Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

The most common Inflammatory Bowel Diseases (IBD) affecting the gastrointestinal system are Crohn's disease and ulcerative colitis. However, the usual therapies for them are associated with a multitude of side effects. The blue-green microalgae is known for its safety profile, nutritional, and medicinal properties in the treatment of different inflammatory and gastrointestinal disorders.

Objective

The objective of this study was to investigate the potential intestinal anti-inflammatory effects of the aqueous extract derived from (AAP) in a mouse model of DNBS-induced colitis.

Methods

GC-MS and FTIR-ATR were used to determine the different types of chemical compounds found in the AAP extract. BALB/c mice that received DNBS intrarectally were treated with three doses (50, 100 and 200 mg/kg) of AAP for three days. The inflammatory status was assessed daily using a Disease Activity Index (DAI). Mice were sacrificed on the third day, and the extent of colonic damage was evaluated through both macroscopic and histological examinations. Finally, biochemical assays of different markers (MDA, NO, and GSH) were performed.

Results

The GC-MS analysis revealed the presence of eleven bioactive compounds, including 2-thiophenecarboxylic acid, 2-biphenyl ester, palmitic acid, 2-linoleoyl glycerol, ethyl isoallocholate, and methyl palmitate. In addition, FTIR spectroscopy revealed the presence of amino, hydroxyl, and glucosidic groups. The treatment of colitic mice with AAP decreased the severity of colitis, as demonstrated by the improvement in the clinical score and the reduction of colonic tissue damage, as well as the modulation of the local biochemical marker levels.

Conclusion

The AAP effectively improves DNBS-induced colitis, but its short treatment duration and focus on acute colitis highlight the need for further research on long-term and chronic effects.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968320045240927120032
2024-12-01
2025-09-29
Loading full text...

Full text loading...

References

  1. ZhangY.Z. LiY-Y. Inflammatory bowel disease: Pathogenesis.World J. Gastroenterol.2014201919910.3748/wjg.v20.i1.9124415861
    [Google Scholar]
  2. GuanQ. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease.J. Immunol. Res.2019201911610.1155/2019/724723831886308
    [Google Scholar]
  3. ArdizzoneA. FilipponeA. ManninoD. ScuderiS.A. CasiliG. LanzaM. CucinottaL. CampoloM. EspositoE. Ulva pertusa, a Marine Green Alga, Attenuates DNBS-Induced Colitis Damage via NF-κB/Nrf2/SIRT1 Signaling Pathways.J. Clin. Med.20221115430110.3390/jcm1115430135893393
    [Google Scholar]
  4. LoddoI. RomanoC. Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis.Front. Immunol.2015655110.3389/fimmu.2015.0055126579126
    [Google Scholar]
  5. BribiN. Rodríguez-NogalesA. VezzaT. AlgieriF. Rodriguez-CabezasM.E. Garrido-MesaJ. GálvezJ. Intestinal anti-inflammatory activity of the total alkaloid fraction from Fumaria capreolata in the DSS model of colitis in mice.Bioorg. Med. Chem. Lett.2020301812741410.1016/j.bmcl.2020.12741432717615
    [Google Scholar]
  6. McDowellC. FarooqU. HaseebM. Inflammatory Bowel Disease.StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  7. SinghN. BernsteinC.N. Environmental risk factors for inflammatory bowel disease.United European Gastroenterol. J.202210101047105336262056
    [Google Scholar]
  8. CaiZ. WangS. LiJ. Treatment of Inflammatory Bowel Disease: A Comprehensive Review.Front. Med. (Lausanne)2021876547410.3389/fmed.2021.76547434988090
    [Google Scholar]
  9. CurkovicI. EgbringM. Kullak-UblickG.A. Risks of inflammatory bowel disease treatment with glucocorticosteroids and aminosalicylates.Dig. Dis.2013313-436837310.1159/00035469924246990
    [Google Scholar]
  10. D’HaensG. Systematic review: second‐generation vs. conventional corticosteroids for induction of remission in ulcerative colitis.Aliment. Pharmacol. Ther.201644101018102910.1111/apt.1380327650488
    [Google Scholar]
  11. BaumgartD.C. SandbornW.J. Inflammatory bowel disease: clinical aspects and established and evolving therapies.Lancet200736995731641165710.1016/S0140‑6736(07)60751‑X17499606
    [Google Scholar]
  12. ZenleaT. PeppercornM.A. Immunosuppressive therapies for inflammatory bowel disease.World J. Gastroenterol.201420123146315210.3748/wjg.v20.i12.314624696600
    [Google Scholar]
  13. ZhouY. WangD. YanW. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments.Nutrients2023154103110.3390/nu1504103136839389
    [Google Scholar]
  14. AroraA. SharmaN. SharmaA. Role of Fruit-Derived Natural Polysaccharide in Ulcerative Colitis.http://www.eurekaselect.com10.2174/1573401319666230816151001
    [Google Scholar]
  15. SharmaS. SharmaN. SharmaA. KurmiB.D. KhannaK. KarwasraR. SinghA.K. ChaudharyA. Amelioration of experimental colitis by a site-specific novel plant polysaccharide (Opuntia ficusindica) based macroparticles contains probiotic biomass and mesalazine.J. Drug Deliv. Sci. Technol.20238610476310.1016/j.jddst.2023.104763
    [Google Scholar]
  16. SinetovaM.A. KupriyanovaE.V. LosD.A. Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism.Foods20241317276210.3390/foods13172762
    [Google Scholar]
  17. DillonJ.C. PhucA.P. DubacqJ.P. Nutritional value of the alga Spirulina.World Rev. Nutr. Diet.199577324610.1159/0004244647732699
    [Google Scholar]
  18. Hutadilok-TowatanaN. ReanmongkolW. PanichayupakaranantP. Evaluation of the toxicity of Arthrospira (Spirulina) platensis extract.J. Appl. Phycol.201022559960510.1007/s10811‑009‑9499‑5
    [Google Scholar]
  19. JungC.H.G. BrauneS. WaldeckP. KüpperJ.H. PetrickI. JungF. Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor.Life (Basel)202111653610.3390/life1106053634207508
    [Google Scholar]
  20. CuffaroD. DigiacomoM. MacchiaM. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation.Nutrients20231523496610.3390/nu1523496638068824
    [Google Scholar]
  21. GentschevaG. NikolovaK. PanayotovaV. PeychevaK. MakedonskiL. SlavovP. RadushevaP. PetrovaP. YotkovskaI. Application of Arthrospira platensis for Medicinal Purposes and the Food Industry: A Review of the Literature.Life (Basel)202313384510.3390/life1303084536984000
    [Google Scholar]
  22. PiovanA. FilippiniR. ArgentiniC. MoroS. GiustiP. ZussoM. The Effect of C-Phycocyanin on Microglia Activation Is Mediated by Toll-like Receptor 4.Int. J. Mol. Sci.2022233144010.3390/ijms2303144035163363
    [Google Scholar]
  23. LiY. The Bioactivities of Phycocyanobilin from Spirulina.J. Immunol. Res.20222022400899135726224
    [Google Scholar]
  24. GroverP. BhatnagarA. KumariN. Narayan BhattA. Kumar NishadD. PurkayasthaJ. C-Phycocyanin-a novel protein from Spirulina platensis- In vivo toxicity, antioxidant and immunomodulatory studies.Saudi J. Biol. Sci.20212831853185910.1016/j.sjbs.2020.12.03733732072
    [Google Scholar]
  25. JensenG.S. DrapeauC. LenningerM. BensonK.F. Clinical safety of a high dose of phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis : Results from a randomized, double-blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation.J. Med. Food201619764565310.1089/jmf.2015.014327362442
    [Google Scholar]
  26. BigagliE. CinciL. NiccolaiA. TrediciM.R. BiondiN. RodolfiL. LodoviciM. D’AmbrosioM. MoriG. LuceriC. Safety evaluations and lipid-lowering activity of an Arthrospira platensis enriched diet: A 1-month study in rats.Food Res. Int.201710238038610.1016/j.foodres.2017.09.01129195962
    [Google Scholar]
  27. Abdel-DaimM.M. FaroukS.M. MadkourF.F. AzabS.S. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis.Immunopharmacol. Immunotoxicol.201537212613910.3109/08923973.2014.99836825567297
    [Google Scholar]
  28. CoskunZ.K. KeremM. GurbuzN. OmerogluS. PasaogluH. DemirtasC. LortlarN. SalmanB. PasaogluO.T. TurgutH.B. The study of biochemical and histopathological effects of spirulina in rats with TNBS-induced colitis.Bratisl. Lek Listy2011112523524321682075
    [Google Scholar]
  29. GarciaF.A.O. Sales-CamposH. YuenV.G. MachadoJ.R. VianaG.S.B. OliveiraC.J.F. McNeillJ.H. Arthrospira Spirulina platensis attenuates dextran sulfate sodium-induced colitis in mice by suppressing key pro-inflammatory cytokines.Korean J. Gastroenterol.202076315015810.4166/kjg.2020.76.3.150
    [Google Scholar]
  30. MorsyM.A. GuptaS. NairA.B. VenugopalaK.N. GreishK. El-DalyM. Protective effect of Spirulina platensis extract against dextran-sulfate-sodium-induced ulcerative colitis in rats.Nutrients20191110230910.3390/nu1110230931569451
    [Google Scholar]
  31. SbD. Phytochemical screening and antibacterial activity of crude extracts of spirulina species isolated from lonar lake.Int. J. Res. Pharm. Pharm. Sci.201834347
    [Google Scholar]
  32. NirmalS.A. DhikaleR.S. GirmeA.S. PalS.C. MandalS.C. Potential of the plant Thespesia populnea in the treatment of ulcerative colitis.Pharm. Biol.20155391379138510.3109/13880209.2014.98230225858438
    [Google Scholar]
  33. AlgieriF. Rodriguez-NogalesA. Garrido-MesaN. ZorrillaP. BurkardN. PischelI. SieversH. BenedekB. FeistelB. WalbroelB. Rodriguez-CabezasM.E. GalvezJ. Intestinal anti-inflammatory activity of the Serpylli herba extract in experimental models of rodent colitis.J. Crohn’s Colitis20148877578810.1016/j.crohns.2013.12.01224411672
    [Google Scholar]
  34. SalunkeA. UpmanyuN. Formulation, development and evaluation of budesonide oral nano-sponges using DOE Approach: In Vivo Evidences.Adv. Pharm. Bull.202111228629433880350
    [Google Scholar]
  35. AnsariM.N. RehmanN.U. KarimA. SolimanG.A. GanaieM.A. RaishM. HamadA.M. Role of oxidative stress and inflammatory cytokines (TNF-α and IL-6) in acetic acid-induced ulcerative colitis in rats: Ameliorated by Otostegia fruticosa. Life (Basel)202111319510.3390/life1103019533802553
    [Google Scholar]
  36. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  37. LiuL. LiuY. CuiJ. LiuH. LiuY-B. QiaoW-L. SunH. YanC-D. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly.World J. Gastroenterol.201319489439944610.3748/wjg.v19.i48.943924409074
    [Google Scholar]
  38. SunJ. ZhangX. BroderickM. FeinH. Measurement of nitric oxide production in biological systems by using griess reaction assay.Sensors20033827628410.3390/s30800276
    [Google Scholar]
  39. DaachiF. Adi-BessalemS. Megdad-LamraouiA. Laraba-DjebariF. Immune-toxicity effects of scorpion venom on the hypothalamic pituitary adrenal axis during rest and activity phases in a rodent model.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202023510878710.1016/j.cbpc.2020.10878732380264
    [Google Scholar]
  40. MerakebM.S. BribiN. FerhatR. AziezM. YanatB. Alkaloids extract from linum usitatissimum attenuates 12-O-Tetradecanoylphorbol-13-Acetate (TPA)-induced inflammation and oxidative stress in mouse skin.Antiinflamm. Antiallergy Agents Med. Chem.20222211
    [Google Scholar]
  41. JollowD.J. MitchellJ.R. ZampaglioneN. GilletteJ.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite.Pharmacology197411315116910.1159/0001364854831804
    [Google Scholar]
  42. SheelaD. UthayakumariF. GC-MS analysis of bioactive constituents from coastal sand dune taxon – Sesuvium portulacastrum (L.).Biosci. Discov.2013414753
    [Google Scholar]
  43. ArsanaI.N. JuliasihN. Ayu Sauca Sunia WidyantariA. SurianiN. MantoA. GC-MS analysis of the active compound in ethanol extracts of white pepper (Piper nigrum L.) and pharmacological effects.Cellular, Molecul. Biomed. Rep.20222315116110.55705/cmbr.2022.351720.1051
    [Google Scholar]
  44. SukhikhS. ProsekovA. IvanovaS. MaslennikovP. AndreevaA. BudenkovaE. KashirskikhE. TcibulnikovaA. ZemliakovaE. SamusevI. BabichO. Identification of metabolites with antibacterial activities by analyzing the FTIR spectra of microalgae.Life2022129139510.3390/life1209139536143431
    [Google Scholar]
  45. ElainA. NkounkouC. Le FellicM. DonnartK. Green extraction of polysaccharides from Arthrospira platensis using high pressure homogenization.J. Appl. Phycol.20203231719172710.1007/s10811‑020‑02127‑y
    [Google Scholar]
  46. PedrosaM. RibeiroR.S. Guerra-RodríguezS. Rodríguez-ChuecaJ. RodríguezE. SilvaA.M.T. ÐolicM. Rita Lado RibeiroA. Spirulina-based carbon bio-sorbent for the efficient removal of metoprolol, diclofenac and other micropollutants from wastewater.Environ. Nanotechnol. Monit. Manag.20221810072010.1016/j.enmm.2022.100720
    [Google Scholar]
  47. AnwarB. KhairunnisaT. SunaryaY. Corrosion inhibition of A516 carbon steel in 0.5 M HCl solution using Arthrospira platensis extract as green inhibitor.Int. J. Corros. Scale Inhib.20209244256
    [Google Scholar]
  48. ErtaniA. NardiS. FranciosoO. Sanchez-CortesS. FoggiaM.D. SchiavonM. Effects of two protein hydrolysates obtained from chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants.Front. Plant Sci.20191095410.3389/fpls.2019.0095431404240
    [Google Scholar]
  49. KumarN. BanerjeeC. KumarN. JagadevanS. A novel non-starch based cationic polymer as flocculant for harvesting microalgae.Bioresour. Technol.201927138339010.1016/j.biortech.2018.09.07330296745
    [Google Scholar]
  50. El-BelelyE.F. FaragM.M.S. SaidH.A. AminA.S. AzabE. GobouriA.A. FoudaA. Green synthesis of zinc oxide nanoparticles (zno-nps) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities.Nanomaterials20211119510.3390/nano1101009533406606
    [Google Scholar]
  51. WéraO. LancellottiP. OuryC. The dual role of neutrophils in inflammatory bowel diseases.J. Clin. Med.201651211810.3390/jcm512011827999328
    [Google Scholar]
  52. HalliwellB. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease.Am. J. Med.1991913S14S2210.1016/0002‑9343(91)90279‑71928205
    [Google Scholar]
  53. GaschlerM.M. StockwellB.R. Lipid peroxidation in cell death.Biochem. Biophys. Res. Commun.2017482341942510.1016/j.bbrc.2016.10.08628212725
    [Google Scholar]
  54. MoncadaS. PalmerR.M. HiggsE.A. Nitric oxide: physiology, pathophysiology, and pharmacology.Pharmacol. Rev.19914321091421852778
    [Google Scholar]
  55. SharmaJ.N. Al-OmranA. ParvathyS.S. Role of nitric oxide in inflammatory diseases.Inflammopharmacology200715625225910.1007/s10787‑007‑0013‑x18236016
    [Google Scholar]
  56. ShangF. LuM. DudekE. ReddanJ. TaylorA. VitaminC. VitaminE. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2.Free Radic. Biol. Med.200334552153010.1016/S0891‑5849(02)01304‑712614841
    [Google Scholar]
  57. YehS.L. ShihY.M. LinM.T. Glutamine and its antioxidative potentials in diabetes.Diabetes.2nd ed PreedyV.R. Academic Press202025526410.1016/B978‑0‑12‑815776‑3.00025‑5
    [Google Scholar]
  58. MehtaS.J. SilverA.R. LindsayJ.O. Review article: strategies for the management of chronic unremitting ulcerative colitis.Aliment. Pharmacol. Ther.2013382779710.1111/apt.1234523718288
    [Google Scholar]
  59. BribiN. MerakebM.S. Boudaoud-OuahmedH. Intestinal anti-inflammatory effects of Linum usitatissimum alkaloid on experimental ulcerative colitis in BALB/c Mice.Curr. Bioact. Compd.2023198e17042321593010.2174/1573407219666230417112912
    [Google Scholar]
  60. HigashiyamaM. HokariR. New and emerging treatments for inflammatory bowel disease.Digestion20231041748110.1159/00052742236366823
    [Google Scholar]
  61. MorampudiV. BhinderG. WuX. DaiC. ShamH.P. VallanceB.A. JacobsonK. DNBS/TNBS colitis models: providing insights into inflammatory bowel disease and effects of dietary fat.J. Vis. Exp.2014201484e5129724637969
    [Google Scholar]
  62. AntoniouE. MargonisG.A. AngelouA. PikouliA. ArgiriP. KaravokyrosI. PapaloisA. PikoulisE. The TNBS-induced colitis animal model: An overview.Ann. Med. Surg.20161191510.1016/j.amsu.2016.07.01927656280
    [Google Scholar]
  63. ChidrawarV. AlsuwaytB. Defining the role of CFTR channel blocker and ClC-2 activator in DNBS induced gastrointestinal inflammation.Saudi Pharm. J.202129429130410.1016/j.jsps.2021.02.00533994824
    [Google Scholar]
  64. CuzzocreaS. MazzonE. DugoL. CaputiA.P. RileyD.P. SalveminiD. Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis.Eur. J. Pharmacol.20014321798910.1016/S0014‑2999(01)01427‑311734191
    [Google Scholar]
  65. RamonaiteR. SkiecevicieneJ. KiudelisG. JonaitisL. TamelisA. CizasP. BorutaiteV. KupcinskasL. Influence of NADPH oxidase on inflammatory response in primary intestinal epithelial cells in patients with ulcerative colitis.BMC Gastroenterol.201313115910.1186/1471‑230X‑13‑15924229374
    [Google Scholar]
  66. GuoW. ZhuS. FengG. WuL. FengY. GuoT. YangY. WuH. ZengM. Microalgae aqueous extracts exert intestinal protective effects in Caco-2 cells and dextran sodium sulphate-induced mouse colitis.Food Funct.20201111098110910.1039/C9FO01028A31825424
    [Google Scholar]
  67. JohnsonT.O. OdohK.D. NwonumaC.O. AkinsanmiA.O. AdegboyegaA.E. Biochemical evaluation and molecular docking assessment of the anti-inflammatory potential of Phyllanthus nivosus leaf against ulcerative colitis.Heliyon202065e0389310.1016/j.heliyon.2020.e0389332426537
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968320045240927120032
Loading
/content/journals/ccb/10.2174/0122127968320045240927120032
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test