Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Background

Newer chemical entities are created and synthesis has been made feasible by a variety of computer-aided drug design (CAAD) techniques. In addition to facilitating the visualisation of the ligand-target binding process, the application of methodologies and structure-based drug design (SBDD) allows for the prediction of receptor affinities and significant binding pocket locations.

Objective

The goal of the current study was to identify new quinoline derivatives by computational methods specially designed to bind the EGFR receptor in the treatment of breast cancer.

Materials and Methods

ChemAxon Marvin Sketch 5.11.5 was used to create derivatives of quinolines. The admetSAR online web tools and SwissADME were utilised to forecast the toxicity and pharmacokinetic characteristics of several substances. A multitude of software programmes, such as Autodock 1.1.2, MGL Tools 1.5.6, Procheck, Protparam ExPasy tool, PyMOL, and Biovia Discovery Studio Visualizer v20.1.0.19295 were also employed to ascertain the ligand-receptor interactions between quinoline derivatives and the target receptor (PDB -5GNK).

Results

Almost all components were shown to be less hazardous, orally consumable and to have the appropriate pharmacokinetic characteristics based on study. All newly generated derivative compounds have higher docking scores when compared to the widely used medication sorafenib.

Conclusion

Interactions with quinoline analogues boost binding energy and the number of H-bonds produced, making them a suitable place to start when creating compounds for further exploration. The quinoline moiety increases its potential as a novel therapy alternative for breast cancer and could facilitate more comprehensive , , chemical-based, and pharma studies by medicinal chemists.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X335334241101023647
2024-01-01
2025-10-08
Loading full text...

Full text loading...

References

  1. ZhouF. ZhongZ. Drug design and discovery: Principles and applications.Molecules201722227910.3390/molecules22020279
    [Google Scholar]
  2. BarretR. Medicinal Chemistry: Fundamentals.ISTE Press - Elsevier2018
    [Google Scholar]
  3. LombardinoJ.G. LoweJ.A. The role of the medicinal chemist in drug discovery - Then and now.Nat. Rev. Drug Discov.200431085386210.1038/nrd1523 15459676
    [Google Scholar]
  4. GioielloA. PiccinnoA. LozzaA.M. CerraB. The medicinal chemistry in the era of machines and automation: Recent advances in continuous flow technology.J. Med. Chem.202063136624664710.1021/acs.jmedchem.9b01956 32049517
    [Google Scholar]
  5. OrtegaM.P. GilI.C. New developments in medicinal chemistry.1st edUSANova Science Publishers2009
    [Google Scholar]
  6. RoughleyS.D. JordanA.M. The medicinal chemist’s toolbox: An analysis of reactions used in the pursuit of drug candidates.J. Med. Chem.201154103451347910.1021/jm200187y 21504168
    [Google Scholar]
  7. GLOBOCAN 2022: Latest global cancer data shows rising incidence and stark inequities.2024Available from: https://www.uicc.org/news/globocan-2022-latest-global-cancer-data-shows-rising-incidence-and-stark-inequities
  8. SiegelR. MillerK. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  9. Valcarcel-JimenezL. FrezzaC. Fumarate hydratase (FH) and cancer: A paradigm of oncometabolism.Br. J. Cancer2023129101546155710.1038/s41416‑023‑02412‑w 37689804
    [Google Scholar]
  10. ReitmanZ.J. YanH. Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism.J. Natl. Cancer Inst.1021393294110.1093/jnci/djq187
    [Google Scholar]
  11. NiaH.T. MunnL.L. JainR.K. Physical traits of cancer.Science20203706516eaaz086810.1126/science.aaz0868 33122355
    [Google Scholar]
  12. JangM. KimS.S. LeeJ. Cancer cell metabolism: Implications for therapeutic targets.Exp. Mol. Med.20134510e4510.1038/emm.2013.85 24091747
    [Google Scholar]
  13. SchiliroC. FiresteinB.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.Cells2021105105610.3390/cells10051056 33946927
    [Google Scholar]
  14. WuW. ZhaoS. Metabolic changes in cancer: Beyond the Warburg effect.Acta Biochim. Biophys. Sin. (Shanghai)2013451182610.1093/abbs/gms104 23257292
    [Google Scholar]
  15. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  16. FerlayJ. ColombetM. SoerjomataramI. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.33588 33818764
    [Google Scholar]
  17. WilkinsonL. GathaniT. Understanding breast cancer as a global health concern.Br. J. Radiol.20229511302021103310.1259/bjr.20211033 34905391
    [Google Scholar]
  18. ZagamiP. CareyL.A. Triple negative breast cancer: Pitfalls and progress.NPJ Breast Cancer2022819510.1038/s41523‑022‑00468‑0 35987766
    [Google Scholar]
  19. NakaiK. HungM.C. YamaguchiH. A perspective on anti-EGFR therapies targeting triple-negative breast cancer.Am. J. Cancer Res.20166816091623 27648353
    [Google Scholar]
  20. NielsenT.O. HsuF.D. JensenK. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma.Clin. Cancer Res.200410165367537410.1158/1078‑0432.CCR‑04‑0220 15328174
    [Google Scholar]
  21. LaskinJ.J. SandlerA.B. Epidermal growth factor receptor: A promising target in solid tumours.Cancer Treat. Rev.200430111710.1016/j.ctrv.2003.10.002 14766123
    [Google Scholar]
  22. ThomasR. WeihuaZ. Rethink of EGFR in cancer with its kinase independent function on board.Front. Oncol.2019980010.3389/fonc.2019.00800 31508364
    [Google Scholar]
  23. CitriA. YardenY. EGF–ERBB signalling: Towards the systems level.Nat. Rev. Mol. Cell Biol.20067750551610.1038/nrm1962 16829981
    [Google Scholar]
  24. MaennlingA.E. TurM.K. NiebertM. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials.Cancers (Basel)20191112182610.3390/cancers11121826 31756933
    [Google Scholar]
  25. HoriA. ShimodaM. NaoiY. Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer.Breast Cancer Res.20192118810.1186/s13058‑019‑1167‑3 31387614
    [Google Scholar]
  26. TiwariS.R. MishraP. RaskaP. Retrospective study of the efficacy and safety of neoadjuvant docetaxel, carboplatin, trastuzumab/pertuzumab (TCH-P) in nonmetastatic HER2-positive breast cancer.Breast Cancer Res. Treat.2016158118919310.1007/s10549‑016‑3866‑0 27324504
    [Google Scholar]
  27. XuZ. ZhangY. LiN. Efficacy and safety of lapatinib and trastuzumab for HER2-positive breast cancer: A systematic review and meta-analysis of randomised controlled trials.BMJ Open201773e01305310.1136/bmjopen‑2016‑013053 28289045
    [Google Scholar]
  28. GeyerC.E. ForsterJ. LindquistD. Lapatinib plus capecitabine for HER2-positive advanced breast cancer.N. Engl. J. Med.2006355262733274310.1056/NEJMoa064320 17192538
    [Google Scholar]
  29. BaselgaJ. BradburyI. EidtmannH. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): A randomised, open-label, multicentre, phase 3 trial.Lancet2012379981663364010.1016/S0140‑6736(11)61847‑3 22257673
    [Google Scholar]
  30. Al-AbdulkarimHA El-khatibRM AljohaniFS Optimization for synthesized quinoline-based Cr3+, VO2+, Zn2+ and Pd2+complexes: DNA interaction, biological assay and in-silico treatments for verification.J Mol Liq2021339116797, 339, 11679710.1016/j.molliq.2021.116797
    [Google Scholar]
  31. MohamadA.D.M. AbualreishM.J.A. Abu-DiefA.M. Temperature and salt effects of the kinetic reactions of substituted 2-pyridylmethylene-8-quinolyl iron (II) complexes as antimicrobial, anti-cancer, and antioxidant agents with cyanide ions.Can. J. Chem.202199976377210.1139/cjc‑2020‑0412
    [Google Scholar]
  32. El-RemailyM.A.E.A.A.A. Abu-DiefA.M. ElhadyO. Green synthesis of TiO2 nanoparticles as an efficient heterogeneous catalyst with high reusability for synthesis of 1,2‐dihydroquinoline derivatives.Appl. Organomet. Chem.2019338e500510.1002/aoc.5005
    [Google Scholar]
  33. AjaniO.O. IyayeK.T. AdemosunO.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – A review.RSC Advances20221229185941861410.1039/D2RA02896D 35873320
    [Google Scholar]
  34. ShiroT. FukayaT. TobeM. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review.Eur. J. Med. Chem.20159739740810.1016/j.ejmech.2014.12.004 25532473
    [Google Scholar]
  35. MukherjeeS. PalM. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview.Curr. Med. Chem.201320354386441010.2174/09298673113209990170 23862618
    [Google Scholar]
  36. PrasadM.V.V.V. RaoR.H.R. VeerannaV. ChennupalliV.S. SathishB. Novel quinolone derivatives: Synthesis and antioxidant activity.Russ. J. Gen. Chem.202191122522252610.1134/S1070363221120239 35068916
    [Google Scholar]
  37. MoodleyR. MashabaC. RakodiG. New quinoline–urea–benzothiazole hybrids as promising antitubercular agents: Synthesis, in vitro antitubercular activity, cytotoxicity studies, and in silico ADME profiling.Pharmaceuticals (Basel)202215557610.3390/ph15050576 35631402
    [Google Scholar]
  38. GovindaraoK. SriniwasanN. SureshR. Quinoline conjugated 2-azetidinone derivatives as anti-breast cancer agents: In vitro antiproliferative and anti-EGFR activities, molecular docking and in-silico drug likeliness studies.J. Saudi Chem. Soc.202226310147110.1016/j.jscs.2022.101471
    [Google Scholar]
  39. HamdyR. ElseginyS.A. ZiedanN.I. JonesA.T. WestwellA.D. New quinoline-based heterocycles as anticancer agents targeting bcl-2.Molecules2019247127410.3390/molecules24071274 30986908
    [Google Scholar]
  40. AbnerE. StoszkoM. ZengL. A new quinoline BRD4 inhibitor targets a distinct latent HIV-1 reservoir for reactivation from other “shock” drugs.J. Virol.20189210e02056e1710.1128/JVI.02056‑17 29343578
    [Google Scholar]
  41. AfzalO. KumarS. HaiderM.R. A review on anticancer potential of bioactive heterocycle quinoline.Eur. J. Med. Chem.20159787191010.1016/j.ejmech.2014.07.044
    [Google Scholar]
  42. TomaszK. SylwiaF. AdamowiczJ. SzeliskiK. Quinolones as a potential drug in genitourinary cancer treatment.Front. Oncol.20221289033710.3389/fonc.2022.890337 35756639
    [Google Scholar]
  43. ShaguftaS. AhmadI. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents.MedChemComm20178587188510.1039/C7MD00097A 30108803
    [Google Scholar]
  44. MarellaA. TanwarO.P. SahaR. Quinoline: A versatile heterocyclic.Saudi Pharm. J.201321111210.1016/j.jsps.2012.03.002 23960814
    [Google Scholar]
  45. MhaskeG.S. SenA.K. ShahA. KhisteR.H. DaleA.V. SenD.B. In silico identification of novel quinoline-3-carboxamide derivatives targeting platelet-derived growth factor receptor.Curr. Cancer Ther. Rev.202218213114210.2174/1573394718666220421111546
    [Google Scholar]
  46. VermaC. QuraishiM.A. EbensoE.E. Quinoline and its derivatives as corrosion inhibitors: A review.Surf. Interfaces20202110063410.1016/j.surfin.2020.100634
    [Google Scholar]
  47. IlakiyalakshmiM. Arumugam NapoleonA. Review on recent development of quinoline for anticancer activities.Arab. J. Chem.2022151110416810.1016/j.arabjc.2022.104168
    [Google Scholar]
  48. BhartiA. BijauliyaR.K. YadavA. Suman The chemical and pharmacological advancements of quinoline: A mini review.J. Drug Deliv. Ther.202212421121510.22270/jddt.v12i4.5561
    [Google Scholar]
  49. ElebijuO.F. AjaniO.O. OduseluG.O. OgunnupebiT.A. AdebiyiE. Recent advances in functionalized quinoline scaffolds and hybrids - Exceptional pharmacophore in therapeutic medicine.Front Chem.202310107433110.3389/fchem.2022.1074331 36688036
    [Google Scholar]
  50. IbrahimD.A. Abou El EllaD.A. El-MotwallyA.M. AlyR.M. MotwallyE. RashaM.A. Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity.Eur. J. Med. Chem.201510211513110.1016/j.ejmech.2015.07.030
    [Google Scholar]
  51. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  52. WaltersW.P. StahlM.T. MurckoM.A. Virtual screening - An overview.Drug Discov. Today19983416017810.1016/S1359‑6446(97)01163‑X
    [Google Scholar]
  53. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W. Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.007336 24381236
    [Google Scholar]
  54. KapetanovicM. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach.Chem Biol Interact20081712165176-7610.1016/j.cbi.2006.12.006
    [Google Scholar]
  55. UmarA.B. UzairuA. ShallangwaG.A. UbaS. Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods.SN Appl. Sci.20202581510.1007/s42452‑020‑2620‑8
    [Google Scholar]
  56. DasT. MehtaC.H. NayakU.Y. Multiple approaches for achieving drug solubility: An in silico perspective.Drug Discov. Today20202571206121210.1016/j.drudis.2020.04.016 32353425
    [Google Scholar]
  57. AbdullahiM. AdenijiS.E. In silico molecular docking and ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents.Chem Africa202034989100010.1007/s42250‑020‑00162‑3
    [Google Scholar]
  58. DomanT.N. McGovernS.L. WitherbeeB.J. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B.J. Med. Chem.200245112213222110.1021/jm010548w 12014959
    [Google Scholar]
  59. Abdel-RahmanL.H. Abu-DiefA.M. BashaM. Hassan Abdel-MawgoudA.A. Three novel Ni(II), VO(II) and Cr(III) mononuclear complexes encompassing potentially tridentate imine ligand: Synthesis, structural characterization, DNA interaction, antimicrobial evaluation and anticancer activity.Appl. Organomet. Chem.20173111e375010.1002/aoc.3750
    [Google Scholar]
  60. Abu-DiefAM El-MetwalyNM AlzahraniSO BawazeerAM ShaabanS AdamMSS Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: Synthesis, characterization, DFT and detailed in-silico confirmation.J Mol Liq2021322114977, 322, 11497710.1016/j.molliq.2020.114977
    [Google Scholar]
  61. AljohaniF.S. OmranO.A. AhmedE.A. Design, structural inspection of new bis(1H-benzo[d]imidazol-2-yl)methanone complexes: Biomedical applications and theoretical implementations via DFT and docking approaches.Inorg. Chem. Commun.202314811033110.1016/j.inoche.2022.110331
    [Google Scholar]
  62. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  63. AljohaniF.S. El-DabeaT. El-KhatibR.M. Innovation, structural inspection for new mixed complexes: DNA binding, biomedical applications and molecular docking approaches.J. Taibah Univ. Sci.2024181235008710.1080/16583655.2024.2350087
    [Google Scholar]
  64. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  65. GasteigerE. HooglandC. GattikerA. DuvaudS. WilkinsM. Protein identification and analysis tools on the expasy server.The Proteomics Protocols Handbook. WalkerJ.M. Humana Press200557160710.1385/1‑59259‑890‑0:571
    [Google Scholar]
  66. LaskowskiR.A. JabłońskaJ. PravdaL. VařekováR.S. ThorntonJ.M. PDBsum: Structural summaries of PDB entries.Protein Sci.201827112913410.1002/pro.3289 28875543
    [Google Scholar]
  67. LaskowskiR Mac ArthunM ThortonJ. PROCHECK: Validation of protein-structure coordinates.2012
    [Google Scholar]
  68. DainaA. ZoeteV. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.201600182 27218427
    [Google Scholar]
  69. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.5560020916 8401235
    [Google Scholar]
  70. BowieJ.U. LüthyR. EisenbergD. A method to identify protein sequences that fold into a known three-dimensional structure.Science1991253501616417010.1126/science.1853201 1853201
    [Google Scholar]
  71. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  72. LaskowskiR. RullmannJ.A.C. MacArthurM. KapteinR. ThorntonJ. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR.J. Biomol. NMR19968447748610.1007/BF00228148 9008363
    [Google Scholar]
  73. MorrisA.L. MacArthurM.W. HutchinsonE.G. ThorntonJ.M. Stereochemical quality of protein structure coordinates.Proteins199212434536410.1002/prot.340120407 1579569
    [Google Scholar]
  74. EisenbergD. BowieJ.U. LüthyR. ChoeS. Three-dimensional profiles for analysing protein sequence–structure relationships.Faraday Discuss.19929393253410.1039/FD9929300025 1290936
    [Google Scholar]
  75. YuW. MacKerellA.D. Computer-aided drug design methods.Methods Mol. Biol.201715208510610.1007/978‑1‑4939‑6634‑9_5 27873247
    [Google Scholar]
  76. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd1549 15520816
    [Google Scholar]
  77. LiJ. PanY.Y. ZhangY. Synergistic interaction between sorafenib and gemcitabine in EGFR-TKI-sensitive and EGFR-TKI-resistant human lung cancer cell lines.Oncol. Lett.20135244044610.3892/ol.2012.1017 23420122
    [Google Scholar]
  78. IyerR. FetterlyG. LugadeA. ThanavalaY. Sorafenib: A clinical and pharmacologic review.Expert Opin. Pharmacother.201011111943195510.1517/14656566.2010.496453 20586710
    [Google Scholar]
  79. TianS. WangJ. LiY. LiD. XuL. HouT. The application of in silico drug-likeness predictions in pharmaceutical research.Adv. Drug Deliv. Rev.20158621010.1016/j.addr.2015.01.009 25666163
    [Google Scholar]
  80. MhaskeGS ThoratSR PawarVS PawarRS JambhulkarSR GhumreOA Computational molecular docking and in-silico, ADMET prediction studies of quinoline derivatives as EPHB4 inhibitor.Current Indian Science20242e2210299X26503310.2174/012210299X265033240116113623
    [Google Scholar]
  81. DainaA. MichielinO. ZoeteV. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach.J. Chem. Inf. Model.201454123284330110.1021/ci500467k 25382374
    [Google Scholar]
  82. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X335334241101023647
Loading
/content/journals/ccand/10.2174/012212697X335334241101023647
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): binding affinity; bioavailability score; C-met; CADD; EGFR; molecular docking; pharmacokinetics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test