of boswellic acids: Mechanism of action as anti-cancerous agent.Front. Pharmacol.202314118718110.3389/fphar.2023.1187181 37601048
    [Google Scholar]
  84. AlTamimiJ.Z. AlFarisN.A. AlshammariG.M. AlagalR.I. AljabrynD.H. YahyaM.A. The Protective Effect of 11-Keto-β-Boswellic Acid against Diabetic Cardiomyopathy in Rats Entails Activation of AMPK.Nutrients2023157166010.3390/nu15071660 37049501
    [Google Scholar]
  85. MahdianD. Abbaszadeh-GoudarziK. RaoofiA. DadashizadehG. AbroudiM. ZarepourE. HosseinzadehH. Effect of Boswellia species on the metabolic syndrome: A review.Iran. J. Basic Med. Sci.202023111374138110.22038/ijbms.2020.42115.9957 33235693
    [Google Scholar]
  86. ShehataA. Quintanilla-FendL. BettioS. JauchJ. SciorT. ScherbaumW. AmmonH. 11-Keto-β-boswellic acids prevent development of autoimmune reactions, insulitis and reduce hyperglycemia during induction of multiple low-dose streptozotocin (MLD-STZ) diabetes in mice.Horm. Metab. Res.201547646346910.1055/s‑0035‑1547293 25951322
    [Google Scholar]
  87. KhanA. KhanI. HalimS.A. RehmanN.U. KarimN. AhmadW. KhanM. CsukR. Al-HarrasiA. Anti-diabetic potential of β-boswellic acid and 11-keto-β-boswellic acid: Mechanistic insights from computational and biochemical approaches.Biomed. Pharmacother.202214711266910.1016/j.biopha.2022.112669 35121344
    [Google Scholar]
  88. NaveenY.P. RupiniG.D. AhmedF. UroojA. Pharmacological effects and active phytoconstituents of Swietenia mahagoni: A review.J. Integr. Med.2014122869310.1016/S2095‑4964(14)60018‑2 24666674
    [Google Scholar]
  89. PandaS.P. HaldarP.K. BeraS. AdhikaryS. KandarC.C. Antidiabetic and antioxidant activity of Swietenia mahagoni in streptozotocin-induced diabetic rats.Pharm. Biol.201048997497910.3109/13880200903390051 20731547
    [Google Scholar]
  90. UroojA. PuttaswamyN.Y. Normalization of insulin resistance, glucose intolerance, and lipid profile by Swietenia mahagoni (L.) Jacq. leaf extract in fructose-induced diabetic rats.Pharmacogn. Mag.2018145964910.4103/pm.pm_358_18
    [Google Scholar]
  91. JahanS. MahmudM.H. KhanZ. AlamA. KhalilA.A. RaufA. TareqA.M. NainuF. TareqS.M. EmranT.B. KhanM. KhanI.N. WilairatanaP. MubarakM.S. Health promoting benefits of pongamol: An overview.Biomed. Pharmacother.202114211210910.1016/j.biopha.2021.112109 34470730
    [Google Scholar]
  92. TamrakarA.K. YadavP.P. TiwariP. MauryaR. SrivastavaA.K. Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits.J. Ethnopharmacol.2008118343543910.1016/j.jep.2008.05.008 18572336
    [Google Scholar]
  93. TamrakarA.K. JaiswalN. YadavP.P. MauryaR. SrivastavaA.K. Pongamol from Pongamia pinnata stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells.Mol. Cell. Endocrinol.20113391-29810410.1016/j.mce.2011.03.023 21497640
    [Google Scholar]
  94. ClarkJ. TaylorC. ZahradkaP. Rebelling against the (insulin) resistance: A review of the proposed insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds.Nutrients201810443410.3390/nu10040434 29601521
    [Google Scholar]
  95. HuangC.C. HuangW.C. HouC.W. ChiY.W. HuangH.Y. Effect of black soybean koji extract on glucose utilization and adipocyte differentiation in 3T3-L1 cells.Int. J. Mol. Sci.20141558280829210.3390/ijms15058280 24821545
    [Google Scholar]
  96. Sánchez-SolanaB. LabordaJ. BaladrónV. Mouse resistin modulates adipogenesis and glucose uptake in 3T3-L1 preadipocytes through the ROR1 receptor.Mol. Endocrinol.201226111012710.1210/me.2011‑1027 22074948
    [Google Scholar]
  97. JungM. KimS. KimY. KimM.R. The efficacy of Plantago asiatica L. water extract on lipid metabolism in a high-fat diet-induced obese C57BL/6 mice.Mol. Cell. Toxicol.202420239940810.1007/s13273‑023‑00355‑0
    [Google Scholar]
  98. LeeY.G. SongM.Y. ChoH. JinJ.S. ParkB.H. BaeE.J. Limonium tetragonum promotes running endurance in mice through mitochondrial biogenesis and oxidative fiber formation.Nutrients20221419390410.3390/nu14193904 36235564
    [Google Scholar]
  99. KimN.H. HeoJ.D. RhoJ.R. YangM.H. JeongE.J. Anti-obesity effect of halophyte crop, limonium tetragonum in high-fat diet-induced obese mice and 3T3-L1 adipocytes.Biol. Pharm. Bull.201740111856186510.1248/bpb.b17‑00296 29093332
    [Google Scholar]
  100. Rebollo-HernanzM. ZhangQ. AguileraY. Martín-CabrejasM.A. Gonzalez de MejiaE. Relationship of the phytochemicals from coffee and cocoa by-products with their potential to modulate biomarkers of metabolic syndrome in vitro.Antioxidants20198827910.3390/antiox8080279 31387271
    [Google Scholar]
  101. ChangC.W. HsuY.J. ChenY.M. HuangW.C. HuangC.C. HsuM.C. Effects of combined extract of cocoa, coffee, green tea and garcinia on lipid profiles, glycaemic markers and inflammatory responses in hamsters.BMC Complement. Altern. Med.201515126910.1186/s12906‑015‑0806‑1 26264374
    [Google Scholar]
  102. HuangC.C. TungY.T. HuangW.C. ChenY.M. HsuY.J. HsuM.C. Beneficial effects of cocoa, coffee, green tea, and garcinia complex supplement on diet induced obesity in rats.BMC Complement. Altern. Med.201616110010.1186/s12906‑016‑1077‑1 26968378
    [Google Scholar]
  103. AnusreeS.S. NishaV.M. PriyankaA. RaghuK.G. Insulin resistance by TNF-α is associated with mitochondrial dysfunction in 3T3-L1 adipocytes and is ameliorated by punicic acid, a PPARγ agonist.Mol. Cell. Endocrinol.201541312012810.1016/j.mce.2015.06.018 26116231
    [Google Scholar]
  104. Peláez-JaramilloM.J. Valencia-EncisoN. Cárdenas-MojicaA.A. GaeteP.V. Scher-NemirovskyE.A. Gómez-ArangoL.F. Colmenares-AraqueD. Castro-LópezC.A. Betancourt-VillamizarE. Jaimes-MadrigalJ. AlvarezC.A. Jiménez-MoraM.A. Quiroga-PadillaP.J. Puerto-BaracaldoD.K. MendivilC.O. Impact of a formulation containing unusual polyunsaturated fatty acids, trace elements, polyphenols and plant sterols on insulin resistance and associated disturbances.Diabetes Ther.202011122924510.1007/s13300‑019‑00721‑z 31691133
    [Google Scholar]
  105. AnusreeS.S. PriyankaA. NishaV.M. DasA.A. RaghuK.G. An in vitro study reveals the nutraceutical potential of punicic acid relevant to diabetes via enhanced GLUT4 expression and adiponectin secretion.Food Funct.20145102590260110.1039/C4FO00302K 25143251
    [Google Scholar]
  106. VroegrijkI.O.C.M. van DiepenJ.A. van den BergS. WestbroekI. KeizerH. GambelliL. HontecillasR. Bassaganya-RieraJ. ZondagG.C.M. RomijnJ.A. HavekesL.M. VosholP.J. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice.Food Chem. Toxicol.20114961426143010.1016/j.fct.2011.03.037 21440024
    [Google Scholar]
  107. HontecillasR. O’SheaM. EinerhandA. DiguardoM. Bassaganya-RieraJ. Activation of PPAR gamma and alpha by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation.J. Am. Coll. Nutr.200928218419510.1080/07315724.2009.10719770 19828904
    [Google Scholar]
  108. AnusreeS.S. SindhuG. Preetha RaniM.R. RaghuK.G. Insulin resistance in 3T3-L1 adipocytes by TNF-α is improved by punicic acid through upregulation of insulin signalling pathway and endocrine function, and downregulation of proinflammatory cytokines.Biochimie2018146798610.1016/j.biochi.2017.11.014 29180021
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968376217250324190715
Loading
/content/journals/ccb/10.2174/0122127968376217250324190715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test