Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Aim

The present research work aims to formulate a cost-effective and less toxic drug for specific and selective delivery at the tumor site.

Background

Existing therapeutics, such as chemo, surgery, ., for fast-paced MCF-7 breast cancer, still face challenges, especially due to their toxic side effects. The unique properties of metal nanoparticles embedded in anti-oxidant plant polymers have sparked great interest in the formulation of less toxic-targeted drugs for cancer cure.

Objective

The present work aims to synthesize a targeted formulation of colloidal nanosilver by surface engineering of silver nanoparticles using plant polymers in electrolytic deposition technique, developed indigenously at the institute lab.

Methods

A current is passed through an elctrolyte, AgNO, which splits it into ions. The positive ions of Ag deposit over LDPE wrapped carbon cathode and negative ion, NO, is liberated. Ag+ ions get capped . These surface-modified silver nanoparticles formulate a colloidal solution. UV-visible and FTIR spectroscopy, TEM-EDX, and XRD were used to validate as-prepared formulation and human tumor xenograft model in NOD-SCID mouse for efficacy against MCF-7 breast cancer.

Results

The as-synthesized formulation consists of pure spherical poly-dispersed silver nanoparticles of average size 5.4 nm, coated with sulphated flavanols. The efficacy evaluation reported that it significantly, T/C = 0.53, reduced tumor volumes with a 100% survival rate and change in animal body weight <4 gms.

Conclusion

The as-synthesized formulation can be used as a potential neo-adjuvant or adjuvant drug along with existing therapeutics for MCF-7 breast cancer, significantly reducing the toxicity and cost.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X345534241121082505
2024-01-01
2025-10-08
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. ElsoriD. PandeyP. RamniwasS. KumarR. LakhanpalS. RabS.O. SiddiquiS. SinghA. SaeedM. KhanF. Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics.Front. Pharmacol.202415140661910.3389/fphar.2024.1406619 38957397
    [Google Scholar]
  3. Peralta-ZaragozaO. Bermúdez-MoralesV.H. Pérez-PlasenciaC. Salazar-LeónJ. Gómez-CerónC. Madrid-MarinaV. Targeted treatments for cervical cancer: a review.OncoTargets Ther.2012531532810.2147/OTT.S25123 23144564
    [Google Scholar]
  4. BrahmerJ.R. National comprehensive cancer network. management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline.J. Clin. Oncol.2012361717141768
    [Google Scholar]
  5. BourkeP. ZiuzinaD. HanL. CullenP.J. GilmoreB.F. Microbiological interactions with cold plasma.J. Appl. Microbiol.2017123230832410.1111/jam.13429 28245092
    [Google Scholar]
  6. PandeyP. KhanF. QariH.A. OvesM. Rutin (bioflavonoid) as cell signaling pathway modulator: prospects in treatment and chemoprevention.Pharmaceuticals (Basel)20211411106910.3390/ph14111069 34832851
    [Google Scholar]
  7. BhattacharyaD. GuptaR.K. Nanotechnology and potential of microorganisms.Crit. Rev. Biotechnol.200525419920410.1080/07388550500361994 16419617
    [Google Scholar]
  8. Al AbboudM.A. MashraqiA. QanashH. GattanH.S. FelembanH.R. AlkorbiF. AlawlaqiM.M. AbdelghanyT.M. MoawadH. Green biosynthesis of bimetallic ZnO@AuNPs with its formulation into cellulose derivative: biological and environmental applications.Bioresour. Bioprocess.20241116010.1186/s40643‑024‑00759‑3 38884830
    [Google Scholar]
  9. AlghonaimM.I. AlsalamahS.A. MohammadA.M. Green synthesis of bimetallic Se@TiO2NPs and their formulation into biopolymers and their utilization as antimicrobial, anti-diabetic, antioxidant, and healing agent in vitro.Biomass Conv. Bioref202411310.1007/s13399‑024‑05451‑2
    [Google Scholar]
  10. QanashH. BazaidA. AldarhamiA. AlharbiB. AlmashjaryM. HazzaziM. FelembanH. AbdelghanyT. Phytochemical characterization and efficacy of Artemisia judaica extract loaded chitosan nanoparticles as inhibitors of cancer proliferation and microbial growth.Polymers (Basel)202315239110.3390/polym15020391 36679271
    [Google Scholar]
  11. Al-RajhiA.M.H. AbdelghanyT.M. AlmuhayawiM.S. AlruhailiM.H. Al JaouniS.K. SelimS. The green approach of chitosan/Fe2O3/ZnO-nanocomposite synthesis with an evaluation of its biological activities.Appl. Biol. Chem.20246717510.1186/s13765‑024‑00926‑2
    [Google Scholar]
  12. Habeeb RahumanH.B. DhandapaniR. NarayananS. PalanivelV. ParamasivamR. SubbarayaluR. ThangaveluS. MuthupandianS. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications.IET Nanobiotechnol.202216411514410.1049/nbt2.12078 35426251
    [Google Scholar]
  13. SharmaV.K. YngardR.A. LinY. Silver nanoparticles: Green synthesis and their antimicrobial activities.Adv. Colloid Interface Sci.20091451-2839610.1016/j.cis.2008.09.002 18945421
    [Google Scholar]
  14. AbdelghanyT.M. Al-RajhiA.M.H. Al AbboudM.A. AlawlaqiM.M. Ganash MagdahA. HelmyE.A.M. MabroukA.S. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review.Bionanoscience20188151610.1007/s12668‑017‑0413‑3
    [Google Scholar]
  15. GoodsellD.S. Bionanotechnology: lessons from nature.John Wiley & Sons200410.1002/0471469572
    [Google Scholar]
  16. KhanF. PandeyP. VermaM. RamniwasS. LeeD. MoonS. ParkM.N. UpadhyayT.K. KimB. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy.Biomed. Pharmacother.202417311636310.1016/j.biopha.2024.116363 38479184
    [Google Scholar]
  17. SadeghiB. GholamhoseinpoorF. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513431031510.1016/j.saa.2014.06.046 25022503
    [Google Scholar]
  18. Abd El-GhanyT.M. Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity.Indones. J. Biotechnol.20131827582
    [Google Scholar]
  19. DwivediA.D. GopalK. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract.Colloids Surf. A Physicochem. Eng. Asp.20103691-3273310.1016/j.colsurfa.2010.07.020
    [Google Scholar]
  20. SanthoshkumarT. RahumanA.A. RajakumarG. MarimuthuS. BagavanA. JayaseelanC. ZahirA.A. ElangoG. KamarajC. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors.Parasitol. Res.2011108369370210.1007/s00436‑010‑2115‑4 20978795
    [Google Scholar]
  21. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  22. MagnussonM.H. DeppertK. MalmJ-O. BovinJ-O. SamuelsonL. Gold nanoparticles: production, reshaping, and thermal charging.J. Nanopart. Res.19991224325110.1023/A:1010012802415
    [Google Scholar]
  23. IravaniS. KorbekandiH. MirmohammadiS.V. ZolfaghariB. Synthesis of silver nanoparticles: chemical, physical and biological methods.Res. Pharm. Sci.201496385406 26339255
    [Google Scholar]
  24. ThakkarK.N. MhatreS.S. ParikhR.Y. Biological synthesis of metallic nanoparticles.Nanomedicine (Lond.)20106225726210.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  25. VaidyanathanR. KalishwaralalK. GopalramS. GurunathanS. RETRACTED: Nanosilver - The burgeoning therapeutic molecule and its green synthesis.Biotechnol. Adv.200927692493710.1016/j.biotechadv.2009.08.001 19686832
    [Google Scholar]
  26. PandeyP. RamniwasS. VermaM. RautelaI. KhanF. ShahM.A. A comprehensive review uncovering the anticancerous potential of genkwanin (plant-derived compound) in several human carcinomas.Open Chem.20242212024000310.1515/chem‑2024‑0003
    [Google Scholar]
  27. KopustinskieneD.M. JakstasV. SavickasA. BernatonieneJ. Flavonoids as anticancer agents.Nutrients202012245710.3390/nu12020457 32059369
    [Google Scholar]
  28. KikuchiH. YuanB. HuX. OkazakiM. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents.Am. J. Cancer Res.20199815171535 31497340
    [Google Scholar]
  29. KhanA.U. DagurH.S. KhanM. MalikN. AlamM. MushtaqueM. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives.Eur. J. Med. Chem. Rep.2021310001010.1016/j.ejmcr.2021.100010
    [Google Scholar]
  30. MirS.A. DarA. HamidL. NisarN. MalikJ.A. AliT. BaderG.N. Flavonoids as promising molecules in the cancer therapy: An insight.Curr. Res. Pharmacol. Drug Discov.2024610016710.1016/j.crphar.2023.100167 38144883
    [Google Scholar]
  31. AsnaashariS. AmjadE. SokoutiB. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review.Cancer Cell Int.202323121110.1186/s12935‑023‑03052‑z 37743502
    [Google Scholar]
  32. PandeyP. KhanF. RamniwasS. SaeedM. AhmadI. A mechanistic review of the pharmacological potential of narirutin: a dietary flavonoid.Naunyn Schmiedebergs Arch. Pharmacol.202439785449546110.1007/s00210‑024‑03022‑w 38457040
    [Google Scholar]
  33. SysakS. Czarczynska-GoslinskaB. SzykP. KoczorowskiT. MlynarczykD.T. SzczolkoW. LesykR. GoslinskiT. Metal nanoparticle-flavonoid connections: synthesis, physicochemical and biological properties, as well as potential applications in medicine.Nanomaterials (Basel)2023139153110.3390/nano13091531 37177076
    [Google Scholar]
  34. LiZ. LeW. CuiZ. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion.Cell Death Discov.20184110810.1038/s41420‑018‑0122‑x
    [Google Scholar]
  35. YauA. LeeJ. ChenY. Nanomaterials for protein delivery in anticancer applications.Pharmaceutics202113215510.3390/pharmaceutics13020155 33503889
    [Google Scholar]
  36. Shweta RajawatM.S. Electrolytic deposition of silver nanoparticles under principles of green chemistry, The arabian journal for science and engineering, Springer, 2014, , -2014392563568
    [Google Scholar]
  37. WangH. LiX. LiuX. ShenD. QiuY. ZhangX. SongJ. Influence of pH, concentration and light on stability of allicin in garlic (Allium sativum L.) aqueous extract as measured by UPLC.J. Sci. Food Agric.20159591838184410.1002/jsfa.6884 25205359
    [Google Scholar]
  38. HuW. XiaoS. DengH. LuoW. DengL. Thermodynamic properties of nano-silver and alloy particles. In: Silver Nanoparticles.InTech2010
    [Google Scholar]
  39. GuptaD. ChauhanP. Green synthesis of silver nanoparticles involving extract of plants of different taxonomic groups.J. Nanomed. Res.20175200110
    [Google Scholar]
  40. RajawatS. QureshiM.S. Electrolytic deposition of silver nanoparticles under “Principles of Green Chemistry”.Arab. J. Sci. Eng.201439156356810.1007/s13369‑013‑0879‑4
    [Google Scholar]
  41. ShwetaR. RajnishK. RajukumarK. ShreyasP. SonaliS. QureshiM.S. Study of anti-cancer properties of green silver nanoparticles against MCF-7 breast cancer cell lines.Green Process Synth20165173181
    [Google Scholar]
  42. ChandranS.P. ChaudharyM. PasrichaR. AhmadA. SastryM. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.Biotechnol. Prog.200622257758310.1021/bp0501423 16599579
    [Google Scholar]
  43. KhodashenasB. GhorbaniH.R. Synthesis of silver nanoparticles with different shapes.Arab. J. Chem.20191281823183810.1016/j.arabjc.2014.12.014
    [Google Scholar]
  44. AL-Thabaiti S.A.; Malik, M.A.; Al-Youbi, A.A.; Khan, Z.; Hussain, J.I. Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution.Int. J. Electrochem. Sci.201381204218
    [Google Scholar]
  45. El-KheshenA.A. El-RabS.F.G. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity Pharm.Chem2012415365
    [Google Scholar]
  46. Jiang, 2011, X. C. Jiang, W. M. Chen, C. Y. Chen, S.X. Xiong, A.B. Yu Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach.Nanoscale Res. Lett.201163
    [Google Scholar]
  47. KimD. JeongS. MoonJ. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection.Nanotechnology200617164019402410.1088/0957‑4484/17/16/004 21727531
    [Google Scholar]
  48. ShervaniZ. IkushimaY. SatoM. KawanamiH. HakutaY. YokoyamaT. NagaseT. KuneidaH. AramakiK. Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions.Colloid Polym. Sci.2008286440341010.1007/s00396‑007‑1784‑8
    [Google Scholar]
  49. CiapinaE.G. dos SantosM.L. SantosR.M.I.S. PalombariniJ. Almeida JúniorO.P. SantanaJ.C.C.C. ModestoD.A. LanfrediA.J.C. SantosS.F. On the lattice dilation of palladium nanoparticles and a new methodology for the quantification of interstitials.J. Alloys Compd.202188116062810.1016/j.jallcom.2021.160628
    [Google Scholar]
  50. WassermanH.J. VermaakJ.S. On the determination of a lattice contraction in very small silver particles.Surf. Sci.197022116417210.1016/0039‑6028(70)90031‑2
    [Google Scholar]
  51. PrakashP. GnanaprakasamP. EmmanuelR. ArokiyarajS. SaravananM. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates.Colloids Surf. B Biointerfaces201310825525910.1016/j.colsurfb.2013.03.017 23563291
    [Google Scholar]
  52. NiraimathiK.L. SudhaV. LavanyaR. BrindhaP. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities.Colloids Surf. B Biointerfaces201310228829110.1016/j.colsurfb.2012.08.041 23006568
    [Google Scholar]
  53. RestrepoC.V. VillaC.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review.Environ. Nanotechnol. Monit. Manag.20211510042810.1016/j.enmm.2021.100428
    [Google Scholar]
  54. SidhuA.K. VermaN. KaushalP. Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential.Front. Nanotechnol.2022380162010.3389/fnano.2021.801620
    [Google Scholar]
  55. Guilger-CasagrandeM. Germano-CostaT. Bilesky-JoséN. Pasquoto-StiglianiT. CarvalhoL. FracetoL.F. de LimaR. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum.J. Nanobiotechnology20211915310.1186/s12951‑021‑00797‑5 33627148
    [Google Scholar]
  56. HasanK.M.F. XiaoyiL. ShaoqinZ. HorváthP.G. BakM. BejóL. SiposG. AlpárT. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials.Heliyon2022812e1232210.1016/j.heliyon.2022.e12322 36590481
    [Google Scholar]
  57. ShumeW.M. MurthyH.C.A. ZereffaE.A. A Review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications.J. Chem.2020202011510.1155/2020/5039479
    [Google Scholar]
  58. Al-ZahraniS. Astudillo-CalderónS. PintosB. Pérez-UrriaE. ManzaneraJ.A. MartínL. Gomez-GarayA. Role of synthetic plant extracts on the production of silver-derived nanoparticles.Plants2021108167110.3390/plants10081671 34451715
    [Google Scholar]
  59. ZaheerZ. Rafiuddin, Silver nanoparticles to self-assembled films: Green synthesis and characterization.Colloids Surf. B Biointerfaces201290485210.1016/j.colsurfb.2011.09.037 22055624
    [Google Scholar]
  60. HemaJ.A. MalakaR. MuthukumarasamyN.P. SambandamA. SubramanianS. SevananM. Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications.IET Nanobiotechnol.201610528829410.1049/iet‑nbt.2015.0103 27676376
    [Google Scholar]
  61. SiddiqiK.S. HusenA. RaoR.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties.J. Nanobiotechnology20181611410.1186/s12951‑018‑0334‑5 29452593
    [Google Scholar]
  62. LeeS.H. JunB.H. Silver nanoparticles: Synthesis and application for nanomedicine.Int. J. Mol. Sci.201920486510.3390/ijms20040865 30781560
    [Google Scholar]
  63. IbrahimN.H. TahaG.M. HagaggiN.S.A. MoghazyM.A. Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals.BMC Chem.2024181710.1186/s13065‑023‑01105‑y 38184656
    [Google Scholar]
  64. SousaE. Correia-da-SilvaM. PintoM.M. Sulfated flavonoids: Nature playing with the hydrophilic-hydrophobic balance, chemistry, biochemistry and pharmacology, 1st ed. Publisher: Narosa Publishing House: New Delhi, IndiaEditors: Brahmachari2008
    [Google Scholar]
  65. ManachC. DonovanJ.L. Pharmacokinetics and metabolism of dietary flavonoids in humans.Free Radic. Res.200438877178510.1080/10715760410001727858 15493450
    [Google Scholar]
  66. BredeC. LabhasetwarV. Applications of nanoparticles in the detection and treatment of kidney diseases.Adv. Chronic Kidney Dis.201320645446510.1053/j.ackd.2013.07.006 24206598
    [Google Scholar]
  67. MaY. CaiF. LiY. ChenJ. HanF. LinW. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease.Bioact. Mater.20205373274310.1016/j.bioactmat.2020.05.002 32596555
    [Google Scholar]
  68. TracN. AshrafA. GiblinJ. PrakashS. MitragotriS. ChungE.J. Spotlight on genetic kidney diseases: A call for drug delivery and nanomedicine solutions.ACS Nano20231776165617710.1021/acsnano.2c12140 36988207
    [Google Scholar]
  69. YangK. ShangY. YangN. PanS. JinJ. HeQ. Application of nanoparticles in the diagnosis and treatment of chronic kidney disease.Front. Med. (Lausanne)202310113235510.3389/fmed.2023.1132355 37138743
    [Google Scholar]
  70. WorkmanP. AboagyeE.O. BalkwillF. BalmainA. BruderG. ChaplinD.J. DoubleJ.A. EverittJ. FarninghamD A H. GlennieM.J. KellandL.R. RobinsonV. StratfordI.J. TozerG.M. WatsonS. WedgeS.R. EcclesS.A. Guidelines for the welfare and use of animals in cancer research.Br. J. Cancer2010102111555157710.1038/sj.bjc.6605642 20502460
    [Google Scholar]
  71. MartinE.C. AaronsL. YatesJ.W.T. Accounting for dropout in xenografted tumour efficacy studies: integrated endpoint analysis, reduced bias and better use of animals.Cancer Chemother. Pharmacol.201678113114110.1007/s00280‑016‑3059‑x 27220867
    [Google Scholar]
  72. ChenH. YeQ. LvJ. YeP. SunY. FanS. SuX. GavineP. YinX. Evaluation of trastuzumab anti-tumor efficacy and its correlation with HER-2 status in patient-derived gastric adenocarcinoma xenograft models.Pathol. Oncol. Res.201521494795510.1007/s12253‑015‑9909‑8 25749810
    [Google Scholar]
  73. TsukiharaH. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts.Oncol. Rep.20153352135214210.3892/or.2015.3876
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X345534241121082505
Loading
/content/journals/ccand/10.2174/012212697X345534241121082505
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Cost-effective; MCF-7; NOD-SCID; TEM-EDX; therapeutics; XRD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test