Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Introduction

Tobacco and alcohol consumption are major risk factors for oral cancer, which affects the mouth, lips, tongue, cheeks, and throat. This malignancy is characterized by abnormal cell growth driven by genetic and epigenetic alterations. Conventional treatment approaches face several limitations, necessitating a multidisciplinary strategy. Solid Lipid Nanoparticles (SLNs) have emerged as a promising therapeutic platform for enhancing treatment outcomes.

Objective

This review examines the potential of SLNs in oral cancer management, focusing on their preparation techniques and therapeutic advantages in improving drug delivery and efficacy.

Methods

Various methods exist for SLN preparation, including high-pressure homogenization, ultrasonication/high-speed homogenization, solvent evaporation, solvent emulsification-evaporation, solvent emulsification-diffusion, supercritical fluid technology, double emulsion, microemulsion-based techniques, spray drying, phase inversion, and coacervation methods.

Results and Discussion

SLNs, due to their nanoscale size, enable targeted drug delivery, improving bioavailability while minimizing systemic side effects. They address challenges such as poor drug solubility and ensure sustained drug release for prolonged therapeutic action. Furthermore, SLNs can encapsulate a variety of anticancer agents, making them a versatile and effective option for oral cancer therapy.

Conclusion

SLNs offer a promising strategy for overcoming the challenges associated with oral cancer treatment. Their ability to enhance drug stability, bioavailability, and controlled release makes them a superior alternative to conventional therapies. The versatility of SLNs in encapsulating diverse anticancer agents highlights their potential for innovative, well-tolerated, and more effective treatment solutions, signifying a major advancement in oral cancer management.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X353981250626141257
2025-01-01
2025-10-08
Loading full text...

Full text loading...

References

  1. BorseV. KonwarA.N. BuragohainP. Oral cancer diagnosis and perspectives in India.Sensors International2020110004610.1016/j.sintl.2020.10004634766046
    [Google Scholar]
  2. SausenD. ShechterO. GalloE. DahariH. BorensteinR. Herpes simplex virus, human papillomavirus, and cervical cancer: Overview, relationship, and treatment implications.Cancers20231514369210.3390/cancers1514369237509353
    [Google Scholar]
  3. RanganathanK. KavithaL. Oral epithelial dysplasia: Classifications and clinical relevance in risk assessment of oral potentially malignant disorders.J. Oral Maxillofac. Pathol.2019231192710.4103/jomfp.JOMFP_13_1931110412
    [Google Scholar]
  4. DhanuthaiK. RojanawatsirivejS. ThosapornW. Oral cancer: A multicenter study.Med. Oral Patol. Oral Cir. Bucal2018231e23e29[PMID: 29274153
    [Google Scholar]
  5. SheikhO. PerryM. Tongue and Teeth: Part II.In: Diseases and Injuries to the Head, Face and Neck: A Guide to Diagnosis and Management.Cham, SwitzerlandSpringer202110851165
    [Google Scholar]
  6. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  7. IslamMM LunawatAK KumarA KumarA SharmaT MukherjeeD Innovative progress: Artificial intelligence in the realm of oral cancerClin Cancer Drugs 202410(1)e2212697X31551210.2174/012212697X315512240821045542
    [Google Scholar]
  8. GeorgakiM. TheofilouV.I. PettasE. Understanding the complex pathogenesis of oral cancer: A comprehensive review.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2021132556657910.1016/j.oooo.2021.04.00434518141
    [Google Scholar]
  9. TakeshimaH. UshijimaT. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk.NPJ Precis. Oncol.201931710.1038/s41698‑019‑0079‑030854468
    [Google Scholar]
  10. BalakittnenJ. WeeramangeC.E. WallaceD.F. Noncoding RNAs in oral cancer.Wiley Interdiscip. Rev. RNA2023143e175410.1002/wrna.175435959932
    [Google Scholar]
  11. UsmanS. JamalA. TehM.T. WaseemA. Major molecular signaling pathways in oral cancer associated with therapeutic resistance.Frontiers.In Oral Health2021160316010.3389/froh.2020.60316035047986
    [Google Scholar]
  12. ChenX. ZhaoW. ChenS. YuD. Mutation profiles of oral squamous cell carcinoma cells.Adv Oral Maxillofac Surg2021210002610.1016/j.adoms.2021.100026
    [Google Scholar]
  13. JainA. Molecular pathogenesis of oral squamous cell carcinoma.In:Squamous Cell Carcinoma-Hallmark and Treatment Modalities.IntechOpen2019
    [Google Scholar]
  14. WeiD. WangW. ShenB. MicroRNA 199a 5p suppresses migration and invasion in oral squamous cell carcinoma through inhibiting the EMT related transcription factor SOX4.Int. J. Mol. Med.201944118519510.3892/ijmm.2019.417431059001
    [Google Scholar]
  15. MesgariH. EsmaelianS. NasiriK. GhasemzadehS. DoroudgarP. PayandehZ. Epigenetic regulation in oral squamous cell carcinoma microenvironment: A comprehensive review.Cancers20231523560010.3390/cancers1523560038067304
    [Google Scholar]
  16. HanC. SunL.Y. WangW.T. SunY.M. ChenY.Q. Non-coding RNAs in cancers with chromosomal rearrangements: The signatures, causes, functions and implications.J. Mol. Cell Biol.2019111088689810.1093/jmcb/mjz08031361891
    [Google Scholar]
  17. GholizadehP. EslamiH. YousefiM. AsgharzadehM. AghazadehM. KafilH.S. Role of oral microbiome on oral cancers, a review.Biomed. Pharmacother.20168455255810.1016/j.biopha.2016.09.08227693964
    [Google Scholar]
  18. PereraM. PereraI. TilakaratneW. Oral microbiome and oral cancer.In: Immunology for Dentistry20237999
    [Google Scholar]
  19. D’CruzA.K. VaishR. DharH. Oral cancers: Current status.Oral Oncol.201887646910.1016/j.oraloncology.2018.10.01330527245
    [Google Scholar]
  20. SankaranarayananR. RamadasK. AmarasingheH. SubramanianS. JohnsonN. Oral cancer: Prevention, early detection, and treatment.In:Cancer: Disease Control Priorities.The (3rd ed)Washington, DCThe International Bank for Reconstruction and Development / The World Bank201510.1596/978‑1‑4648‑0349‑9_ch5
    [Google Scholar]
  21. MonteroP.H. PatelS.G. Cancer of the oral cavity.Surgical Oncology Clinics2015243491508[PMID: 25979396
    [Google Scholar]
  22. ArrifinA. HeidariE. BurkeM. FenlonM.R. BanerjeeA. The effect of radiotherapy for treatment of head and neck cancer on oral flora and saliva.Oral Health Prev. Dent.2018165425429[PMID: 30460355
    [Google Scholar]
  23. WongTSC WiesenfeldD Oral cancer.Aust Dent J 20186363(S1): S91-9.(Suppl. 1)10.1111/adj.1259429574808
    [Google Scholar]
  24. SroussiH.Y. EpsteinJ.B. BensadounR.J. Common oral complications of head and neck cancer radiation therapy: Mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis.Cancer Med.20176122918293110.1002/cam4.122129071801
    [Google Scholar]
  25. Chaveli-LópezB. Bagán-SebastiánJ.V. Treatment of oral mucositis due to chemotherapy.J. Clin. Exp. Dent.201682e20110.4317/jced.5291727034762
    [Google Scholar]
  26. PoulopoulosA. PapadopoulosP. AndreadisD. Chemotherapy: Oral side effects and dental interventions. A review of the literature.Stomatol Dis Sci201712354910.20517/2573‑0002.2017.03
    [Google Scholar]
  27. AndersonG. EbadiM. VoK. NovakJ. GovindarajanA. AminiA. An updated review on head and neck cancer treatment with radiation therapy.Cancers20211319491210.3390/cancers1319491234638398
    [Google Scholar]
  28. SedighiM. Zahedi BialvaeiA. HamblinM.R. Therapeutic bacteria to combat cancer; Current advances, challenges, and opportunities.Cancer Med.2019863167318110.1002/cam4.214830950210
    [Google Scholar]
  29. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  30. JinJ. TangY. HuC. Multicenter, randomized, phase III trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR).J. Clin. Oncol.202240151681169210.1200/JCO.21.0166735263150
    [Google Scholar]
  31. PangQ. DuanL. JiangY. LiuH. Oncologic and long-term outcomes of enhanced recovery after surgery in cancer surgeries - A systematic review.World J. Surg. Oncol.202119119110.1186/s12957‑021‑02306‑2
    [Google Scholar]
  32. NewtonA.M. KaurS. Solid lipid nanoparticles for skin and drug delivery: Methods of preparation and characterization techniques and applications.In:Nanoarchitectonics in biomedicine.Elsevier201929533410.1016/B978‑0‑12‑816200‑2.00015‑3
    [Google Scholar]
  33. MuH. HolmR. Solid lipid nanocarriers in drug delivery: Characterization and design.Expert Opin. Drug Deliv.201815877178510.1080/17425247.2018.150401830064267
    [Google Scholar]
  34. Gordillo-GaleanoA. Mora-HuertasC.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release.Eur. J. Pharm. Biopharm.201813328530810.1016/j.ejpb.2018.10.01730463794
    [Google Scholar]
  35. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  36. AlsaadA.A. HussienA.A. GareebM.M. Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review.Syst. Rev. Pharm.202011259273
    [Google Scholar]
  37. NaseriN. ValizadehH. Zakeri-MilaniP. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.04326504751
    [Google Scholar]
  38. GanesanP. NarayanasamyD. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery.Sustain. Chem. Pharm.20176375610.1016/j.scp.2017.07.002
    [Google Scholar]
  39. BassoJ. MendesM. CovaT. A stepwise framework for the systematic development of lipid nanoparticles.Biomolecules202212222310.3390/biom1202022335204723
    [Google Scholar]
  40. Karn-orachaiK. SmithS.M. SaesooS. Surfactant effect on the physicochemical characteristics of γ-oryanol-containing solid lipid nanoparticles.Colloids Surf. A Physicochem. Eng. Asp.201648811812810.1016/j.colsurfa.2015.10.011
    [Google Scholar]
  41. ShahR. EldridgeD. PalomboE. HardingI. Lipid nanoparticles: Production, characterization and stability.Springer201510.1007/978‑3‑319‑10711‑0
    [Google Scholar]
  42. VinchhiP. PatelJ.K. PatelM.M. High-pressure homogenization techniques for nanoparticles.In:Emerging Technologies for Nanoparticle Manufacturing.Springer2021263285
    [Google Scholar]
  43. GuptaS. KesarlaR. ChotaiN. MisraA. OmriA. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability.BioMed Res. Int.20172017598401410.1155/2017/5984014
    [Google Scholar]
  44. SadiahS. AnwarE. DjufriM. CahyaningsihU. Preparation and characteristics of nanostructured lipid carrier (NLC) loaded red ginger extract using high pressure homogenizer method.J Pharm Sci Res201791018891893
    [Google Scholar]
  45. KaramiM.A. Sharif Makhmal ZadehB. KoochakM. MoghimipurE. Superoxide dismutase-loaded solid lipid nanoparticles prepared by cold homogenization method: Characterization and permeation study through burned rat skin.Jundishapur J. Nat. Pharm. Prod.2016114e3396810.17795/jjnpp‑33968
    [Google Scholar]
  46. SastriK.T. RadhaG.V. PidikitiS. VajjhalaP. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies.J. Appl. Pharm. Sci.202010612614110.7324/JAPS.2020.10617
    [Google Scholar]
  47. AmoabedinyG. HaghiralsadatF. NaderinezhadS. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review.Int. J. Polym. Mater.201867638340010.1080/00914037.2017.1332623
    [Google Scholar]
  48. BehbahaniE.S. GhaediM. AbbaspourM. RostamizadehK. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques.Ultrason. Sonochem.20173827128010.1016/j.ultsonch.2017.03.01328633826
    [Google Scholar]
  49. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules2520478133081021
    [Google Scholar]
  50. Becker PeresL. Becker PeresL. de AraújoP.H.H. SayerC. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique.Colloids Surf. B Biointerfaces201614031732310.1016/j.colsurfb.2015.12.03326764112
    [Google Scholar]
  51. LiQ. CaiT. HuangY. XiaX. ColeS. CaiY. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs.Nanomaterials20177612210.3390/nano706012228554993
    [Google Scholar]
  52. Piñón-SegundoE. Llera-RojasV.G. Leyva-GómezG. Urbán-MorlánZ. Mendoza-MuñozN. Quintanar-GuerreroD. The emulsification-diffusion method to obtain polymeric nanoparticles: Two decades of research.In:Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology.William Andrew Publishing20185183
    [Google Scholar]
  53. FernandesC.B. MandawgadeS. PatravaleV.B. Solid lipid nanoparticles of etoposide using solvent emulsification diffusion technique for parenteral administration.Int J Pharma Biosci Technol2013112733
    [Google Scholar]
  54. RamtekeK. JoshiS. DholeS. Solid lipid nanoparticle: A review.IOSR J. Pharm.201226344410.9790/3013‑26103444
    [Google Scholar]
  55. Mendoza-MuñozN. Alcalá-AlcalaS. Quintanar-GuerreroD. Preparation of polymer nanoparticles by the emulsification-solvent evaporation method: From Vanderhoff’s pioneer approach to recent adaptations.In:Polymer Nanoparticles for Nanomedicines: A Guide for their Design, Preparation and Development.ChamSpringer201687121
    [Google Scholar]
  56. CampardelliR. CherainM. PerfettiC. Lipid nanoparticles production by supercritical fluid assisted emulsion–diffusion.J. Supercrit. Fluids201382344010.1016/j.supflu.2013.05.020
    [Google Scholar]
  57. KumarG. PaulP. MuzaffarF. Solid lipid nanoparticles: A trending outlook for drug delivery system.World J. Pharm. Res.2020914271290
    [Google Scholar]
  58. ShahR.M. MalherbeF. EldridgeD. PalomboE.A. HardingI.H. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique.J. Colloid Interface Sci.201442828629410.1016/j.jcis.2014.04.05724910064
    [Google Scholar]
  59. KotmakçıM. AkbabaH. ErelG. ErtanG. KantarcıG. Improved method for solid lipid nanoparticle preparation based on hot microemulsions: Preparation, characterization, cytotoxicity, and hemocompatibility evaluation.AAPS PharmSciTech20171841355136510.1208/s12249‑016‑0606‑z27502405
    [Google Scholar]
  60. MahajanA. KaurS. GrewalN.K. KaurS. Solid lipid nanoparticles (SLNs)–as novel lipid based nanocarriers for drugs.Int. J. Adv. Res.201421433441
    [Google Scholar]
  61. MalamatariM. CharisiA. MalamatarisS. KachrimanisK. NikolakakisI. Spray drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation.Processes20208778810.3390/pr8070788
    [Google Scholar]
  62. SantosD. MaurícioA.C. SencadasV. SantosJ.D. FernandesM.H. GomesP.S. Spray drying: An overview.In: Biomaterials-Physics and Chemistry-New Edition.InTech201893510.5772/intechopen.72247
    [Google Scholar]
  63. WangT. HuQ. ZhouM. XiaY. NiehM.P. LuoY. Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.Eur. J. Pharm. Biopharm.201610727328510.1016/j.ejpb.2016.07.02227470922
    [Google Scholar]
  64. HeH. WangP. CaiC. YangR. TangX. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption.Int. J. Pharm.20154931-245145910.1016/j.ijpharm.2015.08.00426253378
    [Google Scholar]
  65. SubrotoE. AndoyoR. IndiartoR. WulandariE. WadhiahE.F.N. Preparation of solid Lipid nanoparticle-ferrous sulfate by double emulsion method based on fat rich in monolaurin and stearic acid.Nanomaterials20221217305410.3390/nano1217305436080090
    [Google Scholar]
  66. AmasyaG. BadilliU. AksuB. TarimciN. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion — Solvent evaporation method.Eur. J. Pharm. Sci.2016849210210.1016/j.ejps.2016.01.00326780593
    [Google Scholar]
  67. GaoS. McClementsD.J. Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method.Colloids Surf. A Physicochem. Eng. Asp.2016499798710.1016/j.colsurfa.2016.03.065
    [Google Scholar]
  68. JintapattanakitA. Preparation of nanoemulsions by phase inversion temperature (PIT).Pharmaceutical Sciences Asia201842111210.29090/psa.2018.01.001
    [Google Scholar]
  69. TalaricoL. ConsumiM. LeoneG. TamasiG. MagnaniA. Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin.Molecules2021269269410.3390/molecules2609269434064488
    [Google Scholar]
  70. HaoJ. WangF. WangX. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design.Eur. J. Pharm. Sci.201247249750510.1016/j.ejps.2012.07.00622820033
    [Google Scholar]
  71. BattagliaL. GallarateM. PeiraE. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: Preliminary in vitro studies.Nanotechnology2015262525510210.1088/0957‑4484/26/25/25510226043866
    [Google Scholar]
  72. HolpuchA.S. HummelG.J. TongM. Nanoparticles for local drug delivery to the oral mucosa: Proof of principle studies.Pharm. Res.20102771224123610.1007/s11095‑010‑0121‑y20354767
    [Google Scholar]
  73. ShiL.L. LuJ. CaoY. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel.Drug Dev. Ind. Pharm.201743583984610.1080/03639045.2016.122057127487431
    [Google Scholar]
  74. LiH. QuX. QianW. SongY. WangC. LiuW. Andrographolide‐loaded solid lipid nanoparticles enhance anti‐cancer activity against head and neck cancer and precancerous cells.Oral Dis.202228114214910.1111/odi.1375133295090
    [Google Scholar]
  75. RadaicA. MaloneE. KamarajanP. KapilaY.L. Solid lipid nanoparticles loaded with nisin (SLN-Nisin) are more effective than free nisin as antimicrobial, antibiofilm, and anticancer agents.J. Biomed. Nanotechnol.20221841227123510.1166/jbn.2022.331435854440
    [Google Scholar]
  76. GharatS. BasudkarV. MominM. PrabhuA. Mucoadhesive oro-gel–containing chitosan lipidic nanoparticles for the management of oral squamous cell carcinoma.J. Pharm. Innov.20231831298131510.1007/s12247‑023‑09724‑7
    [Google Scholar]
  77. OrtegaA. da SilvaA.B. da CostaL.M. Thermosensitive and mucoadhesive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan for the treatment of oral squamous cell carcinoma.Drug Deliv. Transl. Res.202313264265710.1007/s13346‑022‑01227‑136008703
    [Google Scholar]
  78. BaekJ.S. SoJ.W. ShinS.C. ChoC.W. Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-β-cyclodextrin as an oral delivery system.Int. J. Mol. Med.201230495395910.3892/ijmm.2012.108622859311
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X353981250626141257
Loading
/content/journals/ccand/10.2174/012212697X353981250626141257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test