Proton pump inhibitors (PPIs), commonly utilized for the management of acid-related disorders, are gaining attention for their repurposing potential in oncology, particularly due to their ability to modulate the acidic tumor microenvironment and disrupt proton transport mechanisms. Beyond their primary role in gastric acid suppression, PPIs exhibit a spectrum of anticancer activities, including inhibition of vacuolar-type H+-ATPase (V-ATPase), disruption of proton gradients, and interference with tumor metabolic adaptation. These effects contribute to increased lysosomal and endosomal pH, impairing autophagic flux, inducing apoptosis, and reducing cancer cell proliferation. Preclinical evidence suggests that PPIs can augment the effectiveness of conventional cancer treatments, such as chemotherapy and immunotherapy, through mechanisms like intracellular modulation of the acidic tumour microenvironment, inhibition of acidic vesicle sequestration, and suppression of efflux transporters (e.g., P-glycoprotein [P-gp], MRP1, BCRP). Furthermore, PPIs offer a promising strategy to counteract drug resistance, a significant challenge in cancer therapeutics. By targeting metabolic reprogramming pathways such as fatty acid synthase (FASN) and TOPK signaling, PPIs impair tumor survival mechanisms, enhance chemotherapy sensitivity, and restore drug efficacy in resistant cancer types. Although the precise molecular pathways responsible for these anticancer effects remain under investigation, the repurposing of PPIs as adjuncts in oncological regimens holds considerable promise. Emerging strategies, including artificial intelligence (AI)-driven drug repurposing, multi-omics biomarker identification, and nanomedicine-based PPI delivery, are expected to optimize their clinical applications. Ongoing and future studies should aim to unravel these molecular mechanisms in greater detail and prioritize clinical trials to evaluate their therapeutic efficacy. This repurposing approach could facilitate the development of innovative strategies to optimize cancer treatment and improve patient outcomes.
ShanikaL.G.T.
ReynoldsA.
PattisonS.
BraundR.
Proton pump inhibitor use: Systematic review of global trends and practices.Eur. J. Clin. Pharmacol.20237991159117210.1007/s00228‑023‑03534‑z37420019
LowZ.Y.
FaroukI.A.
LalS.K.
Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak.Viruses2020129105810.3390/v1209105832972027
AhmadZ.
RaufA.
NazS.
HemegH.A.
Introduction to drug repurposing: Exploring new applications for existing drugs.Drug Development and Safety.IntechOpen202410.5772/intechopen.113207
AlsultanA.
AlghamdiW.A.
AlghamdiJ.
Clinical pharmacology applications in clinical drug development and clinical care: A focus on Saudi Arabia.Saudi Pharm. J.202028101217122710.1016/j.jsps.2020.08.01233132716
KrishnamurthyN.
GrimshawA.A.
AxsonS.A.
ChoeS.H.
MillerJ.E.
Drug repurposing: A systematic review on root causes, barriers and facilitators.BMC Health Serv. Res.202222197010.1186/s12913‑022‑08272‑z35906687
ShinJ.M.
KimN.
Pharmacokinetics and pharmacodynamics of the proton pump inhibitors.J. Neurogastroenterol. Motil.2013191253510.5056/jnm.2013.19.1.2523350044
WardC.
MeehanJ.
GrayM.E.
The impact of tumour pH on cancer progression: Strategies for clinical intervention.Explor. Target. Antitumor Ther.2020127110010.37349/etat.2020.0000536046070
BogdanovA.
BogdanovA.
ChubenkoV.
VolkovN.
MoiseenkoF.
MoiseyenkoV.
Tumor acidity: From hallmark of cancer to target of treatment.Front. Oncol.20221297915410.3389/fonc.2022.97915436106097
ChenH.
KondoM.
HoritaN.
TakahashiK.
KanekoT.
The complex interaction between proton pump inhibitors and cancer treatment.Cancers20231522534610.3390/cancers1522534638001605
UchiyamaA.A.T.
SilvaP.A.I.A.
LopesM.S.M.
Proton pump inhibitors and oncologic treatment efficacy: A practical review of the literature for oncologists.Curr. Oncol.202128178379910.3390/curroncol2801007633546228
Pérez-TomásR.
Pérez-GuillénI.
Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment.Cancers20201211324410.3390/cancers1211324433153193
de la Cruz-LópezK.G.
Castro-MuñozL.J.
Reyes-HernándezD.O.
García-CarrancáA.
Manzo-MerinoJ.
Lactate in the regulation of tumor microenvironment and therapeutic approaches.Front. Oncol.20199114310.3389/fonc.2019.0114331737570
HebertK.A.
BonnenM.D.
GhebreY.T.
Proton pump inhibitors and sensitization of cancer cells to radiation therapy.Front. Oncol.20221293716610.3389/fonc.2022.93716635992826
SpugniniE.
FaisS.
Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering?Semin. Cancer Biol.20174311111810.1016/j.semcancer.2017.01.00328088584
PatelK.J.
LeeC.
TanQ.
TannockI.F.
Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: A potential strategy to improve the therapy of solid tumors.Clin. Cancer Res.201319246766677610.1158/1078‑0432.CCR‑13‑012824141627
Ioakeim-SkoufaI.
Tobajas-RamosN.
MendittoE.
Drug repurposing in oncology: A systematic review of randomized controlled clinical trials.Cancers20231511297210.3390/cancers1511297237296934
IkemuraK.
HiramatsuS.
OkudaM.
Drug repositioning of proton pump inhibitors for enhanced efficacy and safety of cancer chemotherapy.Front. Pharmacol.2017891110.3389/fphar.2017.0091129311921
KedikaR.R.
SouzaR.F.
SpechlerS.J.
Potential anti-inflammatory effects of proton pump inhibitors: A review and discussion of the clinical implications.Dig. Dis. Sci.200954112312231710.1007/s10620‑009‑0951‑919714466
MarinoM.L.
FaisS.
Djavaheri-MergnyM.
Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells.Cell Death Dis.2010110e8710.1038/cddis.2010.6721368860
RidgeN.A.
AgarwalM.S.
FakhreddineM.H.
Old drug, new trick: Proton pump inhibitors find new purpose in cancer care.Oncotarget202112191861186210.18632/oncotarget.2805334548903
ZhengM.
LuanS.
GaoS.
Proton pump inhibitor ilaprazole suppresses cancer growth by targeting T-cell-originated protein kinase.Oncotarget2017824391433915310.18632/oncotarget.1660928388576
WangC.J.
LiD.
DanielsonJ.A.
Proton pump inhibitors suppress DNA damage repair and sensitize treatment resistance in breast cancer by targeting fatty acid synthase.Cancer Lett.202150911210.1016/j.canlet.2021.03.02633813001
CaoY.
ChenM.
TangD.
The proton pump inhibitor pantoprazole disrupts protein degradation systems and sensitizes cancer cells to death under various stresses.Cell Death Dis.20189660410.1038/s41419‑018‑0642‑629789637
JiN.
LiH.
ZhangY.
Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration.Drug Resist. Updat.20247610110010.1016/j.drup.2024.10110038885537
YeoM.
KimD.K.
KimY.B.
Selective induction of apoptosis with proton pump inhibitor in gastric cancer cells.Clin. Cancer Res.200410248687869610.1158/1078‑0432.CCR‑04‑106515623654
JooM.K.
ParkJ.J.
ChunH.J.
Proton pump inhibitor: The dual role in gastric cancer.World J. Gastroenterol.201925172058207010.3748/wjg.v25.i17.205831114133
ZhangZ.
YueP.
LuT.
WangY.
WeiY.
WeiX.
Role of lysosomes in physiological activities, diseases, and therapy.J. Hematol. Oncol.20211417910.1186/s13045‑021‑01087‑133990205
ChoiY.
YuA.M.
ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development.Curr. Pharm. Des.201420579380710.2174/13816128200514021416521223688078
WangB.Y.
ZhangJ.
WangJ.L.
Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer.J. Exp. Clin. Cancer Res.20153418510.1186/s13046‑015‑0194‑x26297142
ScarpignatoC.
GattaL.
ZulloA.
BlandizziC.
Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression.BMC Med.201614117910.1186/s12916‑016‑0718‑z27825371
GohW.
Sleptsova-FreidrichI.
PetrovicN.
Use of proton pump inhibitors as adjunct treatment for triple-negative breast cancers. An introductory study.J. Pharm. Pharm. Sci.201417343944610.18433/J3460825224353
UdelnowA.
KreyesA.
EllingerS.
Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.PLoS One201165e2014310.1371/journal.pone.002014321629657
RaoC.
ZhangY.
LiQ.
SteeleV.E.
RaoC.V.
Anti-carcinogenic properties of omeprazole against human colon cancer cells and azoxymethane-induced colonic aberrant crypt foci formation in rats.Int. J. Oncol.201140117017510.3892/ijo.2011.121421956158
AzzaritoT.
VenturiG.
CesoliniA.
FaisS.
Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.Cancer Lett.2015356269770310.1016/j.canlet.2014.10.01725449440
LiuM.
TangR.
JiangY.
Pantoprazole induces apoptosis of leukemic cells by inhibiting expression of P-glycoprotein/multidrug resistance-associated protein-1 through PI3K/AKT/mTOR signaling.Indian J. Hematol. Blood Transfus.201733450050810.1007/s12288‑017‑0808‑x29075060
ZhangJ.L.
LiuM.
YangQ.
Effects of omeprazole in improving concurrent chemoradiotherapy efficacy in rectal cancer.World J. Gastroenterol.201723142575258410.3748/wjg.v23.i14.257528465642
EatonA.F.
MerkulovaM.
BrownD.
The H + -ATPase (V-ATPase): From proton pump to signaling complex in health and disease.Am. J. Physiol. Cell Physiol.20213203C392C41410.1152/ajpcell.00442.202033326313
PamarthyS.
KulshresthaA.
KataraG.K.
BeamanK.D.
The curious case of vacuolar ATPase: Regulation of signaling pathways.Mol. Cancer20181714110.1186/s12943‑018‑0811‑329448933
CollinsM.P.
ForgacM.
Regulation and function of V-ATPases in physiology and disease.Biochim. Biophys. Acta Biomembr.202018621218334110.1016/j.bbamem.2020.18334132422136
ManC.H.
MercierF.E.
LiuN.
Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth.Blood2022139450252210.1182/blood.202101156334610101
TangT.
HuangX.
ZhangG.
HongZ.
BaiX.
LiangT.
Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.Signal Transduct. Target. Ther.2021617210.1038/s41392‑020‑00449‑433608497
HuberV.
CamisaschiC.
BerziA.
Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation.Semin. Cancer Biol.201743748910.1016/j.semcancer.2017.03.00128267587
HosonumaM.
YoshimuraK.
Association between pH regulation of the tumor microenvironment and immunological state.Front. Oncol.202313117556310.3389/fonc.2023.117556337492477
BelloneM.
CalcinottoA.
FilipazziP.
De MilitoA.
FaisS.
RivoltiniL.
The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors.OncoImmunology201321e2205810.4161/onci.2205823483769
CalcinottoA.
FilipazziP.
GrioniM.
Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes.Cancer Res.201272112746275610.1158/0008‑5472.CAN‑11‑127222593198
HrabětaJ.
BelhajováM.
ŠubrtováH.
Merlos RodrigoM.A.
HegerZ.
EckschlagerT.
Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition.Int. J. Mol. Sci.20202112439210.3390/ijms2112439232575682
KhanS.U.
FatimaK.
AishaS.
MalikF.
Unveiling the mechanisms and challenges of cancer drug resistance.Cell Commun. Signal.202422110910.1186/s12964‑023‑01302‑138347575
TalibW.H.
AlsayedA.R.
BarakatM.
Abu-TahaM.I.
MahmodA.I.
Targeting drug chemo-resistance in cancer using natural products.Biomedicines2021910135310.3390/biomedicines910135334680470
ChenM.
LuJ.
WeiW.
Effects of proton pump inhibitors on reversing multidrug resistance via downregulating V-ATPases/PI3K/Akt/mTOR/HIF-1α signaling pathway through TSC1/2 complex and Rheb in human gastric adenocarcinoma cells in vitro and in vivo.OncoTargets Ther.2018116705672210.2147/OTT.S16119830349304
LuZ.N.
ShiZ.Y.
DangY.F.
Pantoprazole pretreatment elevates sensitivity to vincristine in drug-resistant oral epidermoid carcinoma in vitro and in vivo.Biomed. Pharmacother.201912010947810.1016/j.biopha.2019.10947831568987
GaoH.
ZhangS.
HuT.
Omeprazole protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2 cells.Chem. Biol. Interact.201929713014010.1016/j.cbi.2018.11.00830452898
FerrariS.
PerutF.
FagioliF.
Proton pump inhibitor chemosensitization in human osteosarcoma: From the bench to the patients’ bed.J. Transl. Med.201311126810.1186/1479‑5876‑11‑26824156349
JaworskaM.
SzczudłoJ.
PietrzykA.
The Warburg effect: A score for many instruments in the concert of cancer and cancer niche cells.Pharmacol. Rep.202375487689010.1007/s43440‑023‑00504‑137332080
YuM.
LeeC.
WangM.
TannockI.F.
Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors.Cancer Sci.2015106101438144710.1111/cas.1275626212113
LucianiF.
SpadaM.
De MilitoA.
Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs.J. Natl. Cancer Inst.200496221702171310.1093/jnci/djh30515547183
ToK.K.W.
ChoW.C.
Drug repurposing to circumvent immune checkpoint inhibitor resistance in cancer immunotherapy.Pharmaceutics2023158216610.3390/pharmaceutics1508216637631380
de VisserK.E.
JoyceJ.A.
The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
BaghbanR.
RoshangarL.
Jahanban-EsfahlanR.
Tumor microenvironment complexity and therapeutic implications at a glance.Cell Commun. Signal.20201815910.1186/s12964‑020‑0530‑432264958
DoustmihanA.
FathiM.
MazloomiM.
SalemiA.
HamblinM.R.
Jahanban-EsfahlanR.
Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review.J. Control. Release2023363578310.1016/j.jconrel.2023.09.02937739017
WangY.
WangY.
RenY.
ZhangQ.
YiP.
ChengC.
Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer.Semin. Cancer Biol.202286Pt 354256510.1016/j.semcancer.2022.02.01035151845
PengK.
ChenK.
TeplyB.A.
YeeG.C.
FaraziP.A.
LydenE.R.
Impact of proton pump inhibitor use on the effectiveness of immune checkpoint inhibitors in advanced cancer patients.Ann. Pharmacother.202256437738610.1177/1060028021103393834282636
LiC.
XiaZ.
LiA.
MengJ.
The effect of proton pump inhibitor uses on outcomes for cancer patients treated with immune checkpoint inhibitors: A meta-analysis.Ann. Transl. Med.2020824165510.21037/atm‑20‑749833490167
WadaA.
EnokidaT.
OkanoS.
Proton pump inhibitors and antibiotics adversely effect the efficacy of nivolumab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck.Eur. J. Cancer2023184303810.1016/j.ejca.2023.02.01136898232
ChenB.
YangC.
DragomirM.P.
Association of proton pump inhibitor use with survival outcomes in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Ther. Adv. Med. Oncol.2022141758835922111170310.1177/1758835922111170335860836
LopesS.
PabstL.
DoryA.
Do proton pump inhibitors alter the response to immune checkpoint inhibitors in cancer patients? A meta-analysis.Front. Immunol.202314107007610.3389/fimmu.2023.107007636776847
CallaghanR.
LukF.
BebawyM.
Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy?Drug Metab. Dispos.201442462363110.1124/dmd.113.05617624492893
BrunoG.
ZaccariP.
RoccoG.
Proton pump inhibitors and dysbiosis: Current knowledge and aspects to be clarified.World J. Gastroenterol.201925222706271910.3748/wjg.v25.i22.270631235994
KieckaA.
SzczepanikM.
Proton pump inhibitor-induced gut dysbiosis and immunomodulation: Current knowledge and potential restoration by probiotics.Pharmacol. Rep.202375479180410.1007/s43440‑023‑00489‑x37142877
TrifanA.
StanciuC.
GirleanuI.
Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis.World J. Gastroenterol.201723356500651510.3748/wjg.v23.i35.650029085200
TawamD.
BaladiM.
JungsuwadeeP.
EarlG.
HanJ.
The positive association between proton pump inhibitors and Clostridium difficile infection.Innov. Pharm.20211211010.24926/iip.v12i1.343934007671
JaynesM.
KumarA.B.
The risks of long-term use of proton pump inhibitors: A critical review.Ther. Adv. Drug Saf.201910204209861880992710.1177/204209861880992731019676
SetoC.T.
JeraldoP.
OrensteinR.
ChiaN.
DiBaiseJ.K.
Prolonged use of a proton pump inhibitor reduces microbial diversity: Implications for Clostridium difficile susceptibility.Microbiome2014214210.1186/2049‑2618‑2‑4225426290
BrigantiS.I.
NaciuA.M.
TabaccoG.
Proton pump inhibitors and fractures in adults: A critical appraisal and review of the literature.Int. J. Endocrinol.2021202111510.1155/2021/890236733510787
ThongB.K.S.
Ima-NirwanaS.
ChinK.Y.
Proton pump inhibitors and fracture risk: A review of current evidence and mechanisms involved.Int. J. Environ. Res. Public Health2019169157110.3390/ijerph1609157131060319
PhilippoteauxC.
PaccouJ.
ChazardE.
CortetB.
Proton pump inhibitors, bone and phosphocalcic metabolism.Joint Bone Spine202491510571410.1016/j.jbspin.2024.10571438458487
KommerA.
KostevK.
SchleicherE.M.
Weinmann-MenkeJ.
LabenzC.
Proton pump inhibitor use and bone fractures in patients with chronic kidney disease.Nephrol. Dial. Transplant.202440117318110.1093/ndt/gfae13539025803
RomdhaneH.
CheikhM.
NejmaH.B.
EnnaiferR.
HadjN.B.
AB0832 Effect of long-term proton pump inhibitors on bone mineral density.Ann. Rheum. Dis.201776134810.1136/annrheumdis‑2017‑eular.5281
TargownikL.E.
LixL.M.
MetgeC.J.
PriorH.J.
LeungS.
LeslieW.D.
Use of proton pump inhibitors and risk of osteoporosis-related fractures.CMAJ2008179431932610.1503/cmaj.07133018695179
WangY.H.
WintzellV.
LudvigssonJ.F.
SvanströmH.
PasternakB.
Association between proton pump inhibitor use and risk of fracture in children.JAMA Pediatr.2020174654355110.1001/jamapediatrics.2020.000732176276
LazarusB.
ChenY.
WilsonF.P.
Proton pump inhibitor use and the risk of chronic kidney disease.JAMA Intern. Med.2016176223824610.1001/jamainternmed.2015.719326752337
HartE.
DunnT.E.
FeuersteinS.
JacobsD.M.
Proton pump inhibitors and risk of acute and chronic kidney disease: A retrospective cohort study.Pharmacotherapy201939444345310.1002/phar.223530779194
LiY.
XiongM.
YangM.
Proton pump inhibitors and the risk of hospital-acquired acute kidney injury in children.Ann. Transl. Med.2020821143810.21037/atm‑20‑228433313183
TajdiniP.
ForoutanM.
Renal failure following the administration of proton pump inhibitors; a mini-review article on recent findings.J. Renal Inj. Prev.2024141e3226010.34172/jrip.2024.32260
El RoubyN.
LimaJ.J.
JohnsonJ.A.
Proton pump inhibitors: From CYP2C19 pharmacogenetics to precision medicine.Expert Opin. Drug Metab. Toxicol.201814444746010.1080/17425255.2018.146183529620484
GronichN.
lavi I, Lejbkowicz F, Pinchev M, Rennert G. Association of CYP2C19 polymorphism with proton pump inhibitors effectiveness and with fractures in real-life: Retrospective cohort study.Clin. Pharmacol. Ther.202211151084109210.1002/cpt.255235124810
ShubbarQ.
AlchakeeA.
IssaK.W.
AdiA.J.
ShorbagiA.I.
Saber-AyadM.
From genes to drugs: CYP2C19 and pharmacogenetics in clinical practice.Front. Pharmacol.202415132677610.3389/fphar.2024.132677638420192
Aguilera CastroL.
Martín de Argila de Prados C, Albillos Martínez A. Practical considerations in the management of proton-pump inhibitors.Rev. Esp. Enferm. Dig.2015108314515310.17235/reed.2015.3812/201526666270
RaoulJ.L.
Moreau-BachelardC.
GilabertM.
EdelineJ.
FrénelJ.S.
Drug–drug interactions with proton pump inhibitors in cancer patients: An underrecognized cause of treatment failure.ESMO Open20238110088010.1016/j.esmoop.2023.10088036764092
SercombeL.
VeeratiT.
MoheimaniF.
Advances and challenges of liposomal drug delivery systems in cancer therapy.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
MukalelA.J.
RileyR.S.
ZhangR.
MitchellM.J.
Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy.Cancer Lett.201945810211210.1016/j.canlet.2019.04.04031100411
SpugniniE.P.
CitroG.
FaisS.
Proton pump inhibitors as anti vacuolar-ATPases drugs: A novel anticancer strategy.J. Exp. Clin. Cancer Res.20102914410.1186/1756‑9966‑29‑4420459683
YapT.A.
SandhuS.K.
WorkmanP.
de BonoJ.S.
Envisioning the future of early anticancer drug development.Nat. Rev. Cancer201010751452310.1038/nrc287020535131
ChehelgerdiM.
ChehelgerdiM.
AllelaO.Q.B.
Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
ElumalaiK.
SrinivasanS.
ShanmugamA.
Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomedical Technology2024510912210.1016/j.bmt.2023.09.001
SrebroJ.
BrniakW.
MendykA.
Formulation of dosage forms with proton pump inhibitors: State of the art, challenges and future perspectives.Pharmaceutics20221410204310.3390/pharmaceutics1410204336297478
PatraJ.K.
DasG.
FracetoL.F.
Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
WuL.
WenY.
LengD.
Machine learning methods, databases and tools for drug combination prediction.Brief. Bioinform.2022231bbab35510.1093/bib/bbab35534477201
OyejideA.J.
AdekunleY.A.
AbodunrinO.D.
AtoyebiE.O.
Artificial intelligence, computational tools and robotics for drug discovery, development, and delivery.Intell Pharm202510.1016/j.ipha.2025.01.001
SarkarC.
DasB.
RawatV.S.
Artificial intelligence and machine learning technology-driven modern drug discovery and development.Int. J. Mol. Sci.2023243202610.3390/ijms2403202636768346
HachadH.
Ragueneau-MajlessiI.
LevyR.H.
A useful tool for drug interaction evaluation: The University of Washington Metabolism and Transport Drug Interaction Database.Hum. Genomics201051617210.1186/1479‑7364‑5‑1‑6121106490
BakerR.E.
PeñaJ.M.
JayamohanJ.
JérusalemA.
Mechanistic models versus machine learning, a fight worth fighting for the biological community?Biol. Lett.20181452017066010.1098/rsbl.2017.066029769297
KatherJ.N.
KrisamJ.
CharoentongP.
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.PLoS Med.2019161e100273010.1371/journal.pmed.100273030677016
PasrijaP.
JhaP.
UpadhyayaP.
KhanM.S.
ChopraM.
Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery.Curr. Top. Med. Chem.202222201692172710.2174/156802662266622070109133935786336
HanR.
YoonH.
KimG.
LeeH.
LeeY.
Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery.Pharmaceuticals2023169125910.3390/ph1609125937765069
NissanN.
AllenM.C.
SabatinoD.
BiggarK.K.
Future perspective: Harnessing the power of artificial intelligence in the generation of new peptide drugs.Biomolecules20241410130310.3390/biom1410130339456236
RajaeiF.
MinoccheriC.
WittrupE.
AI-based computational methods in early drug discovery and post market drug assessment: A survey.IEEE Trans Comput Biol Bioinform20242219711510.1109/TCBB.2024.3492708