Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Guanine Protein-coupled Receptor 17 (GPR17) plays pivotal roles in various physiological processes and diseases. However, the discovery of ligands binding to GPR17 remains an active area of research.

Methods

In this study, we utilized our recently published GPCR-specific deep learning approach, molecular docking, and molecular dynamics simulations. Specifically, the DeepGPCR model, employing graph convolutional networks, was used to screen the extensive ZINC database for potential ligands.

Results

This computational pipeline identified three highly promising lead compounds, ZINC000044404209, ZINC000229938097, and ZINC000005158963. Molecular dynamics simulations confirmed the stability of the protein-ligand complexes while binding free energy calculations highlighted the crucial molecular forces stabilizing these interactions. Notably, ZINC000229938097 exhibited particularly favorable binding energy values among the compounds assessed.

Conclusion

Our study underscores the efficacy of computational methodologies in identifying potential drug candidates targeting GPR17. Understanding the molecular mechanisms underlying GPR17 activation holds significant promise for developing tailored therapies for Glioblastoma Multiforme.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968351148241129071716
2024-12-17
2025-12-13
Loading full text...

Full text loading...

References

  1. AngomR.S. NakkaN.M.R. BhattacharyaS. Advances in glioblastoma therapy: An update on current approaches.Brain Sci.20231311153610.3390/brainsci1311153638002496
    [Google Scholar]
  2. SadowskiK. JażdżewskaA. KozłowskiJ. ZacnyA. LorencT. OlejarzW. Revolutionizing glioblastoma treatment: A comprehensive overview of modern therapeutic approaches.Int. J. Mol. Sci.20242511577410.3390/ijms2511577438891962
    [Google Scholar]
  3. QiD. LiJ. QuarlesC.C. FonkemE. WuE. Assessment and prediction of glioblastoma therapy response: Challenges and opportunities.Brain202314641281129810.1093/brain/awac45036445396
    [Google Scholar]
  4. GuoC. YuC. GaoW. RenD. ZhangY. ZhengP. A novel classifier combining G protein-coupled receptors and the tumor microenvironment is associated with survival status in glioblastoma.Front. Pharmacol.202314109326310.3389/fphar.2023.109326337560473
    [Google Scholar]
  5. WhiteS.H. WimleyW.C. Membrane protein folding and stability: Physical principles.Annu. Rev. Biophys. Biomol. Struct.199928131936510.1146/annurev.biophys.28.1.31910410805
    [Google Scholar]
  6. de BrevernA.G. 3D structural models of transmembrane proteins BT - Membrane protein structure determination: Methods and protocols.Humana Press. LacapèreJ-J. Totowa, NJ2010387401
    [Google Scholar]
  7. KhabibovM. GarifullinA. BoumberY. KhaddourK. FernandezM. KhamitovF. KhalikovaL. KuznetsovaN. KitO. KharinL. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review).Int. J. Oncol.20226066910.3892/ijo.2022.535935445737
    [Google Scholar]
  8. LiuH. XingR. OuZ. ZhaoJ. HongG. ZhaoT.J. HanY. ChenY. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production.Cell Death Dis.202112661010.1038/s41419‑021‑03897‑034120140
    [Google Scholar]
  9. DziedzicA. MillerE. BijakS.J. BijakM. The GPR17 receptor—A promising goal for therapy and a potential marker of the neurodegenerative process in multiple sclerosis.Int. J. Mol. Sci.2020215185210.3390/ijms2105185232182666
    [Google Scholar]
  10. LeccaD. AbbracchioM.P. FumagalliM. Purinergic receptors on oligodendrocyte progenitors: Promising targets for myelin repair in multiple sclerosis?Front. Pharmacol.20211162961810.3389/fphar.2020.62961833584312
    [Google Scholar]
  11. ManiK.S. ThiyagarajanR. HarjaY.O. KandhaveluM. MurugesanA. Structural analysis of human G‐protein‐coupled receptor 17 ligand binding sites.J. Cell. Biochem.2023124453354410.1002/jcb.3038836791278
    [Google Scholar]
  12. ChenY. WuH. WangS. KoitoH. LiJ. YeF. HoangJ. EscobarS.S. GowA. ArnettH.A. TrappB.D. KarandikarN.J. HsiehJ. LuQ.R. The oligodendrocyte-specific G protein–coupled receptor GPR17 is a cell-intrinsic timer of myelination.Nat. Neurosci.200912111398140610.1038/nn.241019838178
    [Google Scholar]
  13. AlaviM.S. ShamsizadehA. ZarmehriA.H. RoohbakhshA. Orphan G protein-coupled receptors: The role in CNS disorders.Biomed. Pharmacother.20189822223210.1016/j.biopha.2017.12.05629268243
    [Google Scholar]
  14. SimonK MertenN SchröderR The orphan receptor GPR17 is unresponsive to uracil nucleotides and cysteinyl leukotrienes.Mol Pharmacol201791551853210.1124/mol.116.107904
    [Google Scholar]
  15. NguyenP. DoanP. RimpilainenT. ManiK.S. MurugesanA. HarjaY.O. CandeiasN.R. KandhaveluM. Synthesis and preclinical validation of novel indole derivatives as a GPR17 agonist for glioblastoma treatment.J. Med. Chem.20216415109081091810.1021/acs.jmedchem.1c0027734304559
    [Google Scholar]
  16. SaravananK.M. PalanivelS. HarjaY.O. KandhaveluM. Identification of novel GPR17-agonists by structural bioinformatics and signaling activation.Int. J. Biol. Macromol.201810690190710.1016/j.ijbiomac.2017.08.08828827203
    [Google Scholar]
  17. ParraviciniC. AbbracchioM.P. FantucciP. RanghinoG. Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach.BMC Struct. Biol.2010101810.1186/1472‑6807‑10‑820233425
    [Google Scholar]
  18. ParraviciniC. RanghinoG. AbbracchioM.P. FantucciP. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors.BMC Bioinformatics20089126310.1186/1471‑2105‑9‑26318533035
    [Google Scholar]
  19. ZhangH. LiaoL. SaravananK.M. YinP. WeiY. DeepBindRG: A deep learning based method for estimating effective protein–ligand affinity.PeerJ20197e736210.7717/peerj.736231380152
    [Google Scholar]
  20. SreeramanS. KannanM.P. KushwahS.R.B. SundaramV. VeluchamyA. ThirunavukarasouA. SaravananK.M. Drug design and disease diagnosis: The potential of deep learning models in biology.Curr. Bioinform.202318320822010.2174/1574893618666230227105703
    [Google Scholar]
  21. ZhangH. SaravananK.M. Advances in deep learning assisted drug discovery methods: A self-review.Curr. Bioinform.2024191089190710.2174/0115748936285690240101041704
    [Google Scholar]
  22. ZhangH. SaravananK.M. ZhangJ.Z.H. DeepBindGCN: Integrating molecular vector representation with graph convolutional neural networks for protein–ligand interaction prediction.Molecules20232812469110.3390/molecules2812469137375246
    [Google Scholar]
  23. ZhangH. FanH. WangJ. HouT. SaravananK.M. XiaW. KanH.W. LiJ. ZhangJ.Z.H. LiangX. ChenY. Revolutionizing GPCR–ligand predictions: DeepGPCR with experimental validation for high-precision drug discovery.Brief. Bioinform.2024254bbae28110.1093/bib/bbae28138864340
    [Google Scholar]
  24. FengY. ChengX. WuS. SaravananM.K. LiuW. Hybrid drug-screening strategy identifies potential SARS-CoV-2 cell-entry inhibitors targeting human transmembrane serine protease.Struct. Chem.20223351503151510.1007/s11224‑022‑01960‑w35571866
    [Google Scholar]
  25. YeF. WongT.S. ChenG. ZhangZ. ZhangB. GanS. GaoW. LiJ. WuZ. PanX. DuY. Cryo‐EM structure of G‐protein‐coupled receptor GPR17 in complex with inhibitory G protein.MedComm202234e15910.1002/mco2.15936105372
    [Google Scholar]
  26. CianaP. FumagalliM. TrincavelliM.L. VerderioC. RosaP. LeccaD. FerrarioS. ParraviciniC. CapraV. GelosaP. GuerriniU. BelcreditoS. CiminoM. SironiL. TremoliE. RovatiG.E. MartiniC. AbbracchioM.P. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor.EMBO J.200625194615462710.1038/sj.emboj.760134116990797
    [Google Scholar]
  27. LeccaD. TrincavelliM.L. GelosaP. SironiL. CianaP. FumagalliM. VillaG. VerderioC. GrumelliC. GuerriniU. TremoliE. RosaP. CuboniS. MartiniC. BuffoA. CiminoM. AbbracchioM.P. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.PLoS One2008310e357910.1371/journal.pone.000357918974869
    [Google Scholar]
  28. RiveraA.D. PieropanF. RochaC.D.L.I. LeccaD. AbbracchioM.P. AzimK. ButtA.M. Functional genomic analyses highlight a shift in Gpr17 ‐regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum.Aging Cell2021204e1333510.1111/acel.1333533675110
    [Google Scholar]
  29. MutharasuG. MurugesanA. ManiK.S. HarjaY.O. KandhaveluM. Transcriptomic analysis of glioblastoma multiforme providing new insights into GPR17 signaling communication.J. Biomol. Struct. Dyn.20224062586259910.1080/07391102.2020.184102933140689
    [Google Scholar]
  30. IrwinJ.J. ShoichetB.K. ZINC--A free database of commercially available compounds for virtual screening.J. Chem. Inf. Model.200545117718210.1021/ci049714+15667143
    [Google Scholar]
  31. ChanW.K.B. ZhangH. YangJ. BrenderJ.R. HurJ. ÖzgürA. ZhangY. GLASS: A comprehensive database for experimentally validated GPCR-ligand associations.Bioinformatics201531183035304210.1093/bioinformatics/btv30225971743
    [Google Scholar]
  32. JaegerS. FulleS. TurkS. Mol2vec: Unsupervised machine learning approach with chemical intuition.J. Chem. Inf. Model.2018581273510.1021/acs.jcim.7b0061629268609
    [Google Scholar]
  33. ZhangH. SaravananK.M. LinJ. LiaoL. NgJ.T.Y. ZhouJ. WeiY. DeepBindPoc: A deep learning method to rank ligand binding pockets using molecular vector representation.PeerJ20208e886410.7717/peerj.886432292649
    [Google Scholar]
  34. BentoA.P. HerseyA. FélixE. LandrumG. GaultonA. AtkinsonF. BellisL.J. De VeijM. LeachA.R. An open source chemical structure curation pipeline using RDKit.J. Cheminform.20201215110.1186/s13321‑020‑00456‑133431044
    [Google Scholar]
  35. BorkakotiN. ThorntonJ.M. AlphaFold2 protein structure prediction: Implications for drug discovery.Curr. Opin. Struct. Biol.20237810252610.1016/j.sbi.2022.10252636621153
    [Google Scholar]
  36. RoyA. YangJ. ZhangY. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation.Nucleic Acids Res.201240W1W471W47710.1093/nar/gks37222570420
    [Google Scholar]
  37. GoodsellD.S. SannerM.F. OlsonA.J. ForliS. The AutoDock suite at 30.Protein Sci.2021301314310.1002/pro.393432808340
    [Google Scholar]
  38. KaminskiG. JorgensenW.L. Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids.J. Phys. Chem.199610046180101801310.1021/jp9624257
    [Google Scholar]
  39. TrottO. OlsonA.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  40. JoS. LimJ.B. KlaudaJ.B. ImW. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes.Biophys. J.2009971505810.1016/j.bpj.2009.04.01319580743
    [Google Scholar]
  41. LomizeM.A. PogozhevaI.D. JooH. MosbergH.I. LomizeA.L. OPM database and PPM web server: Resources for positioning of proteins in membranes.Nucleic Acids Res.201240D1D370D37610.1093/nar/gkr70321890895
    [Google Scholar]
  42. BruzzeseA. GilC. DaltonJ.A.R. GiraldoJ. Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein-lipid interactions.Sci. Rep.201881445610.1038/s41598‑018‑22735‑629535353
    [Google Scholar]
  43. ImW. RouxB. Ions and counterions in a biological channel: A molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.J. Mol. Biol.200231951177119710.1016/S0022‑2836(02)00380‑712079356
    [Google Scholar]
  44. HessB. KutznerC. SpoelV.D.D. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  45. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151-2192510.1016/j.softx.2015.06.001
    [Google Scholar]
  46. BussiG. TimanZ.T. ParrinelloM. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling.J. Chem. Phys.2009130707410110.1063/1.307388919239278
    [Google Scholar]
  47. BerendsenH.J.C. PostmaJ.P.M. GunsterenV.W.F. HermansJ. Interaction models for water in relation to protein hydration BT - intermolecular forcesProceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in JerusalemIsraelApril 13–16, 1981 PullmanB Springer NetherlandsDordrecht33134210.1007/978‑94‑015‑7658‑1_21
    [Google Scholar]
  48. KumariR. KumarR. LynnA. G_MMPBSA--A GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m24850022
    [Google Scholar]
  49. WangC. GreeneD.A. XiaoL. QiR. LuoR. Recent developments and applications of the MMPBSA method.Front. Mol. Biosci.201848710.3389/fmolb.2017.0008729367919
    [Google Scholar]
  50. SaravananK.M. BalasubramanianH. NallusamyS. SamuelS. Sequence and structural analysis of two designed proteins with 88% identity adopting different folds.Protein Eng. Des. Sel.2010231291191810.1093/protein/gzq07020952437
    [Google Scholar]
  51. SaravananK.M. SelvarajS. Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins.J. Biol. Phys.201743226527810.1007/s10867‑017‑9451‑x28577238
    [Google Scholar]
  52. ObradorE. MurcianoM.P. CaballoO.M. BlanchL.R. PinedaB. ArroyoG.J. LorasA. BonetG.L. CadenasM.C. EstrelaJ. TorrejónM.M. Glioblastoma therapy: Past, present and future.Int. J. Mol. Sci.2024255252910.3390/ijms2505252938473776
    [Google Scholar]
  53. DoanP. NguyenP. MurugesanA. SubramanianK. Konda ManiS. KalimuthuV. AbrahamB.G. StringerB.W. BalamuthuK. Yli-HarjaO. KandhaveluM. Targeting orphan G protein-coupled receptor 17 with T0 ligand impairs glioblastoma growth.Cancers20211315377310.3390/cancers1315377334359676
    [Google Scholar]
  54. MurugesanA. NguyenP. RameshT. HarjaY.O. KandhaveluM. SaravananK.M. Molecular modeling and dynamics studies of the synthetic small molecule agonists with GPR17 and P2Y1 receptor.J. Biomol. Struct. Dyn.20224023129081291610.1080/07391102.2021.197770734542380
    [Google Scholar]
  55. DoanP. NguyenP. MurugesanA. CandeiasN.R. HarjaY.O. KandhaveluM. Alkylaminophenol and GPR17 agonist for glioblastoma therapy: A combinational approach for enhanced cell death activity.Cells2021108197510.3390/cells1008197534440745
    [Google Scholar]
  56. CerutiS. VillaG. GenoveseT. MazzonE. LonghiR. RosaP. BramantiP. CuzzocreaS. AbbracchioM.P. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.Brain200913282206221810.1093/brain/awp14719528093
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968351148241129071716
Loading
/content/journals/ccb/10.2174/0122127968351148241129071716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test