Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Proton pump inhibitors (PPIs), commonly utilized for the management of acid-related disorders, are gaining attention for their repurposing potential in oncology, particularly due to their ability to modulate the acidic tumor microenvironment and disrupt proton transport mechanisms. Beyond their primary role in gastric acid suppression, PPIs exhibit a spectrum of anticancer activities, including inhibition of vacuolar-type H+-ATPase (V-ATPase), disruption of proton gradients, and interference with tumor metabolic adaptation. These effects contribute to increased lysosomal and endosomal pH, impairing autophagic flux, inducing apoptosis, and reducing cancer cell proliferation. Preclinical evidence suggests that PPIs can augment the effectiveness of conventional cancer treatments, such as chemotherapy and immunotherapy, through mechanisms like intracellular modulation of the acidic tumour microenvironment, inhibition of acidic vesicle sequestration, and suppression of efflux transporters (., P-glycoprotein [P-gp], MRP1, BCRP). Furthermore, PPIs offer a promising strategy to counteract drug resistance, a significant challenge in cancer therapeutics. By targeting metabolic reprogramming pathways such as fatty acid synthase (FASN) and TOPK signaling, PPIs impair tumor survival mechanisms, enhance chemotherapy sensitivity, and restore drug efficacy in resistant cancer types. Although the precise molecular pathways responsible for these anticancer effects remain under investigation, the repurposing of PPIs as adjuncts in oncological regimens holds considerable promise. Emerging strategies, including artificial intelligence (AI)-driven drug repurposing, multi-omics biomarker identification, and nanomedicine-based PPI delivery, are expected to optimize their clinical applications. Ongoing and future studies should aim to unravel these molecular mechanisms in greater detail and prioritize clinical trials to evaluate their therapeutic efficacy. This repurposing approach could facilitate the development of innovative strategies to optimize cancer treatment and improve patient outcomes.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X375313250623163944
2025-01-01
2025-10-08
Loading full text...

Full text loading...

References

  1. ShinJ.M. SachsG. Pharmacology of proton pump inhibitors.Curr. Gastroenterol. Rep.200810652853410.1007/s11894‑008‑0098‑419006606
    [Google Scholar]
  2. AhmedA. ClarkeJ.O. Proton pump inhibitors (PPI).Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  3. ShanikaL.G.T. ReynoldsA. PattisonS. BraundR. Proton pump inhibitor use: Systematic review of global trends and practices.Eur. J. Clin. Pharmacol.20237991159117210.1007/s00228‑023‑03534‑z37420019
    [Google Scholar]
  4. StrandD.S. KimD. PeuraD.A. 25 years of proton pump inhibitors: A comprehensive review.Gut Liver2017111273710.5009/gnl1550227840364
    [Google Scholar]
  5. LowZ.Y. FaroukI.A. LalS.K. Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak.Viruses2020129105810.3390/v1209105832972027
    [Google Scholar]
  6. AhmadZ. RaufA. NazS. HemegH.A. Introduction to drug repurposing: Exploring new applications for existing drugs.Drug Development and Safety.IntechOpen202410.5772/intechopen.113207
    [Google Scholar]
  7. AlsultanA. AlghamdiW.A. AlghamdiJ. Clinical pharmacology applications in clinical drug development and clinical care: A focus on Saudi Arabia.Saudi Pharm. J.202028101217122710.1016/j.jsps.2020.08.01233132716
    [Google Scholar]
  8. KrishnamurthyN. GrimshawA.A. AxsonS.A. ChoeS.H. MillerJ.E. Drug repurposing: A systematic review on root causes, barriers and facilitators.BMC Health Serv. Res.202222197010.1186/s12913‑022‑08272‑z35906687
    [Google Scholar]
  9. ShinJ.M. KimN. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors.J. Neurogastroenterol. Motil.2013191253510.5056/jnm.2013.19.1.2523350044
    [Google Scholar]
  10. WardC. MeehanJ. GrayM.E. The impact of tumour pH on cancer progression: Strategies for clinical intervention.Explor. Target. Antitumor Ther.2020127110010.37349/etat.2020.0000536046070
    [Google Scholar]
  11. BogdanovA. BogdanovA. ChubenkoV. VolkovN. MoiseenkoF. MoiseyenkoV. Tumor acidity: From hallmark of cancer to target of treatment.Front. Oncol.20221297915410.3389/fonc.2022.97915436106097
    [Google Scholar]
  12. ChenH. KondoM. HoritaN. TakahashiK. KanekoT. The complex interaction between proton pump inhibitors and cancer treatment.Cancers20231522534610.3390/cancers1522534638001605
    [Google Scholar]
  13. UchiyamaA.A.T. SilvaP.A.I.A. LopesM.S.M. Proton pump inhibitors and oncologic treatment efficacy: A practical review of the literature for oncologists.Curr. Oncol.202128178379910.3390/curroncol2801007633546228
    [Google Scholar]
  14. Pérez-TomásR. Pérez-GuillénI. Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment.Cancers20201211324410.3390/cancers1211324433153193
    [Google Scholar]
  15. GaoY. ZhouH. LiuG. WuJ. YuanY. ShangA. Tumor microenvironment: Lactic acid promotes tumor development.J. Immunol. Res.202220221810.1155/2022/311937535733921
    [Google Scholar]
  16. de la Cruz-LópezK.G. Castro-MuñozL.J. Reyes-HernándezD.O. García-CarrancáA. Manzo-MerinoJ. Lactate in the regulation of tumor microenvironment and therapeutic approaches.Front. Oncol.20199114310.3389/fonc.2019.0114331737570
    [Google Scholar]
  17. HebertK.A. BonnenM.D. GhebreY.T. Proton pump inhibitors and sensitization of cancer cells to radiation therapy.Front. Oncol.20221293716610.3389/fonc.2022.93716635992826
    [Google Scholar]
  18. SpugniniE. FaisS. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering?Semin. Cancer Biol.20174311111810.1016/j.semcancer.2017.01.00328088584
    [Google Scholar]
  19. PatelK.J. LeeC. TanQ. TannockI.F. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: A potential strategy to improve the therapy of solid tumors.Clin. Cancer Res.201319246766677610.1158/1078‑0432.CCR‑13‑012824141627
    [Google Scholar]
  20. XiaY. SunM. HuangH. JinW.L. Drug repurposing for cancer therapy.Signal Transduct. Target. Ther.2024919210.1038/s41392‑024‑01808‑138637540
    [Google Scholar]
  21. Ioakeim-SkoufaI. Tobajas-RamosN. MendittoE. Drug repurposing in oncology: A systematic review of randomized controlled clinical trials.Cancers20231511297210.3390/cancers1511297237296934
    [Google Scholar]
  22. IkemuraK. HiramatsuS. OkudaM. Drug repositioning of proton pump inhibitors for enhanced efficacy and safety of cancer chemotherapy.Front. Pharmacol.2017891110.3389/fphar.2017.0091129311921
    [Google Scholar]
  23. KedikaR.R. SouzaR.F. SpechlerS.J. Potential anti-inflammatory effects of proton pump inhibitors: A review and discussion of the clinical implications.Dig. Dis. Sci.200954112312231710.1007/s10620‑009‑0951‑919714466
    [Google Scholar]
  24. MarinoM.L. FaisS. Djavaheri-MergnyM. Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells.Cell Death Dis.2010110e8710.1038/cddis.2010.6721368860
    [Google Scholar]
  25. StranskyL. CotterK. ForgacM. The function of V-ATPases in cancer.Physiol. Rev.20169631071109110.1152/physrev.00035.201527335445
    [Google Scholar]
  26. ChenF. KangR. LiuJ. TangD. The V-ATPases in cancer and cell death.Cancer Gene Ther.202229111529154110.1038/s41417‑022‑00477‑y35504950
    [Google Scholar]
  27. RidgeN.A. AgarwalM.S. FakhreddineM.H. Old drug, new trick: Proton pump inhibitors find new purpose in cancer care.Oncotarget202112191861186210.18632/oncotarget.2805334548903
    [Google Scholar]
  28. ZhengM. LuanS. GaoS. Proton pump inhibitor ilaprazole suppresses cancer growth by targeting T-cell-originated protein kinase.Oncotarget2017824391433915310.18632/oncotarget.1660928388576
    [Google Scholar]
  29. WangC.J. LiD. DanielsonJ.A. Proton pump inhibitors suppress DNA damage repair and sensitize treatment resistance in breast cancer by targeting fatty acid synthase.Cancer Lett.202150911210.1016/j.canlet.2021.03.02633813001
    [Google Scholar]
  30. CaoY. ChenM. TangD. The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses.Cell Death Dis.20189660410.1038/s41419‑018‑0642‑629789637
    [Google Scholar]
  31. JiN. LiH. ZhangY. Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration.Drug Resist. Updat.20247610110010.1016/j.drup.2024.10110038885537
    [Google Scholar]
  32. YeoM. KimD.K. KimY.B. Selective induction of apoptosis with proton pump inhibitor in gastric cancer cells.Clin. Cancer Res.200410248687869610.1158/1078‑0432.CCR‑04‑106515623654
    [Google Scholar]
  33. MenendezJ.A. CuyàsE. EncinarJ.A. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology.Mol. Oncol.202418347951610.1002/1878‑0261.1358238158755
    [Google Scholar]
  34. GongQ. SongX. TongY. Recent advances of anti-tumor nano-strategies via overturning pH gradient: Alkalization and acidification.J. Nanobiotechnology20252314210.1186/s12951‑025‑03134‑239849540
    [Google Scholar]
  35. JooM.K. ParkJ.J. ChunH.J. Proton pump inhibitor: The dual role in gastric cancer.World J. Gastroenterol.201925172058207010.3748/wjg.v25.i17.205831114133
    [Google Scholar]
  36. HalabyR. Influence of lysosomal sequestration on multidrug resistance in cancer cells.Cancer Drug Resist.201921314210.20517/cdr.2018.2335582144
    [Google Scholar]
  37. XiaoH. ZhengY. MaL. TianL. SunQ. Clinically-relevant ABC transporter for anti-cancer drug resistance.Front. Pharmacol.20211264840710.3389/fphar.2021.64840733953682
    [Google Scholar]
  38. ZhangZ. YueP. LuT. WangY. WeiY. WeiX. Role of lysosomes in physiological activities, diseases, and therapy.J. Hematol. Oncol.20211417910.1186/s13045‑021‑01087‑133990205
    [Google Scholar]
  39. ChoiY. YuA.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development.Curr. Pharm. Des.201420579380710.2174/13816128200514021416521223688078
    [Google Scholar]
  40. MatsumuraS. IshikawaT. YoshidaJ. Proton pump inhibitors enhance the antitumor effect of chemotherapy for esophageal squamous cell carcinoma.Cancers20221410239510.3390/cancers1410239535626000
    [Google Scholar]
  41. WangB.Y. ZhangJ. WangJ.L. Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer.J. Exp. Clin. Cancer Res.20153418510.1186/s13046‑015‑0194‑x26297142
    [Google Scholar]
  42. ScarpignatoC. GattaL. ZulloA. BlandizziC. Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression.BMC Med.201614117910.1186/s12916‑016‑0718‑z27825371
    [Google Scholar]
  43. GohW. Sleptsova-FreidrichI. PetrovicN. Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study.J. Pharm. Pharm. Sci.201417343944610.18433/J3460825224353
    [Google Scholar]
  44. UdelnowA. KreyesA. EllingerS. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.PLoS One201165e2014310.1371/journal.pone.002014321629657
    [Google Scholar]
  45. KimY.J. LeeJ.S. HongK.S. ChungJ.W. KimJ.H. HahmK.B. Novel application of proton pump inhibitor for the prevention of colitis-induced colorectal carcinogenesis beyond acid suppression.Cancer Prev. Res. (Phila.)20103896397410.1158/1940‑6207.CAPR‑10‑003320628001
    [Google Scholar]
  46. RaoC. ZhangY. LiQ. SteeleV.E. RaoC.V. Anti-carcinogenic properties of omeprazole against human colon cancer cells and azoxymethane-induced colonic aberrant crypt foci formation in rats.Int. J. Oncol.201140117017510.3892/ijo.2011.121421956158
    [Google Scholar]
  47. LeeY.Y. JeonH.K. HongJ.E. Proton pump inhibitors enhance the effects of cytotoxic agents in chemoresistant epithelial ovarian carcinoma.Oncotarget2015633350403505010.18632/oncotarget.531926418900
    [Google Scholar]
  48. AzzaritoT. VenturiG. CesoliniA. FaisS. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.Cancer Lett.2015356269770310.1016/j.canlet.2014.10.01725449440
    [Google Scholar]
  49. LiuM. TangR. JiangY. Pantoprazole induces apoptosis of leukemic cells by inhibiting expression of P-glycoprotein/multidrug resistance-associated protein-1 through PI3K/AKT/mTOR signaling.Indian J. Hematol. Blood Transfus.201733450050810.1007/s12288‑017‑0808‑x29075060
    [Google Scholar]
  50. ZhangJ.L. LiuM. YangQ. Effects of omeprazole in improving concurrent chemoradiotherapy efficacy in rectal cancer.World J. Gastroenterol.201723142575258410.3748/wjg.v23.i14.257528465642
    [Google Scholar]
  51. EatonA.F. MerkulovaM. BrownD. The H + -ATPase (V-ATPase): From proton pump to signaling complex in health and disease.Am. J. Physiol. Cell Physiol.20213203C392C41410.1152/ajpcell.00442.202033326313
    [Google Scholar]
  52. PérezS.E. GoozM. MaldonadoE.N. Mitochondrial dysfunction and metabolic disturbances induced by viral infections.Cells20241321178910.3390/cells1321178939513896
    [Google Scholar]
  53. ChenT. LinX. LuS. LiB. WangH. LiJ. V-ATPase in cancer: Mechanistic insights and therapeutic potentials.Cell Commun. Signal.202422161310.1186/s12964‑024‑01998‑939707503
    [Google Scholar]
  54. PamarthyS. KulshresthaA. KataraG.K. BeamanK.D. The curious case of vacuolar ATPase: Regulation of signaling pathways.Mol. Cancer20181714110.1186/s12943‑018‑0811‑329448933
    [Google Scholar]
  55. CollinsM.P. ForgacM. Regulation and function of V-ATPases in physiology and disease.Biochim. Biophys. Acta Biomembr.202018621218334110.1016/j.bbamem.2020.18334132422136
    [Google Scholar]
  56. BukowskiK. KciukM. KontekR. Mechanisms of multidrug resistance in cancer chemotherapy.Int. J. Mol. Sci.2020219323310.3390/ijms2109323332370233
    [Google Scholar]
  57. ManC.H. MercierF.E. LiuN. Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth.Blood2022139450252210.1182/blood.202101156334610101
    [Google Scholar]
  58. AlfaroukK.O. AhmedS.B.M. AhmedA. The interplay of dysregulated pH and electrolyte imbalance in cancer.Cancers202012489810.3390/cancers1204089832272658
    [Google Scholar]
  59. TangT. HuangX. ZhangG. HongZ. BaiX. LiangT. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.Signal Transduct. Target. Ther.2021617210.1038/s41392‑020‑00449‑433608497
    [Google Scholar]
  60. WuS.Y. FuT. JiangY.Z. ShaoZ.M. Natural killer cells in cancer biology and therapy.Mol. Cancer202019112010.1186/s12943‑020‑01238‑x32762681
    [Google Scholar]
  61. TongL. Jiménez-CorteganaC. TayA.H.M. WickströmS. GalluzziL. LundqvistA. NK cells and solid tumors: Therapeutic potential and persisting obstacles.Mol. Cancer202221120610.1186/s12943‑022‑01672‑z36319998
    [Google Scholar]
  62. HuberV. CamisaschiC. BerziA. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation.Semin. Cancer Biol.201743748910.1016/j.semcancer.2017.03.00128267587
    [Google Scholar]
  63. GiraldoN.A. Sanchez-SalasR. PeskeJ.D. The clinical role of the TME in solid cancer.Br. J. Cancer20191201455310.1038/s41416‑018‑0327‑z30413828
    [Google Scholar]
  64. HosonumaM. YoshimuraK. Association between pH regulation of the tumor microenvironment and immunological state.Front. Oncol.202313117556310.3389/fonc.2023.117556337492477
    [Google Scholar]
  65. ChenZ. HanF. DuY. ShiH. ZhouW. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.2023817010.1038/s41392‑023‑01332‑836797231
    [Google Scholar]
  66. BelloneM. CalcinottoA. FilipazziP. De MilitoA. FaisS. RivoltiniL. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors.OncoImmunology201321e2205810.4161/onci.2205823483769
    [Google Scholar]
  67. CalcinottoA. FilipazziP. GrioniM. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes.Cancer Res.201272112746275610.1158/0008‑5472.CAN‑11‑127222593198
    [Google Scholar]
  68. HrabětaJ. BelhajováM. ŠubrtováH. Merlos RodrigoM.A. HegerZ. EckschlagerT. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition.Int. J. Mol. Sci.20202112439210.3390/ijms2112439232575682
    [Google Scholar]
  69. KhanS.U. FatimaK. AishaS. MalikF. Unveiling the mechanisms and challenges of cancer drug resistance.Cell Commun. Signal.202422110910.1186/s12964‑023‑01302‑138347575
    [Google Scholar]
  70. ZhitomirskyB. AssarafY.G. Lysosomes as mediators of drug resistance in cancer.Drug Resist. Updat.201624233310.1016/j.drup.2015.11.00426830313
    [Google Scholar]
  71. WangX. ZhangH. ChenX. Drug resistance and combating drug resistance in cancer.Cancer Drug Resist.20192214116010.20517/cdr.2019.1034322663
    [Google Scholar]
  72. TalibW.H. AlsayedA.R. BarakatM. Abu-TahaM.I. MahmodA.I. Targeting drug chemo-resistance in cancer using natural products.Biomedicines2021910135310.3390/biomedicines910135334680470
    [Google Scholar]
  73. ChenM. LuJ. WeiW. Effects of proton pump inhibitors on reversing multidrug resistance via downregulating V-ATPases/PI3K/Akt/mTOR/HIF-1α signaling pathway through TSC1/2 complex and Rheb in human gastric adenocarcinoma cells in vitro and in vivo.OncoTargets Ther.2018116705672210.2147/OTT.S16119830349304
    [Google Scholar]
  74. LuZ.N. ShiZ.Y. DangY.F. Pantoprazole pretreatment elevates sensitivity to vincristine in drug-resistant oral epidermoid carcinoma in vitro and in vivo.Biomed. Pharmacother.201912010947810.1016/j.biopha.2019.10947831568987
    [Google Scholar]
  75. GaoH. ZhangS. HuT. Omeprazole protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2 cells.Chem. Biol. Interact.201929713014010.1016/j.cbi.2018.11.00830452898
    [Google Scholar]
  76. FerrariS. PerutF. FagioliF. Proton pump inhibitor chemosensitization in human osteosarcoma: From the bench to the patients’ bed.J. Transl. Med.201311126810.1186/1479‑5876‑11‑26824156349
    [Google Scholar]
  77. TafechA. StéphanouA. On the importance of acidity in cancer cells and therapy.Biology202413422510.3390/biology1304022538666837
    [Google Scholar]
  78. JaworskaM. SzczudłoJ. PietrzykA. The Warburg effect: A score for many instruments in the concert of cancer and cancer niche cells.Pharmacol. Rep.202375487689010.1007/s43440‑023‑00504‑137332080
    [Google Scholar]
  79. YuM. LeeC. WangM. TannockI.F. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors.Cancer Sci.2015106101438144710.1111/cas.1275626212113
    [Google Scholar]
  80. LucianiF. SpadaM. De MilitoA. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs.J. Natl. Cancer Inst.200496221702171310.1093/jnci/djh30515547183
    [Google Scholar]
  81. ToK.K.W. ChoW.C. Drug repurposing to circumvent immune checkpoint inhibitor resistance in cancer immunotherapy.Pharmaceutics2023158216610.3390/pharmaceutics1508216637631380
    [Google Scholar]
  82. WhitesideT.L. The tumor microenvironment and its role in promoting tumor growth.Oncogene200827455904591210.1038/onc.2008.27118836471
    [Google Scholar]
  83. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  84. BaghbanR. RoshangarL. Jahanban-EsfahlanR. Tumor microenvironment complexity and therapeutic implications at a glance.Cell Commun. Signal.20201815910.1186/s12964‑020‑0530‑432264958
    [Google Scholar]
  85. DoustmihanA. FathiM. MazloomiM. SalemiA. HamblinM.R. Jahanban-EsfahlanR. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review.J. Control. Release2023363578310.1016/j.jconrel.2023.09.02937739017
    [Google Scholar]
  86. WangY. WangY. RenY. ZhangQ. YiP. ChengC. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer.Semin. Cancer Biol.202286Pt 354256510.1016/j.semcancer.2022.02.01035151845
    [Google Scholar]
  87. PengK. ChenK. TeplyB.A. YeeG.C. FaraziP.A. LydenE.R. Impact of proton pump inhibitor use on the effectiveness of immune checkpoint inhibitors in advanced cancer patients.Ann. Pharmacother.202256437738610.1177/1060028021103393834282636
    [Google Scholar]
  88. LiC. XiaZ. LiA. MengJ. The effect of proton pump inhibitor uses on outcomes for cancer patients treated with immune checkpoint inhibitors: A meta-analysis.Ann. Transl. Med.2020824165510.21037/atm‑20‑749833490167
    [Google Scholar]
  89. WadaA. EnokidaT. OkanoS. Proton pump inhibitors and antibiotics adversely effect the efficacy of nivolumab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck.Eur. J. Cancer2023184303810.1016/j.ejca.2023.02.01136898232
    [Google Scholar]
  90. ChenB. YangC. DragomirM.P. Association of proton pump inhibitor use with survival outcomes in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Ther. Adv. Med. Oncol.2022141758835922111170310.1177/1758835922111170335860836
    [Google Scholar]
  91. LopesS. PabstL. DoryA. Do proton pump inhibitors alter the response to immune checkpoint inhibitors in cancer patients? A meta-analysis.Front. Immunol.202314107007610.3389/fimmu.2023.107007636776847
    [Google Scholar]
  92. DuanC. YuM. XuJ. LiB.Y. ZhaoY. KankalaR.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges.Biomed. Pharmacother.202316211464310.1016/j.biopha.2023.11464337031496
    [Google Scholar]
  93. BridouxC. GrigoriuB. MargeryJ. MorelH. GervaisR. JullianH. Proton pump inhibitors and cancer: Clinical impact, drug–drug interactions, and potential biological mechanisms.Front. Pharmacol.20221379827210.3389/fphar.2022.79827235359844
    [Google Scholar]
  94. CallaghanR. LukF. BebawyM. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy?Drug Metab. Dispos.201442462363110.1124/dmd.113.05617624492893
    [Google Scholar]
  95. BrunoG. ZaccariP. RoccoG. Proton pump inhibitors and dysbiosis: Current knowledge and aspects to be clarified.World J. Gastroenterol.201925222706271910.3748/wjg.v25.i22.270631235994
    [Google Scholar]
  96. KieckaA. SzczepanikM. Proton pump inhibitor-induced gut dysbiosis and immunomodulation: Current knowledge and potential restoration by probiotics.Pharmacol. Rep.202375479180410.1007/s43440‑023‑00489‑x37142877
    [Google Scholar]
  97. TrifanA. StanciuC. GirleanuI. Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis.World J. Gastroenterol.201723356500651510.3748/wjg.v23.i35.650029085200
    [Google Scholar]
  98. TawamD. BaladiM. JungsuwadeeP. EarlG. HanJ. The positive association between proton pump inhibitors and Clostridium difficile infection.Innov. Pharm.20211211010.24926/iip.v12i1.343934007671
    [Google Scholar]
  99. JaynesM. KumarA.B. The risks of long-term use of proton pump inhibitors: A critical review.Ther. Adv. Drug Saf.201910204209861880992710.1177/204209861880992731019676
    [Google Scholar]
  100. McDonaldE.G. MilliganJ. FrenetteC. LeeT.C. Continuous proton pump inhibitor therapy and the associated risk of recurrent Clostridium difficile infection.JAMA Intern. Med.2015175578479110.1001/jamainternmed.2015.4225730198
    [Google Scholar]
  101. SetoC.T. JeraldoP. OrensteinR. ChiaN. DiBaiseJ.K. Prolonged use of a proton pump inhibitor reduces microbial diversity: Implications for Clostridium difficile susceptibility.Microbiome2014214210.1186/2049‑2618‑2‑4225426290
    [Google Scholar]
  102. AlanaziA.S. AlmutairiH. GuptaJ.K. Osseous implications of proton pump inhibitor therapy: An umbrella review.Bone Rep.20242010174110.1016/j.bonr.2024.10174138348455
    [Google Scholar]
  103. BrigantiS.I. NaciuA.M. TabaccoG. Proton pump inhibitors and fractures in adults: A critical appraisal and review of the literature.Int. J. Endocrinol.2021202111510.1155/2021/890236733510787
    [Google Scholar]
  104. ThongB.K.S. Ima-NirwanaS. ChinK.Y. Proton pump inhibitors and fracture risk: A review of current evidence and mechanisms involved.Int. J. Environ. Res. Public Health2019169157110.3390/ijerph1609157131060319
    [Google Scholar]
  105. PhilippoteauxC. PaccouJ. ChazardE. CortetB. Proton pump inhibitors, bone and phosphocalcic metabolism.Joint Bone Spine202491510571410.1016/j.jbspin.2024.10571438458487
    [Google Scholar]
  106. KommerA. KostevK. SchleicherE.M. Weinmann-MenkeJ. LabenzC. Proton pump inhibitor use and bone fractures in patients with chronic kidney disease.Nephrol. Dial. Transplant.202440117318110.1093/ndt/gfae13539025803
    [Google Scholar]
  107. RomdhaneH. CheikhM. NejmaH.B. EnnaiferR. HadjN.B. AB0832 Effect of long-term proton pump inhibitors on bone mineral density.Ann. Rheum. Dis.201776134810.1136/annrheumdis‑2017‑eular.5281
    [Google Scholar]
  108. TargownikL.E. LixL.M. MetgeC.J. PriorH.J. LeungS. LeslieW.D. Use of proton pump inhibitors and risk of osteoporosis-related fractures.CMAJ2008179431932610.1503/cmaj.07133018695179
    [Google Scholar]
  109. WangY.H. WintzellV. LudvigssonJ.F. SvanströmH. PasternakB. Association between proton pump inhibitor use and risk of fracture in children.JAMA Pediatr.2020174654355110.1001/jamapediatrics.2020.000732176276
    [Google Scholar]
  110. LazarusB. ChenY. WilsonF.P. Proton pump inhibitor use and the risk of chronic kidney disease.JAMA Intern. Med.2016176223824610.1001/jamainternmed.2015.719326752337
    [Google Scholar]
  111. HartE. DunnT.E. FeuersteinS. JacobsD.M. Proton pump inhibitors and risk of acute and chronic kidney disease: A retrospective cohort study.Pharmacotherapy201939444345310.1002/phar.223530779194
    [Google Scholar]
  112. LiY. XiongM. YangM. Proton pump inhibitors and the risk of hospital-acquired acute kidney injury in children.Ann. Transl. Med.2020821143810.21037/atm‑20‑228433313183
    [Google Scholar]
  113. TajdiniP. ForoutanM. Renal failure following the administration of proton pump inhibitors; a mini-review article on recent findings.J. Renal Inj. Prev.2024141e3226010.34172/jrip.2024.32260
    [Google Scholar]
  114. MiaoJ. HerrmannS.M. Immune checkpoint inhibitors and their interaction with proton pump inhibitors–related interstitial nephritis.Clin. Kidney J.202316111834184410.1093/ckj/sfad10937915905
    [Google Scholar]
  115. El RoubyN. LimaJ.J. JohnsonJ.A. Proton pump inhibitors: From CYP2C19 pharmacogenetics to precision medicine.Expert Opin. Drug Metab. Toxicol.201814444746010.1080/17425255.2018.146183529620484
    [Google Scholar]
  116. GronichN. lavi I, Lejbkowicz F, Pinchev M, Rennert G. Association of CYP2C19 polymorphism with proton pump inhibitors effectiveness and with fractures in real-life: Retrospective cohort study.Clin. Pharmacol. Ther.202211151084109210.1002/cpt.255235124810
    [Google Scholar]
  117. LimaJ.J. ThomasC.D. BarbarinoJ. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing.Clin. Pharmacol. Ther.202110961417142310.1002/cpt.201532770672
    [Google Scholar]
  118. ShubbarQ. AlchakeeA. IssaK.W. AdiA.J. ShorbagiA.I. Saber-AyadM. From genes to drugs: CYP2C19 and pharmacogenetics in clinical practice.Front. Pharmacol.202415132677610.3389/fphar.2024.132677638420192
    [Google Scholar]
  119. Aguilera CastroL. Martín de Argila de Prados C, Albillos Martínez A. Practical considerations in the management of proton-pump inhibitors.Rev. Esp. Enferm. Dig.2015108314515310.17235/reed.2015.3812/201526666270
    [Google Scholar]
  120. RaoulJ.L. Moreau-BachelardC. GilabertM. EdelineJ. FrénelJ.S. Drug–drug interactions with proton pump inhibitors in cancer patients: An underrecognized cause of treatment failure.ESMO Open20238110088010.1016/j.esmoop.2023.10088036764092
    [Google Scholar]
  121. SachsG. ShinJ.M. HowdenC.W. Review article: The clinical pharmacology of proton pump inhibitors.Aliment. Pharmacol. Ther.200623s22810.1111/j.1365‑2036.2006.02943.x16700898
    [Google Scholar]
  122. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  123. NaylorS. SchonfeldJ.M. Therapeutic drug repurposing, repositioning and rescue: Part I overview.Drug Discov. World20141514962
    [Google Scholar]
  124. BreckenridgeA. JacobR. Overcoming the legal and regulatory barriers to drug repurposing.Nat. Rev. Drug Discov.20191811210.1038/nrd.2018.9229880920
    [Google Scholar]
  125. SleighS.H. BartonC.L. Repurposing strategies for therapeutics.Pharmaceut. Med.201024315115910.1007/BF03256811
    [Google Scholar]
  126. SercombeL. VeeratiT. MoheimaniF. Advances and challenges of liposomal drug delivery systems in cancer therapy.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  127. MukalelA.J. RileyR.S. ZhangR. MitchellM.J. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy.Cancer Lett.201945810211210.1016/j.canlet.2019.04.04031100411
    [Google Scholar]
  128. SpugniniE.P. CitroG. FaisS. Proton pump inhibitors as anti vacuolar-ATPases drugs: A novel anticancer strategy.J. Exp. Clin. Cancer Res.20102914410.1186/1756‑9966‑29‑4420459683
    [Google Scholar]
  129. MokhtariR.B. HomayouniT.S. BaluchN. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.1672328410237
    [Google Scholar]
  130. YapT.A. SandhuS.K. WorkmanP. de BonoJ.S. Envisioning the future of early anticancer drug development.Nat. Rev. Cancer201010751452310.1038/nrc287020535131
    [Google Scholar]
  131. SawyersC.L. The cancer biomarker problem.Nature2008452718754855210.1038/nature0691318385728
    [Google Scholar]
  132. CollinsF.S. VarmusH. A new initiative on precision medicine.N. Engl. J. Med.2015372979379510.1056/NEJMp150052325635347
    [Google Scholar]
  133. AshleyE.A. Towards precision medicine.Nat. Rev. Genet.201617950752210.1038/nrg.2016.8627528417
    [Google Scholar]
  134. SchorkN.J. Personalized medicine: Time for one-person trials.Nature2015520754960961110.1038/520609a25925459
    [Google Scholar]
  135. JamesonJ.L. LongoD.L. Precision medicine--personalized, problematic, and promising.N. Engl. J. Med.2015372232229223410.1056/NEJMsb150310426014593
    [Google Scholar]
  136. MinH.Y. LeeH.Y. Molecular targeted therapy for anticancer treatment.Exp. Mol. Med.202254101670169410.1038/s12276‑022‑00864‑336224343
    [Google Scholar]
  137. HegdeP.S. ChenD.S. Top 10 challenges in cancer immunotherapy.Immunity2020521173510.1016/j.immuni.2019.12.01131940268
    [Google Scholar]
  138. MundekkadD. ChoW.C. Nanoparticles in clinical translation for cancer therapy.Int. J. Mol. Sci.2022233168510.3390/ijms2303168535163607
    [Google Scholar]
  139. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  140. NaumenkoE. GuryanovI. GomzikovaM. Drug delivery nano-platforms for advanced cancer therapy.Sci. Pharm.20249222810.3390/scipharm92020028
    [Google Scholar]
  141. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomedical Technology2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  142. SrebroJ. BrniakW. MendykA. Formulation of dosage forms with proton pump inhibitors: State of the art, challenges and future perspectives.Pharmaceutics20221410204310.3390/pharmaceutics1410204336297478
    [Google Scholar]
  143. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  144. WuL. WenY. LengD. Machine learning methods, databases and tools for drug combination prediction.Brief. Bioinform.2022231bbab35510.1093/bib/bbab35534477201
    [Google Scholar]
  145. OyejideA.J. AdekunleY.A. AbodunrinO.D. AtoyebiE.O. Artificial intelligence, computational tools and robotics for drug discovery, development, and delivery.Intell Pharm202510.1016/j.ipha.2025.01.001
    [Google Scholar]
  146. AbbasM.K.G. RassamA. KaramshahiF. AbunoraR. AbouseadaM. The role of AI in drug discovery.ChemBioChem20242514e20230081610.1002/cbic.20230081638735845
    [Google Scholar]
  147. LuM. YinJ. ZhuQ. Artificial intelligence in pharmaceutical sciences.Engineering202327376910.1016/j.eng.2023.01.014
    [Google Scholar]
  148. SarkarC. DasB. RawatV.S. Artificial intelligence and machine learning technology-driven modern drug discovery and development.Int. J. Mol. Sci.2023243202610.3390/ijms2403202636768346
    [Google Scholar]
  149. QiX. ZhaoY. QiZ. HouS. ChenJ. Machine learning empowering drug discovery: Applications, opportunities, and challenges.Molecules202429490310.3390/molecules2904090338398653
    [Google Scholar]
  150. HachadH. Ragueneau-MajlessiI. LevyR.H. A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database.Hum. Genomics201051617210.1186/1479‑7364‑5‑1‑6121106490
    [Google Scholar]
  151. BakerR.E. PeñaJ.M. JayamohanJ. JérusalemA. Mechanistic models versus machine learning, a fight worth fighting for the biological community?Biol. Lett.20181452017066010.1098/rsbl.2017.066029769297
    [Google Scholar]
  152. KatherJ.N. KrisamJ. CharoentongP. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.PLoS Med.2019161e100273010.1371/journal.pmed.100273030677016
    [Google Scholar]
  153. PasrijaP. JhaP. UpadhyayaP. KhanM.S. ChopraM. Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery.Curr. Top. Med. Chem.202222201692172710.2174/156802662266622070109133935786336
    [Google Scholar]
  154. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e1014310.1002/btm2.1014331572799
    [Google Scholar]
  155. CaoY RomeroJ Aspuru-GuzikA Potential of quantum computing for drug discovery.20186266:16:2010.1147/JRD.2018.2888987
    [Google Scholar]
  156. EstevaA. RobicquetA. RamsundarB. A guide to deep learning in healthcare.Nat. Med.2019251242910.1038/s41591‑018‑0316‑z30617335
    [Google Scholar]
  157. HanR. YoonH. KimG. LeeH. LeeY. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery.Pharmaceuticals2023169125910.3390/ph1609125937765069
    [Google Scholar]
  158. NissanN. AllenM.C. SabatinoD. BiggarK.K. Future perspective: Harnessing the power of artificial intelligence in the generation of new peptide drugs.Biomolecules20241410130310.3390/biom1410130339456236
    [Google Scholar]
  159. RajaeiF. MinoccheriC. WittrupE. AI-based computational methods in early drug discovery and post market drug assessment: A survey.IEEE Trans Comput Biol Bioinform20242219711510.1109/TCBB.2024.3492708
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X375313250623163944
Loading
/content/journals/ccand/10.2174/012212697X375313250623163944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test