Abstract
BackgroundThe Wnt/beta-catenin pathway is one of the pathways that is deregulated in pancreatic cancer and is reported to be associated with a poor prognosis. This indicates the need for the identification of novel agents to improve the efficacy of current therapy or have an improved efficacy. Therefore, in the present study, we explored the anticancer activity of PNU-74654 alone or in combination with gemcitabine in 2 and 3-dimensional cell culture models of pancreatic cancer.
MethodsThe MTT assay was carried out to determine the viability of PC cancerous cells (PCCs), while the cytotoxicity of this agent was evaluated in a 3D cell culture model (spheroid). The effects of PNU-74654 were investigated in established cell migration/invasion assays.
ResultsThe expression of candidate genes affecting the cell cycle, migration, and Wnt/b-catenin pathway was evaluated at mRNA and/or proteins by RT-PCR or Western blot. PNU-74654 inhibited the cell growth at IC50 of 122 ± 0.4 umol/L and had a synergistic effect on the antiproliferative properties of gemcitabine by modulating the Wnt pathway. The PNU-74654/gemcitabine combination reduced the migratory and invasiveness of PC cells, compared to control cells, through perturbation of E-cadherin.
ConclusionOur findings demonstrate the profound antitumor properties of PNU-74654 in in vitro models of pancreatic cancer, supporting further in vivo studies to evaluate the therapeutic impact of this novel therapy to target the Wnt pathway in the treatment of pancreatic cancer.
©
2024 Bentham Science Publishers
Article metrics loading...
/content/journals/ccand/10.2174/012212697X293676240916114229
2024-04-21
2025-10-08
-
/content/journals/ccand/10.2174/012212697X293676240916114229
dcterms_title,dcterms_subject,pub_keyword
-contentType:Contributor -contentType:Concept -contentType:Institution
10
5
Full text loading...
[Citing articles]
[Web of Science]
[Medline]
References
-
JemalA.
SiegelR.
WardE.
MurrayT.
XuJ.
ThunM.J.
Cancer statistics, 2007.
CA Cancer J. Clin.20075714366
10.3322/canjclin.57.1.43 17237035
[Google Scholar]
-
[Google Scholar]
-
SiegelR.
NaishadhamD.
JemalA.
Cancer statistics, 2013.
CA Cancer J. Clin.20136311130
10.3322/caac.21166 23335087
[Google Scholar]
-
FeldmannG.
MaitraA.
Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts.
J. Mol. Diagn.2008102111122
10.2353/jmoldx.2008.070115 18258927
[Google Scholar]
-
JonesS.
ZhangX.
ParsonsD.W.
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
Science2008321589718011806
10.1126/science.1164368 18772397
[Google Scholar]
-
MorrisJ.P.IV
WangS.C.
HebrokM.
KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma.
Nat. Rev. Cancer20101010683695
10.1038/nrc2899 20814421
[Google Scholar]
-
ZhangY.
MorrisJ.P.IV
YanW.
Canonical Wnt signaling is required for pancreatic carcinogenesis.
Cancer Res.2013731549094922
10.1158/0008‑5472.CAN‑12‑4384 23761328
[Google Scholar]
-
MiyamotoY.
MaitraA.
GhoshB.
Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis.
Cancer Cell200336565576
10.1016/S1535‑6108(03)00140‑5 12842085
[Google Scholar]
-
BermanD.M.
KarhadkarS.S.
MaitraA.
Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours.
Nature20034256960846851
10.1038/nature01972 14520411
[Google Scholar]
-
ThayerS.P.
di MaglianoM.P.
HeiserP.W.
Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis.
Nature20034256960851856
10.1038/nature02009 14520413
[Google Scholar]
-
Pasca di MaglianoM.
BiankinA.V.
HeiserP.W.
Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.
PLoS One2007211e1155
10.1371/journal.pone.0001155 17982507
[Google Scholar]
-
[Google Scholar]
-
SchwitallaS.
FingerleA.A.
CammareriP.
Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties.
Cell20131521-22538
10.1016/j.cell.2012.12.012 23273993
[Google Scholar]
-
[Google Scholar]
-
MaftouhM.
BeloA.I.
AvanA.
Galectin-4 expression is associated with reduced lymph node metastasis and modulation of Wnt/β-catenin signalling in pancreatic adenocarcinoma.
Oncotarget201451453355349
10.18632/oncotarget.2104 24977327
[Google Scholar]
-
MacDonaldB.T.
TamaiK.
HeX.
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev. Cell2009171926
10.1016/j.devcel.2009.06.016 19619488
[Google Scholar]
-
[Google Scholar]
-
[Google Scholar]
-
JacobsK.M.
BhaveS.R.
FerraroD.J.
JaboinJ.J.
HallahanD.E.
ThotalaD.
GSK-3: A bifunctional role in cell death pathways.
Int. J. Cell Biol.20122012111
10.1155/2012/930710 22675363
[Google Scholar]
-
GoughN.R.
Focus issue: Wnt and β-catenin signaling in development and disease.
Sci. Signal.20125206eg2
10.1126/scisignal.2002806 22234609
[Google Scholar]
-
GordonM.D.
NusseR.
Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors.
J. Biol. Chem.2006281322242922433
10.1074/jbc.R600015200 16793760
[Google Scholar]
-
SatelliA.
RaoP.S.
ThirumalaS.
RaoU.S.
Galectin‐4 functions as a tumor suppressor of human colorectal cancer.
Int. J. Cancer20111294799809
10.1002/ijc.25750 21064109
[Google Scholar]
-
LealL.F.
BuenoA.C.
GomesD.C.
AbduchR.
de CastroM.
AntoniniS.R.
Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis.
Oncotarget20156404301643032
10.18632/oncotarget.5513 26515592
[Google Scholar]
-
TrossetJ.Y.
DalvitC.
KnappS.
Inhibition of protein–protein interactions: The discovery of druglike β‐catenin inhibitors by combining virtual and biophysical screening.
Proteins20066416067
10.1002/prot.20955 16568448
[Google Scholar]
-
RovithiM.
AvanA.
FunelN.
Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: A platform for drug testing.
Sci. Rep.20177144686
10.1038/srep44686 28304379
[Google Scholar]
-
AvanA.
QuintK.
NicoliniF.
Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer.
Curr. Pharm. Des.2013195940950
10.2174/138161213804547312 22973962
[Google Scholar]
-
MaftouhM.
AvanA.
SciarrilloR.
Synergistic interaction of novel lactate dehydrogenase inhibitors with gemcitabine against pancreatic cancer cells in hypoxia.
Br. J. Cancer20141101172182
10.1038/bjc.2013.681 24178759
[Google Scholar]
-
NedaeiniaR.
SharifiM.
AvanA.
Locked nucleic acid anti-miR-21 inhibits cell growth and invasive behaviors of a colorectal adenocarcinoma cell line: LNA-anti-miR as a novel approach.
Cancer Gene Ther.2016238246253
10.1038/cgt.2016.25 27364574
[Google Scholar]
-
MollazadehS.
MehrabadiS.
HassanianS.M.
Photodynamic therapy as a desirable approach in the treatment of colorectal cancer, with special focus on photodynamic nanotherapeutics in immunotherapy.
Curr. Med. Chem.202431
10.2174/0109298673267788231208073338 38275066
[Google Scholar]
-
MaftouhM.
AvanA.
FunelN.
miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells.
Nucleosides Nucleotides Nucleic Acids2014334-6384393
10.1080/15257770.2014.891741 24940696
[Google Scholar]
-
AntoR.J.
MukhopadhyayA.
DenningK.
AggarwalB.B.
Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl.
Carcinogenesis2002231143150
10.1093/carcin/23.1.143 11756235
[Google Scholar]
-
AvanA.
CarettiV.
FunelN.
Crizotinib inhibits metabolic inactivation of gemcitabine in c-Met-driven pancreatic carcinoma.
Cancer Res.2013732267456756
10.1158/0008‑5472.CAN‑13‑0837 24085787
[Google Scholar]
-
AvanA.
CreaF.
PaolicchiE.
Molecular mechanisms involved in the synergistic interaction of the EZH2 inhibitor 3-deazaneplanocin A with gemcitabine in pancreatic cancer cells.
Mol. Cancer Ther.201211817351746
10.1158/1535‑7163.MCT‑12‑0037 22622284
[Google Scholar]
-
AvanA.
AvanA.
Le LargeT.Y.S.
AKT1 and SELP polymorphisms predict the risk of developing cachexia in pancreatic cancer patients.
PLoS One201499e108057
10.1371/journal.pone.0108057 25238546
[Google Scholar]
-
VoronkovA.
KraussS.
Wnt/beta-catenin signaling and small molecule inhibitors.
Curr. Pharm. Des.2013194634664
10.2174/138161213804581837 23016862
[Google Scholar]
-
HuC.J.
WangL.Y.
ChodoshL.A.
KeithB.
SimonM.C.
Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation.
Mol. Cell. Biol.2003232493619374
10.1128/MCB.23.24.9361‑9374.2003 14645546
[Google Scholar]
-
KolligsF.T.
BommerG.
GökeB.
Wnt/beta-catenin/tcf signaling: A critical pathway in gastrointestinal tumorigenesis.
Digestion2002663131144
10.1159/000066755 12481159
[Google Scholar]
-
RashidM.
ZadehL.R.
BaradaranB.
Up-down regulation of HIF-1α in cancer progression.
Gene2021798145796
10.1016/j.gene.2021.145796 34175393
[Google Scholar]
-
ChienT.L.
WuY.C.
LeeH.L.
PNU-74654 induces cell cycle arrest and inhibits EMT progression in pancreatic.
Medicina 20235991531
10.3390/medicina59091531 37763649
[Google Scholar]
-
YaoH.
AshiharaE.
MaekawaT.
Targeting the Wnt/β-catenin signaling pathway in human cancers.
Expert Opin. Ther. Targets2011157873887
10.1517/14728222.2011.577418 21486121
[Google Scholar]
-
[Google Scholar]
-
DihlmannS.
von Knebel DoeberitzM.
Wnt/β-catenin-pathway as a molecular target for future anti-cancer therapeutics.
Int. J. Cancer20051134515524
10.1002/ijc.20609 15472907
[Google Scholar]
-
MoonR.T.
KohnA.D.
FerrariG.V.D.
KaykasA.
WNT and β-catenin signalling: Diseases and therapies.
Nat. Rev. Genet.200459691701
10.1038/nrg1427 15372092
[Google Scholar]
-
NazariS.E.
Khalili-TanhaN.
MehrabadiS.
The effects of Trigonella Foenum-graecum L. on post-surgical adhesion band formation.
Lett. Drug Des. Discov.202421814001405
10.2174/1570180820666230417100810
[Google Scholar]
-
ZengG.
GerminaroM.
MicsenyiA.
Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma.
Neoplasia200684279289
10.1593/neo.05607 16756720
[Google Scholar]
-
BiliranH.Jr
WangY.
BanerjeeS.
Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line.
Clin. Cancer Res.2005111660756086
10.1158/1078‑0432.CCR‑04‑2419 16115953
[Google Scholar]
-
YuQ.
GengY.
SicinskiP.
Specific protection against breast cancers by cyclin D1 ablation.
Nature2001411684110171021
10.1038/35082500 11429595
[Google Scholar]
-
HallM.
PetersG.
Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer.
Adv. Cancer Res.19966867108
10.1016/S0065‑230X(08)60352‑8 8712071
[Google Scholar]
-
YamamotoM.
TamakawaS.
YoshieM.
YaginumaY.
OgawaK.
Neoplastic hepatocyte growth associated with cyclin D1 redistribution from the cytoplasm to the nucleus in mouse hepatocarcinogenesis.
Mol. Carcinog.20064512901913
10.1002/mc.20204 17013836
[Google Scholar]
-
KornmannM.
IshiwataT.
ItakuraJ.
TangvoranuntakulP.
BegerH.G.
KorcM.
Increased cyclin D1 in human pancreatic cancer is associated with decreased postoperative survival.
Oncology1998554363369
10.1159/000011879 9663429
[Google Scholar]
-
BachmannK.
NeumannA.
HinschA.
Cyclin D1 is a strong prognostic factor for survival in pancreatic cancer: Analysis of CD G870A polymorphism, FISH and immunohistochemistry.
J. Surg. Oncol.20151113316323
10.1002/jso.23826 25470788
[Google Scholar]
-
ChungD.C.
BrownS.B.
Graeme-CookF.
Overexpression of cyclin D1 occurs frequently in human pancreatic endocrine tumors.
J. Clin. Endocrinol. Metab.2000851143734378
10.1210/jc.85.11.4373 11095482
[Google Scholar]
/content/journals/ccand/10.2174/012212697X293676240916114229