Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Glioblastomas are the most common primary brain cancer and present many challenges in treatment, with the current standard-of-care treatments yielding a median survival rate of less than 15 months. While immunotherapy against cancer has been very effective in some cancers, its application in glioblastoma has been limited so far. The following review touches upon some of the critical challenges associated with successful immunotherapy in glioblastoma, covering transport-related obstacles presented by the blood-brain barrier, biological complexity within the central nervous system, and the interplay between glioblastoma and immune cells. Ongoing clinical trials testing the efficacy of different immunotherapeutic strategies, including immune checkpoint blockade, vaccination, and adoptive cell transfer, are discussed. These strategies are inherently challenged by the low immunogenicity of glioblastoma, the unique immune-protective mechanisms of the immune system within the CNS, and the predominant features of the immune-suppressive tumor microenvironment. Current therapeutic modalities reviewed include surgical resection, radiation therapy, and temozolomide-based chemotherapy, with discussions on new forms of approaches to enhance immune activation: vaccines, oncolytic viruses, and adoptive cell therapies such as CAR T cells and NK cells. The perpetual problem of resistance to immunotherapy underlines the need for combination strategies and precise testing within advanced and animal tumor models, considering the large variability in glioblastomas.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X332800241103174044
2024-01-01
2025-10-08
Loading full text...

Full text loading...

References

  1. OstromQ.T. GittlemanH. LiaoP. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014.Neuro-oncol.201719Suppl. 5v1v8810.1093/neuonc/nox158 29117289
    [Google Scholar]
  2. DarvinP. ToorS.M. Sasidharan NairV. ElkordE. Immune checkpoint inhibitors: recent progress and potential biomarkers.Exp. Mol. Med.2018501211110.1038/s12276‑018‑0191‑1 30546008
    [Google Scholar]
  3. RobertsZ.J. BetterM. BotA. RobertsM.R. RibasA. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL.Leuk. Lymphoma20185981785179610.1080/10428194.2017.1387905 29058502
    [Google Scholar]
  4. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv Biol Earth Sci20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  5. XuJ. Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract.Heliyon202398
    [Google Scholar]
  6. İpekP. Green synthesis and evaluation of antipathogenic, antioxidant, and anticholinesterase activities of gold nanoparticles (Au NPs) from Allium cepa L. peel aqueous extract.Biomass Conv. Biorefi.20241491066110670
    [Google Scholar]
  7. SarkariaJ.N. HuL.S. ParneyI.F. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data.Neuro-oncol.201820218419110.1093/neuonc/nox175 29016900
    [Google Scholar]
  8. JainR.K. StylianopoulosT. Delivering nanomedicine to solid tumors.Nat. Rev. Clin. Oncol.201071165366410.1038/nrclinonc.2010.139 20838415
    [Google Scholar]
  9. HashizumeH. BalukP. MorikawaS. Openings between defective endothelial cells explain tumor vessel leakiness.Am. J. Pathol.200015641363138010.1016/S0002‑9440(10)65006‑7 10751361
    [Google Scholar]
  10. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  11. DanhierF. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?J Control Release2016244Pt A1082110.1016/j.jconrel.2016.11.01527871992
    [Google Scholar]
  12. HansenA.E. PetersenA.L. HenriksenJ.R. BoerresenB. RasmussenP. ElemaD.R. RosenschöldPMa, Kristensen AT, Kjær A, Andresen TL. Positron emission tomography based elucidation of the enhanced permeability and retention efect in dogs with cancer using copper-64 liposomes.ACS Nano201596985699510.1021/acsnano.5b01324 26022907
    [Google Scholar]
  13. SindhwaniS. SyedA.M. NgaiJ. The entry of nanoparticles into solid tumours.Nat. Mater.202019556657510.1038/s41563‑019‑0566‑2 31932672
    [Google Scholar]
  14. HodiF.S. O’DayS.J. McDermottD.F. Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.2010363871172310.1056/NEJMoa1003466 20525992
    [Google Scholar]
  15. SubhanM.A. ParveenF. FilipczakN. YalamartyS.S.K. TorchilinV.P. Approaches to improve EPR-based drug delivery for cancer therapy and diagnosis.J. Pers. Med.202313338910.3390/jpm13030389 36983571
    [Google Scholar]
  16. TianY. ChengT. SunF. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine.Adv. Colloid Interface Sci.202432610312410.1016/j.cis.2024.103124 38461766
    [Google Scholar]
  17. TranV.L. LuxF. TournierN. Quantitative tissue pharmacokinetics and EPR effect of AGuIX nanoparticles: a multimodal imaging study in an orthotopic glioblastoma rat model and healthy macaque.Adv. Healthc. Mater.20211016210065610.1002/adhm.202100656 34212539
    [Google Scholar]
  18. RustenhovenJ. KipnisJ. Bypassing the blood-brain barrier.Science201936664721448144910.1126/science.aay0479 31857468
    [Google Scholar]
  19. RutledgeW.C. KongJ. GaoJ. Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class.Clin. Cancer Res.201319184951496010.1158/1078‑0432.CCR‑13‑0551 23864165
    [Google Scholar]
  20. YeungJ.T. HamiltonR.L. OhnishiK. LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma.Clin. Cancer Res.20131971816182610.1158/1078‑0432.CCR‑12‑2861 23401227
    [Google Scholar]
  21. GrossmanS.A. YeX. LesserG. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide.Clin. Cancer Res.201117165473548010.1158/1078‑0432.CCR‑11‑0774 21737504
    [Google Scholar]
  22. MazorG. LevinL. PicardD. The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells.Cell Death Dis.201910324610.1038/s41419‑019‑1477‑5 30867410
    [Google Scholar]
  23. OrzanF. De BaccoF. CrisafulliG. Genetic evolution of glioblastoma stem-like cells from primary to recurrent tumor.Stem Cells201735112218222810.1002/stem.2703 28895245
    [Google Scholar]
  24. Guha-ThakurtaN. WierdaW.G. Cerebral edema secondary to chimeric antigen receptor T-cell immunotherapy.Neurology2018911884310.1212/WNL.0000000000006436 30373920
    [Google Scholar]
  25. TranT.T. JilaveanuL.B. OmuroA. ChiangV.L. HuttnerA. KlugerH.M. Complications associated with immunotherapy for brain metastases.Curr. Opin. Neurol.201932690791610.1097/WCO.0000000000000756 31577604
    [Google Scholar]
  26. YoungR.M. JamshidiA. DavisG. ShermanJ.H. Current trends in the surgical management and treatment of adult glioblastoma.Ann. Transl. Med.201539121 26207249
    [Google Scholar]
  27. BrownT.J. BrennanM.C. LiM. Association of the extent of resection with survival in glioblastoma.JAMA Oncol.20162111460146910.1001/jamaoncol.2016.1373 27310651
    [Google Scholar]
  28. HanQ. LiangH. ChengP. YangH. ZhaoP. Gross total vs. subtotal resection on survival outcomes in elderly patients with high-grade glioma: A systematic review and meta-analysis.Front. Oncol.20201015110.3389/fonc.2020.00151 32257941
    [Google Scholar]
  29. TunthanathipT. MadtengS. Factors associated with the extent of resection of glioblastoma.Precis. Cancer Med.202031210.21037/pcm.2020.01.01
    [Google Scholar]
  30. 14. Mann, J, Ramakrishna, R, Magge, R, Wernicke, A.G. Advances in radiotherapy for glioblastoma.Front. Neurol.20178748
    [Google Scholar]
  31. CabreraA.R. KirkpatrickJ.P. FiveashJ.B. Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline.Pract. Radiat. Oncol.20166421722510.1016/j.prro.2016.03.007 27211230
    [Google Scholar]
  32. NaborsL.B. PortnowJ. AmmiratiM. NCCN guidelines insights: Central nervous system cancers, version 1.J. Natl. Compr. Canc. Netw.201715111331134510.6004/jnccn.2017.0166 29118226
    [Google Scholar]
  33. GraeberM.B. ScheithauerB.W. KreutzbergG.W. Microglia in brain tumors.Glia200240225225910.1002/glia.10147 12379912
    [Google Scholar]
  34. ReardonD.A. FreemanG. WuC. Immunotherapy advances for glioblastoma.Neuro-oncol.201416111441145810.1093/neuonc/nou212 25190673
    [Google Scholar]
  35. ReardonD.A. BrandesA.A. OmuroA. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The checkmate 143 phase 3 randomized clinical trial.JAMA Oncol.2020671003101010.1001/jamaoncol.2020.1024 32437507
    [Google Scholar]
  36. RayA. ManjilaS. HdeibA.M. Extracranial metastasis of gliobastoma: Three illustrative cases and current review of the molecular pathology and management strategies.Mol. Clin. Oncol.20153347948610.3892/mco.2015.494 26137254
    [Google Scholar]
  37. RosenJ. BlauT. GrauS.J. BarbeM.T. FinkG.R. GalldiksN. Extracranial metastases of a cerebral glioblastoma: A case report and review of the literature.Case Rep. Oncol.201811259160010.1159/000492111 30283316
    [Google Scholar]
  38. RossiJ. GiaccheriniL. CavallieriF. Extracranial metastases in secondary glioblastoma multiforme: a case report.BMC Neurol.202020138210.1186/s12883‑020‑01959‑y 33087049
    [Google Scholar]
  39. ColliL.M. MachielaM.J. MyersT.A. JessopL. YuK. ChanockS.J. Burden of nonsynonymous mutations among tcga cancers and candidate immune checkpoint inhibitor responses.Cancer Res.201676133767377210.1158/0008‑5472.CAN‑16‑0170 27197178
    [Google Scholar]
  40. WeeninkB. DraaismaK. OoiH.Z. Low-grade glioma harbors few CD8 T cells, which is accompanied by decreased expression of chemo-attractants, not immunogenic antigens.Sci. Rep.2019911464310.1038/s41598‑019‑51063‑6 31601888
    [Google Scholar]
  41. KeskinD.B. AnandappaA.J. SunJ. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial.Nature2019565773823423910.1038/s41586‑018‑0792‑9 30568305
    [Google Scholar]
  42. DutoitV. MiglioriniD. DietrichP.Y. WalkerP.R. Immunotherapy of malignant tumors in the brain: How different from other sites?Front. Oncol.2016625610.3389/fonc.2016.00256 28003994
    [Google Scholar]
  43. ShraibmanB. BarneaE. KadoshD.M. Identification of tumor antigens among the hla peptidomes of glioblastoma tumors and plasma.Mol. Cell. Proteomics20191861255126810.1074/mcp.RA119.001524 31154438
    [Google Scholar]
  44. FacoettiA. NanoR. ZeliniP. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors.Clin. Cancer Res.200511238304831110.1158/1078‑0432.CCR‑04‑2588 16322289
    [Google Scholar]
  45. SchumacherT. BunseL. PuschS. A vaccine targeting mutant IDH1 induces antitumour immunity.Nature2014512751432432710.1038/nature13387 25043048
    [Google Scholar]
  46. RatnamN.M. GilbertM.R. GilesA.J. Immunotherapy in CNS cancers: the role of immune cell trafficking.Neuro-oncol.2019211374610.1093/neuonc/noy084 29771386
    [Google Scholar]
  47. YinJ. ValinK.L. DixonM.L. LeavenworthJ.W. The role of microglia and macrophages in cns homeostasis, autoimmunity, and cancer.J. Immunol. Res.2017201711210.1155/2017/5150678 29410971
    [Google Scholar]
  48. OrregoE. CastanedaC.A. CastilloM. Distribution of tumor-infiltrating immune cells in glioblastoma.CNS Oncol.201874CNS2110.2217/cns‑2017‑0037 30299157
    [Google Scholar]
  49. EckerdtF. PlataniasL.C. Emerging role of glioma stem cells in mechanisms of therapy resistance.Cancers (Basel)20231513345810.3390/cancers15133458 37444568
    [Google Scholar]
  50. GuptaA. DwivediT. A simplified overview of World Health Organization classification update of central nervous system tumors 2016.J. Neurosci. Rural Pract.20178462964110.4103/jnrp.jnrp_168_17 29204027
    [Google Scholar]
  51. RayatiM. MansouriV. AhmadbeigiN. Gene therapy in glioblastoma multiforme: Can it be a role changer?Heliyon2024105e2708710.1016/j.heliyon.2024.e27087 38439834
    [Google Scholar]
  52. DeCordovaS. ShastriA. TsolakiA.G. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma.Front. Immunol.202011140210.3389/fimmu.2020.01402 32765498
    [Google Scholar]
  53. VarnF.S. WangY. MullinsD.W. FieringS. ChengC. Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment.Cancer Res.20177761271128210.1158/0008‑5472.CAN‑16‑2490 28126714
    [Google Scholar]
  54. YangI. TihanT. HanS.J. CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival.J. Clin. Neurosci.201017111381138510.1016/j.jocn.2010.03.031 20727764
    [Google Scholar]
  55. MostafaH. PalaA. HögelJ. Immune phenotypes predict survival in patients with glioblastoma multiforme.J. Hematol. Oncol.2016917710.1186/s13045‑016‑0272‑3 27585656
    [Google Scholar]
  56. GroblewskaM. Litman-ZawadzkaA. MroczkoB. The role of selected chemokines and their receptors in the development of gliomas.Int. J. Mol. Sci.20202110370410.3390/ijms21103704 32456359
    [Google Scholar]
  57. ZhangJ. CarusoF.P. SaJ.K. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival.Commun. Biol.20192113510.1038/s42003‑019‑0369‑7 31044160
    [Google Scholar]
  58. PlattenM. OchsK. LemkeD. OpitzC. WickW. Microenvironmental clues for glioma immunotherapy.Curr. Neurol. Neurosci. Rep.201414444010.1007/s11910‑014‑0440‑1 24604058
    [Google Scholar]
  59. BroekmanM.L. MaasS.L.N. AbelsE.R. MempelT.R. KrichevskyA.M. BreakefieldX.O. Multidimensional communication in the microenvirons of glioblastoma.Nat. Rev. Neurol.201814848249510.1038/s41582‑018‑0025‑8 29985475
    [Google Scholar]
  60. QuailD.F. JoyceJ.A. The microenvironmental landscape of brain tumors.Cancer Cell201731332634110.1016/j.ccell.2017.02.009 28292436
    [Google Scholar]
  61. RoyL.O. PoirierM.B. FortinD. Transforming growth factor-beta and its implication in the malignancy of gliomas.Target. Oncol.201510111410.1007/s11523‑014‑0308‑y 24590691
    [Google Scholar]
  62. FreiK. GramatzkiD. TritschlerI. Transforming growth factor-β pathway activity in glioblastoma.Oncotarget2015685963597710.18632/oncotarget.3467 25849941
    [Google Scholar]
  63. HazratiA. SoudiS. MalekpourK. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications.Biomark. Res.20221013010.1186/s40364‑022‑00374‑4 35550636
    [Google Scholar]
  64. LohrJ. RatliffT. HuppertzA. Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β.Clin. Cancer Res.201117134296430810.1158/1078‑0432.CCR‑10‑2557 21478334
    [Google Scholar]
  65. PlattenM. WellerM. WickW. Shaping the glioma immune microenvironment through tryptophan metabolism.CNS Oncol.2012119910610.2217/cns.12.6 25054303
    [Google Scholar]
  66. PiccirilloC.A. LetterioJ.J. ThorntonA.M. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness.J. Exp. Med.2002196223724610.1084/jem.20020590 12119348
    [Google Scholar]
  67. MunnD.H. MellorA.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance.J. Clin. Invest.200711751147115410.1172/JCI31178 17476344
    [Google Scholar]
  68. DunnG.P. CloughesyT.F. MausM.V. PrinsR.M. ReardonD.A. SonabendA.M. Emerging immunotherapies for malignant glioma: from immunogenomics to cell therapy.Neuro-oncol.202022101425143810.1093/neuonc/noaa154 32615600
    [Google Scholar]
  69. SampsonJ.H. HeimbergerA.B. ArcherG.E. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma.J. Clin. Oncol.201028314722472910.1200/JCO.2010.28.6963 20921459
    [Google Scholar]
  70. LynesJ.P. NwankwoA.K. SurH.P. Biomarkers for immunotherapy for treatment of glioblastoma.J. Immunother. Cancer202081e00034810.1136/jitc‑2019‑000348 32474411
    [Google Scholar]
  71. WellerM. ButowskiN. TranD.D. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial.Lancet Oncol.201718101373138510.1016/S1470‑2045(17)30517‑X 28844499
    [Google Scholar]
  72. LimM. XiaY. BettegowdaC. WellerM. Current state of immunotherapy for glioblastoma.Nat. Rev. Clin. Oncol.201815742244210.1038/s41571‑018‑0003‑5 29643471
    [Google Scholar]
  73. SuryadevaraC.M. DesaiR. AbelM.L. Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma.OncoImmunology201876e143446410.1080/2162402X.2018.1434464 29872570
    [Google Scholar]
  74. DoA.S.M.S. AmanoT. EdwardsL.A. ZhangL. De Peralta-VenturinaM. YuJ.S. CD133 mRNA-loaded dendritic cell vaccination abrogates glioma stem cell propagation in humanized glioblastoma mouse model.Mol. Ther. Oncolytics20201829530310.1016/j.omto.2020.06.019 32728617
    [Google Scholar]
  75. LiauL.M. AshkanK. TranD.D. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma.J. Transl. Med.2018161
    [Google Scholar]
  76. EoliM. CorbettaC. AnghileriE. Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy.Neurooncol. Adv.201911vdz02210.1093/noajnl/vdz022 32642658
    [Google Scholar]
  77. RussellS.J. PengK.W. BellJ.C. Oncolytic virotherapy.Nat. Biotechnol.201230765867010.1038/nbt.2287 22781695
    [Google Scholar]
  78. MartikainenM. EssandM. Virus-based immunotherapy of glioblastoma.Cancers (Basel)201911218610.3390/cancers11020186 30764570
    [Google Scholar]
  79. JiangH. Rivera-MolinaY. Gomez-ManzanoC. Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination.Cancer Res.201777143894390710.1158/0008‑5472.CAN‑17‑0468 28566332
    [Google Scholar]
  80. SalinasR.D. DurginJ.S. O’RourkeD.M. Potential of glioblastoma-targeted chimeric antigen receptor (CAR) T-cell therapy.CNS Drugs202034212714510.1007/s40263‑019‑00687‑3 31916100
    [Google Scholar]
  81. DiefenbachA. RauletD.H. The innate immune response to tumors and its role in the induction of T‐cell immunity.Immunol. Rev.2002188192110.1034/j.1600‑065X.2002.18802.x 12445277
    [Google Scholar]
  82. O’RourkeD.M. NasrallahM.P. DesaiA. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma.Sci. Transl. Med.20179399eaaa098410.1126/scitranslmed.aaa0984 28724573
    [Google Scholar]
  83. ChoiB.D. YuX. CastanoA.P. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity.Nat. Biotechnol.20193791049105810.1038/s41587‑019‑0192‑1 31332324
    [Google Scholar]
  84. MedikondaR. DunnG. RahmanM. FecciP. LimM. A review of glioblastoma immunotherapy.J. Neurooncol.20211511415310.1007/s11060‑020‑03448‑1 32253714
    [Google Scholar]
  85. MarusykA. PolyakK. Tumor heterogeneity: Causes and consequences.Biochim. Biophys. Acta201018051105117 19931353
    [Google Scholar]
  86. KleinE. HauA.C. OudinA. GolebiewskaA. NiclouS.P. Glioblastoma organoids: Pre-clinical applications and challenges in the context of immunotherapy.Front. Oncol.20201060412110.3389/fonc.2020.604121 33364198
    [Google Scholar]
  87. GoodspeedA. HeiserL.M. GrayJ.W. CostelloJ.C. Tumor-derived cell lines as molecular models of cancer pharmacogenomics.Mol. Cancer Res.201614131310.1158/1541‑7786.MCR‑15‑0189 26248648
    [Google Scholar]
  88. LeeJ. KotliarovaS. KotliarovY. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.Cancer Cell20069539140310.1016/j.ccr.2006.03.030 16697959
    [Google Scholar]
  89. KaurK. TopchyanP. KozlowskaA.K. Super-charged NK cells inhibit growth and progression of stem-like/poorly differentiated oral tumors in vivo in humanized BLT mice; effect on tumor differentiation and response to chemotherapeutic drugs.OncoImmunology201875e142651810.1080/2162402X.2018.1426518 29721395
    [Google Scholar]
  90. MerzF. GaunitzF. DehghaniF. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments.Neuro-oncol.201315667068110.1093/neuonc/not003 23576601
    [Google Scholar]
  91. ParkerJ.J. LizarragaM. WaziriA. FoshayK.M. A human glioblastoma organotypic slice culture model for study of tumor cell migration and patient-specific effects of anti-invasive drugs.J. Vis. Exp.2017201712553557 28784966
    [Google Scholar]
  92. HubertC.G. RiveraM. SpanglerL.C. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo.Cancer Res.20167682465247710.1158/0008‑5472.CAN‑15‑2402 26896279
    [Google Scholar]
  93. JacobF. SalinasR.D. ZhangD.Y. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity.Cell20201801188204.e2210.1016/j.cell.2019.11.036 31883794
    [Google Scholar]
  94. OlsonB. LiY. LinY. LiuE.T. PatnaikA. Mouse models for cancer immunotherapy research.Cancer Discov.20188111358136510.1158/2159‑8290.CD‑18‑0044 30309862
    [Google Scholar]
  95. LouisD.N. Molecular pathology of malignant gliomas.Annu. Rev. Pathol.2006119711710.1146/annurev.pathol.1.110304.100043 18039109
    [Google Scholar]
  96. RichJ.N. Cancer stem cells in radiation resistance.Cancer Res.200767198980898410.1158/0008‑5472.CAN‑07‑0895 17908997
    [Google Scholar]
  97. ZhaoY. ShuenT.W.H. TohT.B. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy.Gut201867101845185410.1136/gutjnl‑2017‑315201 29602780
    [Google Scholar]
  98. LinS. HuangG. ChengL. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy.MAbs20181081301131110.1080/19420862.2018.1518948 30204048
    [Google Scholar]
  99. BaoS. WuQ. McLendonR.E. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.Nature2006444712075676010.1038/nature05236 17051156
    [Google Scholar]
  100. HaddadA.F. YoungJ.S. AmaraD. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies.Neurooncol. Adv.202131vdab10010.1093/noajnl/vdab100 34466804
    [Google Scholar]
  101. ParkerN.R. KhongP. ParkinsonJ.F. HowellV.M. WheelerH.R. Molecular heterogeneity in glioblastoma: Potential clinical implications.Front. Oncol.201555510.3389/fonc.2015.00055 25785247
    [Google Scholar]
  102. ConklinK.A. Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness.Integr. Cancer Ther.20043429430010.1177/1534735404270335 15523100
    [Google Scholar]
  103. WoJ.Y. ViswanathanA.N. Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients.Int. J. Radiat. Oncol. Biol. Phys.20097351304131210.1016/j.ijrobp.2008.12.016
    [Google Scholar]
  104. BalachandranV.P. BeattyG.L. DouganS.K. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities.Gastroenterology201915672056207210.1053/j.gastro.2018.12.038 30660727
    [Google Scholar]
  105. Le RhunE. PreusserM. RothP. Molecular targeted therapy of glioblastoma.Cancer Treat. Rev.20198010189610.1016/j.ctrv.2019.101896 31541850
    [Google Scholar]
  106. WangT. ShigdarS. GantierM.P. Cancer stem cell targeted therapy: progress amid controversies.Oncotarget2015642441914420610.18632/oncotarget.6176 26496035
    [Google Scholar]
  107. ShergalisA. BankheadA.III LuesakulU. MuangsinN. NeamatiN. Current challenges and opportunities in treating glioblastoma.Pharmacol. Rev.201870341244510.1124/pr.117.014944 29669750
    [Google Scholar]
  108. BeldenC.J. ValdesP.A. RanC. Genetics of glioblastoma: a window into its imaging and histopathologic variability.Radiographics20113161717174010.1148/rg.316115512 21997991
    [Google Scholar]
  109. SchifferD. AnnovazziL. CasaloneC. CoronaC. MellaiM. Glioblastoma: microenvironment and niche concept.Cancers (Basel)2018111510.3390/cancers11010005 30577488
    [Google Scholar]
  110. LathiaJ.D. MackS.C. Mulkearns-HubertE.E. ValentimC.L.L. RichJ.N. Cancer stem cells in glioblastoma.Genes Dev.201529121203121710.1101/gad.261982.115 26109046
    [Google Scholar]
  111. RazaviS.M. LeeK.E. JinB.E. AujlaP.S. GholaminS. LiG. Immune evasion strategies of glioblastoma.Front. Surg.201631110.3389/fsurg.2016.00011 26973839
    [Google Scholar]
  112. DesaiK. HubbenA. AhluwaliaM. The role of checkpoint inhibitors in glioblastoma.Target. Oncol.201914437539410.1007/s11523‑019‑00655‑3 31290002
    [Google Scholar]
  113. Martínez BedoyaD. DutoitV. MiglioriniD. Allogeneic CAR T cells: an alternative to overcome challenges of CAR T cell therapy in glioblastoma.Front. Immunol.20211264008210.3389/fimmu.2021.640082 33746981
    [Google Scholar]
  114. TaylorT.E. FurnariF.B. CaveneeW.K. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance.Curr. Cancer Drug Targets201212319720910.2174/156800912799277557 22268382
    [Google Scholar]
  115. GarnierD. MeehanB. KislingerT. Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization.Neuro-oncol.201820223624810.1093/neuonc/nox142 29016925
    [Google Scholar]
  116. DoucetteT. RaoG. RaoA. Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas.Cancer Immunol. Res.20131211212210.1158/2326‑6066.CIR‑13‑0028 24409449
    [Google Scholar]
  117. WangQ. HuB. HuX. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment.Cancer Cell20173214256.e610.1016/j.ccell.2017.06.003 28697342
    [Google Scholar]
  118. AzzarelliR. Organoid models of glioblastoma to study brain tumor stem cells.Front. Cell Dev. Biol.2020822010.3389/fcell.2020.00220 32373607
    [Google Scholar]
  119. BarE.E. Glioblastoma, cancer stem cells and hypoxia.Brain Pathol.201121211912910.1111/j.1750‑3639.2010.00460.x 21054626
    [Google Scholar]
  120. TangX. ZhangS. FuR. Therapeutic prospects of mRNA-based gene therapy for glioblastoma.Front. Oncol.20199120810.3389/fonc.2019.01208 31781503
    [Google Scholar]
  121. ChenJ. LiY. YuT.S. A restricted cell population propagates glioblastoma growth after chemotherapy.Nature2012488741252252610.1038/nature11287 22854781
    [Google Scholar]
  122. OhH.C. ShimJ.K. ParkJ. Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres.J. Cancer Res. Clin. Oncol.2020146112817282810.1007/s00432‑020‑03330‑7 32712753
    [Google Scholar]
  123. XieX.P. LaksD.R. SunD. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy.Dev. Cell20225713246.e810.1016/j.devcel.2021.12.007 35016005
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X332800241103174044
Loading
/content/journals/ccand/10.2174/012212697X332800241103174044
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test