Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Resveratrol (RV) is a well-known polyphenolic compound found in many different plants, including the fruits of grape, peanut, and berry trees. It is well-known for its links to a number of health benefits, including those related to glucose metabolism, anti-aging, anti-tumor, anti-obesity, anticancer and neuroprotective effects. Promising therapeutic properties have been reported in multiple cancers, neurodegenerative diseases, and atherosclerosis. These properties are regulated by multiple synergistic pathways that govern inflammation, oxidative stress, and cell death. RV also has a potent anti-adipogenic effect by preventing fat accumulation and triggering lipolytic and oxidative pathways. By preventing platelet aggregation, it demonstrates its cardioprotective properties. RV also has a potent anti-adipogenic effect by preventing fat accumulation and triggering lipolytic and oxidative pathways. By preventing platelet aggregation, it demonstrates its cardioprotective properties.To increase resveratrol's dissolution, stability, oral bioavailability, and regulated evacuation, nanotechnologies have become widely used.RV's drug-delivery methods linked to bioavailability have additionally been extensively utilised, and RV nanoparticles and liposomes seem to be viable platforms for improving their bioavailability. The current review seeks to give an organised summary of the medicinal advantages and recent discoveries.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968347682250110051811
2025-01-31
2025-09-02
Loading full text...

Full text loading...

References

  1. KalantariH. DasD.K. Physiological effects of resveratrol.Biofactors201036540140610.1002/biof.10020623511
    [Google Scholar]
  2. MalhotraA. BathS. ElbarbryF. An organ system approach to explore the antioxidative, anti-inflammatory, and cytoprotective actions of resveratrol.Oxid. Med. Cell. Longev.2015201511510.1155/2015/80397126180596
    [Google Scholar]
  3. LiM. KildegaardK.R. ChenY. RodriguezA. BorodinaI. NielsenJ. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.Metab. Eng.20153211110.1016/j.ymben.2015.08.00726344106
    [Google Scholar]
  4. LiH. WuW.K.K. ZhengZ. CheC.T. LiZ.J. XuD.D. WongC.C.M. YeC.G. SungJ.J.Y. ChoC.H. WangM. 3,3′,4,5,5′-pentahydroxy-trans-stilbene, a resveratrol derivative, induces apoptosis in colorectal carcinoma cells via oxidative stress.Eur. J. Pharmacol.20106371-3556110.1016/j.ejphar.2010.04.00920399769
    [Google Scholar]
  5. HigdonJ. DrakeV.J. DelageB. Available from: http://lpi.oregonstate.edu/mic/dietaryfactors/phytochemicals/resver atrol#reference7
  6. BhullarK.S. HubbardB.P. Lifespan and healthspan extension by resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261209121810.1016/j.bbadis.2015.01.01225640851
    [Google Scholar]
  7. MaD.S.L. TanL.T.H. ChanK.G. YapW.H. PusparajahP. ChuahL.H. MingL.C. KhanT.M. LeeL.H. GohB.H. Resveratrol—potential antibacterial agent against foodborne pathogens.Front. Pharmacol.2018910210.3389/fphar.2018.0010229515440
    [Google Scholar]
  8. SzekeresT. Fritzer-SzekeresM. SaikoP. JägerW. Resveratrol and resveratrol analogues--structure-activity relationship.Pharm. Res.20102761042104810.1007/s11095‑010‑0090‑120232118
    [Google Scholar]
  9. StivalaL.A. SavioM. CarafoliF. PeruccaP. BianchiL. MagaG. FortiL. PagnoniU.M. AlbiniA. ProsperiE. VanniniV. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol.J. Biol. Chem.200127625225862259410.1074/jbc.M10184620011316812
    [Google Scholar]
  10. de la LastraC.A. VillegasI. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications.Biochem. Soc. Trans.20073551156116010.1042/BST035115617956300
    [Google Scholar]
  11. StojanovićS. BredeO. nlmary reactions of the antioxidant action of trans-stilbene derivatives: Resveratrol, pinosylvin and 4- hydroxystilbene.Phys. Chem. Chem. Phys.20024575776410.1039/b109063c
    [Google Scholar]
  12. Global resveratrol market research report 20202020Available from: https://www.industryresearch.co/global-resveratrol-market-15064120
  13. Tomé-CarneiroJ. LarrosaM. González-SarríasA. Tomás-BarberánF. García-ConesaM. EspínJ. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence.Curr. Pharm. Des.201319346064609310.2174/1381612811319999040723448440
    [Google Scholar]
  14. PrakashV. BoseC. SunilkumarD. CherianR.M. ThomasS.S. NairB.G. Resveratrol as a promising nutraceutical: Implications in gut microbiota modulation, inflammatory disorders, and colorectal cancer.Int. J. Mol. Sci.2024256337010.3390/ijms2506337038542344
    [Google Scholar]
  15. MattiviF. RenieroF. KorhammerS. Isolation, characterization, and evolution in red wine vinification of resveratrol monomers.J. Agric. Food Chem.19954371820182310.1021/jf00055a013
    [Google Scholar]
  16. ProkopJ. AbrmanP. SeligsonA.L. SovakM. Resveratrol and its glycon piceid are stable polyphenols.J. Med. Food200691111410.1089/jmf.2006.9.1116579722
    [Google Scholar]
  17. AverillaJ.N. OhJ. WuZ. LiuK.H. JangC.H. KimH.J. KimJ.S. KimJ.S. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments.J. Sci. Food Agric.20199984043405310.1002/jsfa.963230737796
    [Google Scholar]
  18. ZhangY. ZhengL. ZhengY. ZhouC. HuangP. XiaoX. ZhaoY. HaoX. HuZ. ChenQ. LiH. WangX. FukushimaK. WangG. LiC. Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum.Front. Plant Sci.201910127410.3389/fpls.2019.0127431681373
    [Google Scholar]
  19. LiZ. ChenX. LiuG. LiJ. ZhangJ. CaoY. MiaoJ. Antioxidant activity and mechanism of resveratrol and polydatin isolated from mulberry (Morus alba L.).Molecules20212624757410.3390/molecules2624757434946655
    [Google Scholar]
  20. LeiferA. BarberioD.M. Direct ingestion method for enhancing production and bioavailability of resveratrol and other phytoalexins in Vitis vinifera.Med. Hypotheses2016881510.1016/j.mehy.2015.12.00826880624
    [Google Scholar]
  21. ZahediH.S. JazayeriS. GhiasvandR. DjalaliM. EshraghianM.R. Effects of polygonum cuspidatum containing resveratrol on inflammation in male professional basketball players.Int. J. Prev. Med.20134Suppl. 1S1S423717757
    [Google Scholar]
  22. SandersT.H. McMichaelR.W.Jr HendrixK.W. Occurrence of resveratrol in edible peanuts.J. Agric. Food Chem.20004841243124610.1021/jf990737b10775379
    [Google Scholar]
  23. RichardG. TePaskeM.R. PlattnerR.D. WhiteJ.F. ClementS.L. Isolation of resveratrol from Festuca versuta and evidence for the widespread occurrence of this stilbene in the poaceae.Phytochemistry199435233533810.1016/S0031‑9422(00)94759‑9
    [Google Scholar]
  24. AnjaneyuluA.S.R. Raghava ReddyA.V. ReddyD.S.K. WardR.S. AdhikesavaluD. Stanley CameronT. Pacharin: a new dibenzo(2,3-6,7)oxepin derivative from bauhinia racemosa lamk.Tetrahedron198440214245425210.1016/S0040‑4020(01)98799‑X
    [Google Scholar]
  25. BanganiV. CrouchN.R. MulhollandD.A. Homoisoflavanones and stilbenoids from Scilla nervosa.Phytochemistry199951794795110.1016/S0031‑9422(99)00155‑7
    [Google Scholar]
  26. ZhangL. LiB. WangM. LinH. PengY. ZhouX. PengC. ZhanJ. WangW. Genus Tetrastigma: A review of its folk uses, phytochemistry and pharmacology.Chin. Herb. Med.202214221023310.1016/j.chmed.2022.03.00336117671
    [Google Scholar]
  27. LeeS.I. YangH.D. SonI.H. MoonH.I. Antimalarial activity of a stilbene glycoside from Pleuropterus ciliinervis.Ann. Trop. Med. Parasitol.2008102218118410.1179/136485908X25235918318941
    [Google Scholar]
  28. PiyaratneP.S. LeBlancR. MyracleA.D. ColeB.J.W. FortR.C. Jr Extraction and purification of (E)-resveratrol from the bark of conifer species.Processes202210464710.3390/pr10040647
    [Google Scholar]
  29. DengJ.C. LiL.H. YangX.Q. LuS.P. WuY.Y. HaoS.X. QiB. High-purity isolation of <i>Trans</i>-Resveratrol from Rhizma Polygoni Cuspidati by high-speed counter-current chromatography.Adv. Mat. Res.2013690-6931335133910.4028/www.scientific.net/AMR.690‑693.1335
    [Google Scholar]
  30. BragaA. FerreiraP. OliveiraJ. RochaI. FariaN. Heterologous production of resveratrol in bacterial hosts: current status and perspectives.World J. Microbiol. Biotechnol.201834812210.1007/s11274‑018‑2506‑830054757
    [Google Scholar]
  31. RöslerJ. KrekelF. AmrheinN. SchmidJ. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity.Plant Physiol.1997113117517910.1104/pp.113.1.1759008393
    [Google Scholar]
  32. SannaV. SiddiquiI.A. SechiM. MukhtarH. Resveratrol-Loaded Nanoparticles Based on Poly(epsilon-caprolactone) and Poly( d, l -lactic- co -glycolic acid)–Poly(ethylene glycol) Blend for Prostate Cancer Treatment.Mol. Pharm.201310103871388110.1021/mp400342f23968375
    [Google Scholar]
  33. YaoH. LuH. ZouR. ChenX. XuH. Preparation of encapsulated resveratrol liposome thermosensitive gel and evaluation of its capability to repair sciatic nerve injury in rats.J. Nanomater.2020202011310.1155/2020/2840162
    [Google Scholar]
  34. ZhouT. JiangY. ZengB. YangB. The cancer preventive activity and mechanisms of prenylated resveratrol and derivatives.Curr. Res. Toxicol.2023510011310.1016/j.crtox.2023.10011337519844
    [Google Scholar]
  35. NawazW. ZhouZ. DengS. MaX. MaX. LiC. ShuX. Therapeutic versatility of resveratrol derivatives.Nutrients2017911118810.3390/nu911118829109374
    [Google Scholar]
  36. AlhusainiA.M. AlshehriS.M. SarawiW.S. AlghibiwiH.K. AlturaifS.A. Al khbiahR.A. AlaliS.M. AlsaifS.M. AlsultanE.N. HasanI.H. Implication of MAPK, Lipocalin-2, and Fas in the protective action of liposomal resveratrol against isoproterenol-induced kidney injury.Saudi Pharm. J.202432110190710.1016/j.jsps.2023.10190738178854
    [Google Scholar]
  37. EthemogluM.S. SekerF.B. AkkayaH. KilicE. AslanI. ErdoganC.S. YilmazB. Anticonvulsant activity of resveratrol-loaded liposomes in vivo.Neuroscience2017357121910.1016/j.neuroscience.2017.05.02628577913
    [Google Scholar]
  38. FanE. ZhangK. Targeting resveratrol to mitochondria for cardiovascular diseases.Recent Adv. Cardiovasc. Drug Discov.2010529710210.2174/15748901079151536820353381
    [Google Scholar]
  39. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.126359728001084
    [Google Scholar]
  40. FarrisP. KrutmannJ. LiY.H. McDanielD. KrolY. Resveratrol: a unique antioxidant offering a multi-mechanistic approach for treating aging skin.J. Drugs Dermatol.201312121389139424301240
    [Google Scholar]
  41. BellaverB. SouzaD.G. SouzaD.O. Quincozes-SantosA. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats.Toxicol. In Vitro201428447948410.1016/j.tiv.2014.01.00624462605
    [Google Scholar]
  42. CuiB. WangY. JinJ. YangZ. GuoR. LiX. YangL. LiZ. Resveratrol treats UVB-induced photoaging by anti-MMP expression, through anti-inflammatory, antioxidant, and antiapoptotic properties, and treats photoaging by upregulating VEGF-B expression.Oxid. Med. Cell. Longev.2022202211910.1155/2022/603730335028009
    [Google Scholar]
  43. García-MartínezB.I. Ruiz-RamosM. Pedraza-ChaverriJ. Santiago-OsorioE. Mendoza-NúñezV.M. Effect of resveratrol on markers of oxidative stress and sirtuin 1 in elderly adults with type 2 diabetes.Int. J. Mol. Sci.2023248742210.3390/ijms2408742237108584
    [Google Scholar]
  44. SantosM.A. FrancoF.N. CaldeiraC.A. de AraújoG.R. VieiraA. ChavesM.M. LaraR.C. Antioxidant effect of Resveratrol: Change in MAPK cell signaling pathway during the aging process.Arch. Gerontol. Geriatr.20219210426610.1016/j.archger.2020.10426633070070
    [Google Scholar]
  45. PlanincM. JovanovićI.N. RašićD. PeraicaM. SutlićŽ. Resveratrol as antioxidant in cardiac surgery: is there potential for clinical application?Archives of Industrial Hygiene and Toxicology202273425625910.2478/aiht‑2022‑73‑364336607724
    [Google Scholar]
  46. SzczepańskaP. RychlickaM. GroborzS. KruszyńskaA. Ledesma-AmaroR. RapakA. GliszczyńskaA. LazarZ. Studies on the anticancer and antioxidant activities of resveratrol and long-chain fatty acid esters.Int. J. Mol. Sci.2023248716710.3390/ijms2408716737108328
    [Google Scholar]
  47. MohapatraP. PreetR. ChoudhuriM. ChoudhuriT. KunduC.N. 5-fluorouracil increases the chemopreventive potentials of resveratrol through DNA damage and MAPK signaling pathway in human colorectal cancer cells.Oncol. Res.201119731132110.3727/096504011X1307969713284421936401
    [Google Scholar]
  48. BuhrmannC. YazdiM. PopperB. ShayanP. GoelA. AggarwalB.B. ShakibaeiM. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells.Nutrients201810788810.3390/nu1007088830002278
    [Google Scholar]
  49. StoccoB. ToledoK. SalvadorM. PauloM. KoyamaN. Torqueti ToloiM.R. Dose-dependent effect of Resveratrol on bladder cancer cells: Chemoprevention and oxidative stress.Maturitas2012721727810.1016/j.maturitas.2012.02.00422386766
    [Google Scholar]
  50. CuiJ. SunR. YuY. GouS. ZhaoG. WangC. Antiproliferative effect of resveratrol in pancreatic cancer cells.Phytother. Res.201024111637164410.1002/ptr.315721031621
    [Google Scholar]
  51. BenitezD.A. Pozo-GuisadoE. Alvarez-BarrientosA. Fernandez-SalgueroP.M. CastellónE.A. Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines.J. Androl.200728228229310.2164/jandrol.106.00096817050787
    [Google Scholar]
  52. SunC. HuY. GuoT. WangH. ZhangX. HeW. TanH. Resveratrol as a novel agent for treatment of multiple myeloma with matrix metalloproteinase inhibitory activity.Acta Pharmacol. Sin.200627111447145210.1111/j.1745‑7254.2006.00343.x17049120
    [Google Scholar]
  53. JazirehiA.R. BonavidaB. Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin’s lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis.Mol. Cancer Ther.200431718410.1158/1535‑7163.71.3.114749477
    [Google Scholar]
  54. ZhangL. MartinG. MohankumarK. HamptonJ.T. LiuW.R. SafeS. Resveratrol binds nuclear receptor 4a1 (nr4a1) and acts as an nr4a1 antagonist in lung cancer cells.Mol. Pharmacol.20221022809110.1124/molpharm.121.00048135680166
    [Google Scholar]
  55. RojoD. MadridA. MartínS.S. PárragaM. Silva PinhalM.A. VillenaJ. Valenzuela-ValderramaM. Resveratrol decreases the invasion potential of gastric cancer cells.Molecules20222710304710.3390/molecules2710304735630523
    [Google Scholar]
  56. MoW. XuX. XuL. WangF. KeA. WangX. GuoC. Resveratrol inhibits proliferation and induces apoptosis through the hedgehog signaling pathway in pancreatic cancer cell.Pancreatology201111660160910.1159/00033354222301921
    [Google Scholar]
  57. LeeM.H. ChoiB.Y. KunduJ.K. ShinY.K. NaH.K. SurhY.J. Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target.Cancer Res.200969187449745810.1158/0008‑5472.CAN‑09‑126619738051
    [Google Scholar]
  58. TsaiY.F. LiuF.C. LauY.T. YuH.P. Role of Akt-dependent pathway in resveratrol-mediated cardioprotection after trauma-hemorrhage.J. Surg. Res.2012176117117710.1016/j.jss.2011.05.03921764074
    [Google Scholar]
  59. XiaN. DaiberA. FörstermannU. LiH. Antioxidant effects of resveratrol in the cardiovascular system.Br. J. Pharmacol.2017174121633164610.1111/bph.1349227058985
    [Google Scholar]
  60. ZhangW. QianS. TangB. KangP. ZhangH. ShiC. Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation.J. Cell. Mol. Med.202327203075308910.1111/jcmm.1787437487007
    [Google Scholar]
  61. MaE. WuC. ChenJ. WoD. RenD. YanH. PengL. ZhuW. Resveratrol prevents Ang II-induced cardiac hypertrophy by inhibition of NF-κB signaling.Biomed. Pharmacother.202316511527510.1016/j.biopha.2023.11527537541173
    [Google Scholar]
  62. Treviño-SaldañaN. García-RivasG. Regulation of Sirtuinmediated protein deacetylation by cardioprotective phytochemicals.Oxid. Med. Cell. Longev.201720171175030610.1155/2017/175030629234485
    [Google Scholar]
  63. BritoV.B. NascimentoL.V.M. MouraD.J. SaffiJ. Cardioprotective effect of maternal supplementation with resveratrol on toxicity induced by doxorubicin in offspring cardiomyocytes.Arq. Bras. Cardiol.202111761147115810.36660/abc.20200752
    [Google Scholar]
  64. RibaA. DeresL. SumegiB. TothK. SzabadosE. HalmosiR. Cardioprotective effect of resveratrol in a postinfarction heart failure model.Oxid. Med. Cell. Longev.201720171681928110.1155/2017/681928129109832
    [Google Scholar]
  65. KitadaM. KumeS. ImaizumiN. KoyaD. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway.Diabetes201160263464310.2337/db10‑038621270273
    [Google Scholar]
  66. KimM.Y. LimJ.H. YounH.H. HongY.A. YangK.S. ParkH.S. ChungS. KohS.H. ShinS.J. ChoiB.S. KimH.W. KimY.S. LeeJ.H. ChangY.S. ParkC.W. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK–SIRT1–PGC1α axis in db/db mice.Diabetologia201356120421710.1007/s00125‑012‑2747‑223090186
    [Google Scholar]
  67. SadiG. ŞahinG. BostanciA. Modulation of Renal Insulin Signaling Pathway and Antioxidant Enzymes with Streptozotocin-Induced Diabetes: Effects of Resveratrol.Medicina (Kaunas)2018551310.3390/medicina5501000330602713
    [Google Scholar]
  68. SadiG. KonatD. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocin-induced diabetic rats.Pharm. Biol.20155471810.3109/13880209.2015.105631126079852
    [Google Scholar]
  69. QuanY. HuaS. LiW. ZhanM. LiY. LuL. Resveratrol bidirectionally regulates insulin effects in skeletal muscle through alternation of intracellular redox homeostasis.Life Sci.202024211718810.1016/j.lfs.2019.11718831863772
    [Google Scholar]
  70. GongL. GuoS. ZouZ. Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice.Life Sci.202024211721210.1016/j.lfs.2019.11721231884092
    [Google Scholar]
  71. LiuJ. YiL. XiangZ. ZhongJ. ZhangH. SunT. Resveratrol attenuates spinal cord injury-induced inflammatory damage in rat lungs.Int. J. Clin. Exp. Pathol.2015821237124625973008
    [Google Scholar]
  72. HuoY. YangD. LaiK. TuJ. ZhuY. DingW. YangS. Antioxidant effects of resveratrol in intervertebral disk.J. Invest. Surg.20223551135114410.1080/08941939.2021.198877134670455
    [Google Scholar]
  73. AtesO. CayliS.R. YucelN. AltinozE. KocakA. DurakM.A. TurkozY. YologluS. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats.J. Clin. Neurosci.200714325626010.1016/j.jocn.2005.12.01017258134
    [Google Scholar]
  74. GrabowskaA.D. WątrobaM. WitkowskaJ. MikulskaA. SepúlvedaN. SzukiewiczD. Interplay between systemic glycemia and neuroprotective activity of resveratrol in modulating astrocyte SIRT1 response to neuroinflammation.Int. J. Mol. Sci.202324141164010.3390/ijms24141164037511397
    [Google Scholar]
  75. KomorowskaJ. WątrobaM. BednarzakM. GrabowskaA.D. SzukiewiczD. Anti-inflammatory action of resveratrol in the central nervous system in relation to glucose concentration: An in vitro study on a blood–brain barrier model.Int. J. Mol. Sci.2024256311010.3390/ijms2506311038542084
    [Google Scholar]
  76. KomorowskaJ. WątrobaM. BednarzakM. GrabowskaA.D. SzukiewiczD. The role of glucose concentration and resveratrol in modulating neuroinflammatory cytokines: Insights from an in vitro blood–brain barrier model.Med. Sci. Monit.202329e94104410.12659/MSM.94104437817396
    [Google Scholar]
  77. LiuC. ZhangR. YangL. JiT. ZhuC. LiuB. ZhangH. XuC. ZhangN. HuangS. ChenL. Neuroprotection of resveratrol against cadmium-poisoning acts through dual inhibition of mTORC1/2 signaling.Neuropharmacology202221910923610.1016/j.neuropharm.2022.10923636049535
    [Google Scholar]
  78. BhattS.R. LokhandwalaM.F. BandayA.A. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats.Eur. J. Pharmacol.20116671-325826410.1016/j.ejphar.2011.05.02621640096
    [Google Scholar]
  79. XiaN. FörstermannU. LiH. Effects of resveratrol on eNOS in the endothelium and the perivascular adipose tissue.Ann. N. Y. Acad. Sci.20171403113214110.1111/nyas.1339728672425
    [Google Scholar]
  80. RushJ.W.E. QuadrilateroJ. LevyA.S. FordR.J. Chronic resveratrol enhances endothelium-dependent relaxation but does not alter eNOS levels in aorta of spontaneously hypertensive rats.Exp. Biol. Med. (Maywood)2007232681482210.3181/00379727‑232‑232081417526774
    [Google Scholar]
  81. MukaiY. SatoS. Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension.Nutr. Metab. Cardiovasc. Dis.200919749149710.1016/j.numecd.2008.09.00719157815
    [Google Scholar]
  82. LuY. ZhangL. WangC. GongC. Comparison of the antihypertensive effects of folic acid and resveratrol in spontaneously hypertensive rats combined with hyperhomocysteinemia.SAGE Open Med.2023112050312123122081310.1177/2050312123122081338144881
    [Google Scholar]
  83. JangI.A. KimE.N. LimJ.H. KimM.Y. BanT.H. YoonH.E. ParkC.W. ChangY.S. ChoiB.S. Effects of resveratrol on the renin-angiotensin system in the aging kidney.Nutrients20181011174110.3390/nu1011174130424556
    [Google Scholar]
  84. KimE.N. KimM.Y. LimJ.H. KimY. ShinS.J. ParkC.W. KimY.S. ChangY.S. YoonH.E. ChoiB.S. The protective effect of resveratrol on vascular aging by modulation of the renin–angiotensin system.Atherosclerosis201827012313110.1016/j.atherosclerosis.2018.01.04329407880
    [Google Scholar]
  85. HosseiniH. TeimouriM. ShabaniM. KoushkiM. Babaei KhorzoughiR. NamvarjahF. IzadiP. MeshkaniR. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway.Int. J. Biochem. Cell Biol.202011910566710.1016/j.biocel.2019.10566731838177
    [Google Scholar]
  86. HamadiN. MansourA. HassanM.H. Khalifi-TouhamiF. BadaryO. Ameliorative effects of resveratrol on liver injury in streptozotocin‐induced diabetic rats.J. Biochem. Mol. Toxicol.2012261038439210.1002/jbt.2143222791351
    [Google Scholar]
  87. SadiG. PektaşM.B. KocaH.B. TosunM. KocaT. Resveratrol improves hepatic insulin signaling and reduces the inflammatory response in streptozotocin-induced diabetes.Gene2015570221322010.1016/j.gene.2015.06.01926071184
    [Google Scholar]
  88. LiuF.C. TsaiY.F. TsaiH.I. YuH.P. Anti-Inflammatory and organ-protective effects of resveratrol in trauma-hemorrhagic injury.Mediators Inflamm.20152015164376310.1155/2015/64376326273141
    [Google Scholar]
  89. XianY. GaoY. LvW. MaX. HuJ. ChiJ. WangW. WangY. Resveratrol prevents diabetic nephropathy by reducing chronic inflammation and improving the blood glucose memory effect in non-obese diabetic mice.Naunyn Schmiedebergs Arch. Pharmacol.2020393102009201710.1007/s00210‑019‑01777‑131970441
    [Google Scholar]
  90. PanaroM.A. CarofiglioV. AcquafreddaA. CavalloP. CianciulliA. Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-κB activation in Caco-2 and SW480 human colon cancer cells.Br. J. Nutr.201210891623163210.1017/S000711451100722722251620
    [Google Scholar]
  91. CarlucciC.D. HuiY. ChumanevichA.P. RobidaP.A. FuselerJ.W. SajishM. NagarkattiP. NagarkattiM. OskeritzianC.A. Resveratrol protects against skin inflammation through inhibition of mast cell, sphingosine kinase-1, Stat3 and NF-κB p65 signaling activation in mice.Int. J. Mol. Sci.2023247670710.3390/ijms2407670737047680
    [Google Scholar]
  92. ZhaoH. MeiX. YangD. TuG. Resveratrol inhibits inflammation after spinal cord injury via SIRT-1/NF-κB signaling pathway.Neurosci. Lett.202176213615110.1016/j.neulet.2021.13615134352338
    [Google Scholar]
  93. YuanB. LuoS. FengL. WangJ. MaoJ. LuoB. Resveratrol regulates the inflammation and oxidative stress of granulosa cells in PCOS via targeting TLR2.J. Bioenerg. Biomembr.202254419120110.1007/s10863‑022‑09942‑735836030
    [Google Scholar]
  94. AlvarengaL. SaldanhaJ.F. Stockler-PintoM.B. FouqueD. SoulageC.O. MafraD. Effects of resveratrol on inflammation and oxidative stress induced by the uremic toxin indoxyl sulfate in Murine macrophage-like RAW 264.7.Biochimie2023213222910.1016/j.biochi.2023.05.00137142118
    [Google Scholar]
  95. TshivhaseA.M. MatshaT. RaghubeerS. Resveratrol attenuates high glucose-induced inflammation and improves glucose metabolism in HepG2 cells.Sci. Rep.2024141110610.1038/s41598‑023‑50084‑638212345
    [Google Scholar]
  96. HurleyL.L. AkinfiresoyeL. KalejaiyeO. TizabiY. Antidepressant effects of resveratrol in an animal model of depression.Behav. Brain Res.20142681710.1016/j.bbr.2014.03.05224717328
    [Google Scholar]
  97. AliS.H. MadhanaR.M. K vA. KasalaE.R. BodduluruL.N. PittaS. MahareddyJ.R. LahkarM. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice.Steroids2015101374210.1016/j.steroids.2015.05.01026048446
    [Google Scholar]
  98. Demirtas SahinT. GöçmezS.S. EraldemirF.C. UtkanT. Anxiolytic-like and antidepressant-like effects of resveratrol in streptozotocin-induced diabetic rats.Noro Psikiyatri Arsivi201856214414910.29399/npa.2317631223249
    [Google Scholar]
  99. ShuklaP. AkotkarL. AswarU. Resveratrol attenuates early life stress induced depression in rats: Behavioural and neurochemical evidence.Neurosci. Lett.202482013760610.1016/j.neulet.2023.13760638110147
    [Google Scholar]
  100. ZhangJ. LiR. ManK. YangX.B. Enhancing osteogenic potential of hDPSCs by resveratrol through reducing oxidative stress via the Sirt1/Nrf2 pathway.Pharm. Biol.202260150150810.1080/13880209.2022.203766435188840
    [Google Scholar]
  101. JiangY. LuoW. WangB. WangX. GongP. XiongY. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice.Life Sci.202024611742210.1016/j.lfs.2020.11742232057903
    [Google Scholar]
  102. CheonY KimH SuhY HurJ.H. JoW. HahY.S. SungM.J. KwonD.Y. LeeS. Inhibitory effects for rheumatoid arthritis of dietary supplementation with resveratrol in collagen-induced arthritisJ Rheum Dis20152229310110.4078/jrd.2015.22.2.93
    [Google Scholar]
  103. MaroufB.H. HussainS.A. AliZ.S. AhmmadR.S. Resveratrol supplementation reduces pain and inflammation in knee osteoarthritis patients treated with meloxicam: A randomized placebocontrolled study.J. Med. Food201821121253125910.1089/jmf.2017.417630160612
    [Google Scholar]
  104. CaldeiraC.A. SantosM.A. AraújoG.R. LaraR.C. FrancoF.N. ChavesM.M. Resveratrol: Change of SIRT 1 and AMPK signaling pattern during the aging process.Exp. Gerontol.202114611122610.1016/j.exger.2021.11122633444643
    [Google Scholar]
  105. Torregrosa-MuñumerR. VaraE. Fernández-TresguerresJ.Á. GredillaR. Resveratrol supplementation at old age reverts changes associated with aging in inflammatory, oxidative and apoptotic markers in rat heart.Eur. J. Nutr.20216052683269310.1007/s00394‑020‑02457‑033386891
    [Google Scholar]
  106. LeisK. PisankoK. JundziłłA. MazurE. Męcińska-JundziłłK. WitmanowskiH. Resveratrol as a factor preventing skin aging and affecting its regeneration.Postepy Dermatol. Alergol.202239343944510.5114/ada.2022.11754735950117
    [Google Scholar]
  107. KimJ. OhJ. AverillaJ.N. KimH.J. KimJ.S. KimJ.S. Grape peel extract and resveratrol inhibit wrinkle formation in mice model through activation of Nrf2/HO-1 signaling pathway.J. Food Sci.20198461600160810.1111/1750‑3841.1464331132143
    [Google Scholar]
  108. BooY.C. Human skin lightening efficacy of resveratrol and its analogs: From in vitro studies to cosmetic applications.Antioxidants20198933210.3390/antiox809033231443469
    [Google Scholar]
  109. WuY. JiaL.L. ZhengY.N. XuX.G. LuoY.J. WangB. ChenJ.Z.S. GaoX.H. ChenH.D. MatsuiM. LiY.H. Resveratrate protects human skin from damage due to repetitive ultraviolet irradiation.J. Eur. Acad. Dermatol. Venereol.201327334535010.1111/j.1468‑3083.2011.04414.x22221158
    [Google Scholar]
  110. ShrotriyaS.N. RanpiseN.S. VidhateB.V. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis.Drug Deliv. Transl. Res.201771375210.1007/s13346‑016‑0350‑727981502
    [Google Scholar]
  111. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  112. MachadoN.D. FernándezM.A. DíazD.D. Recent strategies in resveratrol delivery systems.ChemPlusChem201984795197310.1002/cplu.20190026731943987
    [Google Scholar]
  113. SantosA.C. VeigaF. RibeiroA.J. New delivery systems to improve the bioavailability of resveratrol.Expert Opin. Drug Deliv.20118897399010.1517/17425247.2011.58165521668403
    [Google Scholar]
  114. GaliniakS. AebisherD. Bartusik-AebisherD. Health benefits of resveratrol administration.Acta Biochim. Pol.2019661132110.18388/abp.2018_274930816367
    [Google Scholar]
  115. KalitaB. DasM.K. SarmaM. DekaA. Sustained antiinflammatory effect of resveratrol-phospholipid complex embedded polymeric patch.AAPS PharmSciTech201718362964510.1208/s12249‑016‑0542‑y27173988
    [Google Scholar]
  116. El-FarS.W. HelmyM.W. KhattabS.N. BekhitA.A. HusseinA.A. ElzoghbyA.O. Folate conjugated vs PEGylated phytosomal casein nanocarriers for codelivery of fungal- and herbal-derived anticancer drugs.Nanomedicine (Lond.)201813121463148010.2217/nnm‑2018‑000629957120
    [Google Scholar]
  117. FriedrichR.B. KannB. CoradiniK. OfferhausH.L. BeckR.C.R. WindbergsM. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin.Eur. J. Pharm. Sci.20157820421310.1016/j.ejps.2015.07.01826215463
    [Google Scholar]
  118. BhalS. DasB. SinhaS. DasC. AcharyaS.S. MajiJ. KunduC.N. Resveratrol nanoparticles induce apoptosis in oral cancer stem cells by disrupting the interaction between β-catenin and GLI-1 through p53-independent activation of p21.Med. Oncol.202441716710.1007/s12032‑024‑02405‑638831079
    [Google Scholar]
  119. ZuY. ZhangY. WangW. ZhaoX. HanX. WangK. GeY. Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles.Drug Deliv.201623397198110.3109/10717544.2014.92416724918466
    [Google Scholar]
  120. NastitiC.M.R.R. PontoT. MohammedY. RobertsM.S. BensonH.A.E. Novel nanocarriers for targeted topical skin delivery of the antioxidant resveratrol.Pharmaceutics202012210810.3390/pharmaceutics1202010832013204
    [Google Scholar]
  121. SharmaB. IqbalB. KumarS. AliJ. BabootaS. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement.Arch. Dermatol. Res.20193111077379310.1007/s00403‑019‑01964‑331432208
    [Google Scholar]
  122. Gonzalez-PerezJ. Lopera-EchavarríaA.M. Arevalo-AlquichireS. Araque-MarínP. LondoñoM.E. Development of a resveratrol nanoformulation for the treatment of diabetic retinopathy.Materials2024176142010.3390/ma1706142038541574
    [Google Scholar]
  123. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.00318992314
    [Google Scholar]
  124. JungK.H. LeeJ.H. ParkJ.W. QuachC.H.T. MoonS.H. ChoY.S. LeeK.H. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo.Int. J. Pharm.2015478125125710.1016/j.ijpharm.2014.11.04925445992
    [Google Scholar]
  125. ParkS. ChaS.H. ChoI. ParkS. ParkY. ChoS. ParkY. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles.Mater. Sci. Eng. C2016581160116910.1016/j.msec.2015.09.06826478416
    [Google Scholar]
  126. JhaveriA. DeshpandeP. PattniB. TorchilinV. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma.J. Control. Release20182778910110.1016/j.jconrel.2018.03.00629522834
    [Google Scholar]
  127. GuY. FeiZ. Mesoporous silica nanoparticles loaded with resveratrol are used for targeted breast cancer therapy.J. Oncol.2022202211110.1155/2022/847133136245986
    [Google Scholar]
  128. ShamsherE. KhanR.S. DavisB.M. DineK. LuongV. CordeiroM.F. ShindlerK.S. Intranasal resveratrol nanoparticles enhance neuroprotection in a model of multiple sclerosis.Int. J. Mol. Sci.2024257404710.3390/ijms2507404738612856
    [Google Scholar]
  129. ShamsherE. KhanR.S. DavisB.M. DineK. LuongV. SomavarapuS. CordeiroM.F. ShindlerK.S. Nanoparticles enhance solubility and neuroprotective effects of resveratrol in demyelinating disease.Neurotherapeutics20232041138115310.1007/s13311‑023‑01378‑037160530
    [Google Scholar]
  130. KimJ.H. ParkE.Y. HaH.K. JoC.M. LeeW.J. LeeS.S. KimJ.W. Resveratrol-loaded nanoparticles induce antioxidant activity against oxidative stress.Asian-Australas. J. Anim. Sci.201629228829810.5713/ajas.15.077426732454
    [Google Scholar]
  131. ThipeV.C. AmiriK.P. BloebaumP. RaphaelA.K. KhoobchandaniM. KattiK.K. JurissonS.S. KattiK.V. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers.Int. J. Nanomedicine2019144413442810.2147/IJN.S20444331417252
    [Google Scholar]
  132. Karimi-SoflouR. Mohseni-VadeghaniE. KarkhanehA. Controlled release of resveratrol from a composite nanofibrous scaffold: Effect of resveratrol on antioxidant activity and osteogenic differentiation.J. Biomed. Mater. Res. A20221101213010.1002/jbm.a.3726234228402
    [Google Scholar]
  133. YiJ. HeQ. PengG. FanY. Improved water solubility, chemical stability, antioxidant and anticancer activity of resveratrol via nanoencapsulation with pea protein nanofibrils.Food Chem.202237713194210.1016/j.foodchem.2021.13194234990943
    [Google Scholar]
  134. LiC. WangN. ZhengG. YangL. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota.ACS Appl. Mater. Interfaces20211339464064642010.1021/acsami.1c1481834569225
    [Google Scholar]
  135. KatilaN. DuwaR. BhurtelS. KhanalS. MaharjanS. JeongJ.H. LeeS. ChoiD.Y. YookS. Enhancement of blood–brain barrier penetration and the neuroprotective effect of resveratrol.J. Control. Release202234611910.1016/j.jconrel.2022.04.003
    [Google Scholar]
  136. SunL. HuY. MishraA. SreeharshaN. MoktanJ.B. KumarP. WangL. Protective role of poly(lactic‐co‐glycolic) acid nanoparticle loaded with resveratrol against isoproterenol‐induced myocardial infarction.Biofactors202046342143110.1002/biof.161131926035
    [Google Scholar]
  137. GuoW. LiA. JiaZ. YuanY. DaiH. LiH. Transferrin modified PEG-PLA-resveratrol conjugates: In vitro and in vivo studies for glioma.Eur. J. Pharmacol.20137181-3414710.1016/j.ejphar.2013.09.03424070814
    [Google Scholar]
  138. LinM. YaoW. XiaoY. DongZ. HuangW. ZhangF. ZhouX. LiangM. Resveratrol-modified mesoporous silica nanoparticle for tumor-targeted therapy of gastric cancer.Bioengineered20211216343635310.1080/21655979.2021.197150734506231
    [Google Scholar]
  139. ZingaleE. BonaccorsoA. D’AmicoA.G. LombardoR. D’AgataV. RautioJ. PignatelloR. Formulating resveratrol and melatonin self-nanoemulsifying drug delivery systems (SNEDDS) for ocular administration using design of experiments.Pharmaceutics202416112510.3390/pharmaceutics1601012538258134
    [Google Scholar]
  140. KishawyA.T.Y. IbrahimD. RoushdyE.M. MoustafaA. EldemeryF. HusseinE.M. HassanF.A.M. ElazabS.T. ElabbasyM.T. KanwalR. KamelW.M. AtteyaM.R. ZagloolA.W. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors.Front. Vet. Sci.202310113789610.3389/fvets.2023.113789637056226
    [Google Scholar]
  141. MohanA. NarayananS. SethuramanS. KrishnanU.M. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma.BioMed Res. Int.2014201411410.1155/2014/42423925114900
    [Google Scholar]
  142. ZhangX. ChenS. LuoD. ChenD. ZhouH. ZhangS. ChenX. LuW. LiuW. Systematic study of resveratrol nanoliposomes transdermal delivery system for enhancing antiaging and skin-brightening efficacy.Molecules2023286273810.3390/molecules2806273836985709
    [Google Scholar]
  143. DanaP. ThumrongsiriN. TanyapanyachonP. ChonniyomW. PunnakitikashemP. SaengkritN. Resveratrol loaded liposomes disrupt cancer associated fibroblast communications within the tumor microenvironment to inhibit colorectal cancer aggressiveness.Nanomaterials202213110710.3390/nano1301010736616017
    [Google Scholar]
  144. PandeyS. ShamimA. ShaifM. KushwahaP. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer.Naunyn Schmiedebergs Arch. Pharmacol.202339681811182510.1007/s00210‑023‑02441‑536862150
    [Google Scholar]
  145. CaddeoC. LucchesiD. Fernàndez-BusquetsX. ValentiD. PennoG. FaddaA.M. PucciL. Efficacy of a resveratrol nanoformulation based on a commercially available liposomal platform.Int. J. Pharm.202160812108610.1016/j.ijpharm.2021.12108634530099
    [Google Scholar]
  146. CaddeoC. GabrieleM. NácherA. Fernàndez-BusquetsX. ValentiD. Maria FaddaA. PucciL. ManconiM. Resveratrol and artemisinin eudragit-coated liposomes: A strategy to tackle intestinal tumors.Int. J. Pharm.202159212008310.1016/j.ijpharm.2020.12008333197563
    [Google Scholar]
  147. ZhangL. LinZ. ChenY. GaoD. WangP. LinY. WangY. WangF. HanY. YuanH. Co-delivery of Docetaxel and Resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer.Eur. J. Pharm. Sci.202217410619910.1016/j.ejps.2022.10619935533965
    [Google Scholar]
  148. HouJ. XiongW. ShaoX. LongL. ChangY. ChenG. WangL. WangZ. HuangY. Liposomal resveratrol alleviates platelet storage lesion via antioxidation and the physical buffering effect.ACS Appl. Mater. Interfaces20231539456584566710.1021/acsami.3c0993537729093
    [Google Scholar]
  149. VanajaK. WahlM.A. BukaricaL. HeinleH. Liposomes as carriers of the lipid soluble antioxidant resveratrol: Evaluation of amelioration of oxidative stress by additional antioxidant vitamin.Life Sci.2013932491792310.1016/j.lfs.2013.10.01924177602
    [Google Scholar]
  150. ZhaoY.N. CaoY.N. SunJ. LiangZ. WuQ. CuiS.H. ZhiD.F. GuoS.T. ZhenY.H. ZhangS.B. Anti-breast cancer activity of resveratrol encapsulated in liposomes.J. Mater. Chem. B Mater. Biol. Med.202081273710.1039/C9TB02051A31746932
    [Google Scholar]
  151. JagwaniS. JalalpureS. DhamechaD. JadhavK. BoharaR. Pharmacokinetic and pharmacodynamic evaluation of resveratrol loaded cationic liposomes for targeting hepatocellular carcinoma.ACS Biomater. Sci. Eng.2020694969498410.1021/acsbiomaterials.0c0042933455290
    [Google Scholar]
  152. ScaliaS. TrottaV. IannuccelliV. BianchiA. Enhancement of in vivo human skin penetration of resveratrol by chitosan-coated lipid microparticles.Colloids Surf. B Biointerfaces2015135424910.1016/j.colsurfb.2015.07.04326241915
    [Google Scholar]
  153. ZhuW.T. ZengX.F. YangH. JiaM.L. ZhangW. LiuW. LiuS.Y. Resveratrol loaded by folate-modified liposomes inhibits osteosarcoma growth and lung metastasis via regulating JAK2/STAT3 pathway.Int. J. Nanomedicine2023182677269110.2147/IJN.S39804637228445
    [Google Scholar]
  154. JøraholmenM.W. Škalko-BasnetN. AcharyaG. BasnetP. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections.Eur. J. Pharm. Sci.20157911212110.1016/j.ejps.2015.09.00726360840
    [Google Scholar]
  155. ChenJ. LiuQ. WangY. GuoY. XuX. HuangP. LianB. ZhangR. ChenY. HaY. Protective effects of resveratrol liposomes on mitochondria in substantia nigra cells of parkinsonized rats.Ann. Palliat. Med.20211032458246810.21037/apm‑19‑42633549012
    [Google Scholar]
  156. CaddeoC. NacherA. VassalloA. ArmentanoM.F. PonsR. Fernàndez-BusquetsX. CarboneC. ValentiD. FaddaA.M. ManconiM. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer.Int. J. Pharm.20165131-215316310.1016/j.ijpharm.2016.09.01427609664
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968347682250110051811
Loading
/content/journals/ccb/10.2174/0122127968347682250110051811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test