Revolutionizing Glioblastoma Immunotherapy Conquering Transport and Biological Challenges, Innovating Combinatorial Approaches for Unprecedented Treatment Success
Glioblastomas are the most common primary brain cancer and present many challenges in treatment, with the current standard-of-care treatments yielding a median survival rate of less than 15 months. While immunotherapy against cancer has been very effective in some cancers, its application in glioblastoma has been limited so far. The following review touches upon some of the critical challenges associated with successful immunotherapy in glioblastoma, covering transport-related obstacles presented by the blood-brain barrier, biological complexity within the central nervous system, and the interplay between glioblastoma and immune cells. Ongoing clinical trials testing the efficacy of different immunotherapeutic strategies, including immune checkpoint blockade, vaccination, and adoptive cell transfer, are discussed. These strategies are inherently challenged by the low immunogenicity of glioblastoma, the unique immune-protective mechanisms of the immune system within the CNS, and the predominant features of the immune-suppressive tumor microenvironment. Current therapeutic modalities reviewed include surgical resection, radiation therapy, and temozolomide-based chemotherapy, with discussions on new forms of approaches to enhance immune activation: vaccines, oncolytic viruses, and adoptive cell therapies such as CAR T cells and NK cells. The perpetual problem of resistance to immunotherapy underlines the need for combination strategies and precise testing within advanced in-vitro and animal tumor models, considering the large variability in glioblastomas.
OstromQ.T.
GittlemanH.
LiaoP.
CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014.Neuro-oncol.201719Suppl. 5v1v8810.1093/neuonc/nox158 29117289
RobertsZ.J.
BetterM.
BotA.
RobertsM.R.
RibasA.
Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL.Leuk. Lymphoma20185981785179610.1080/10428194.2017.1387905 29058502
RosicG.
SelakovicD.
OmarovaS.
Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv Biol Earth Sci20249Special Issue113410.62476/abes9s11
XuJ.
Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract.Heliyon202398
İpekP.
Green synthesis and evaluation of antipathogenic, antioxidant, and anticholinesterase activities of gold nanoparticles (Au NPs) from Allium cepa L. peel aqueous extract.Biomass Conv. Biorefi.20241491066110670
SarkariaJ.N.
HuL.S.
ParneyI.F.
Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data.Neuro-oncol.201820218419110.1093/neuonc/nox175 29016900
PeerD.
KarpJ.M.
HongS.
FarokhzadO.C.
MargalitR.
LangerR.
Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
DanhierF.
To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?J Control Release2016244Pt A1082110.1016/j.jconrel.2016.11.01527871992
HansenA.E.
PetersenA.L.
HenriksenJ.R.
BoerresenB.
RasmussenP.
ElemaD.R.
RosenschöldPMa, Kristensen AT, Kjær A, Andresen TL. Positron emission tomography based elucidation of the enhanced permeability and retention efect in dogs with cancer using copper-64 liposomes.ACS Nano201596985699510.1021/acsnano.5b01324 26022907
HodiF.S.
O’DayS.J.
McDermottD.F.
Improved survival with ipilimumab in patients with metastatic melanoma.N. Engl. J. Med.2010363871172310.1056/NEJMoa1003466 20525992
SubhanM.A.
ParveenF.
FilipczakN.
YalamartyS.S.K.
TorchilinV.P.
Approaches to improve EPR-based drug delivery for cancer therapy and diagnosis.J. Pers. Med.202313338910.3390/jpm13030389 36983571
TianY.
ChengT.
SunF.
Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine.Adv. Colloid Interface Sci.202432610312410.1016/j.cis.2024.103124 38461766
TranV.L.
LuxF.
TournierN.
Quantitative tissue pharmacokinetics and EPR effect of AGuIX nanoparticles: a multimodal imaging study in an orthotopic glioblastoma rat model and healthy macaque.Adv. Healthc. Mater.20211016210065610.1002/adhm.202100656 34212539
RutledgeW.C.
KongJ.
GaoJ.
Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class.Clin. Cancer Res.201319184951496010.1158/1078‑0432.CCR‑13‑0551 23864165
YeungJ.T.
HamiltonR.L.
OhnishiK.
LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma.Clin. Cancer Res.20131971816182610.1158/1078‑0432.CCR‑12‑2861 23401227
GrossmanS.A.
YeX.
LesserG.
Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide.Clin. Cancer Res.201117165473548010.1158/1078‑0432.CCR‑11‑0774 21737504
MazorG.
LevinL.
PicardD.
The lncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells.Cell Death Dis.201910324610.1038/s41419‑019‑1477‑5 30867410
OrzanF.
De BaccoF.
CrisafulliG.
Genetic evolution of glioblastoma stem-like cells from primary to recurrent tumor.Stem Cells201735112218222810.1002/stem.2703 28895245
YoungR.M.
JamshidiA.
DavisG.
ShermanJ.H.
Current trends in the surgical management and treatment of adult glioblastoma.Ann. Transl. Med.201539121 26207249
BrownT.J.
BrennanM.C.
LiM.
Association of the extent of resection with survival in glioblastoma.JAMA Oncol.20162111460146910.1001/jamaoncol.2016.1373 27310651
HanQ.
LiangH.
ChengP.
YangH.
ZhaoP.
Gross total vs. subtotal resection on survival outcomes in elderly patients with high-grade glioma: A systematic review and meta-analysis.Front. Oncol.20201015110.3389/fonc.2020.00151 32257941
CabreraA.R.
KirkpatrickJ.P.
FiveashJ.B.
Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline.Pract. Radiat. Oncol.20166421722510.1016/j.prro.2016.03.007 27211230
ReardonD.A.
BrandesA.A.
OmuroA.
Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The checkmate 143 phase 3 randomized clinical trial.JAMA Oncol.2020671003101010.1001/jamaoncol.2020.1024 32437507
RayA.
ManjilaS.
HdeibA.M.
Extracranial metastasis of gliobastoma: Three illustrative cases and current review of the molecular pathology and management strategies.Mol. Clin. Oncol.20153347948610.3892/mco.2015.494 26137254
RosenJ.
BlauT.
GrauS.J.
BarbeM.T.
FinkG.R.
GalldiksN.
Extracranial metastases of a cerebral glioblastoma: A case report and review of the literature.Case Rep. Oncol.201811259160010.1159/000492111 30283316
RossiJ.
GiaccheriniL.
CavallieriF.
Extracranial metastases in secondary glioblastoma multiforme: a case report.BMC Neurol.202020138210.1186/s12883‑020‑01959‑y 33087049
WeeninkB.
DraaismaK.
OoiH.Z.
Low-grade glioma harbors few CD8 T cells, which is accompanied by decreased expression of chemo-attractants, not immunogenic antigens.Sci. Rep.2019911464310.1038/s41598‑019‑51063‑6 31601888
DutoitV.
MiglioriniD.
DietrichP.Y.
WalkerP.R.
Immunotherapy of malignant tumors in the brain: How different from other sites?Front. Oncol.2016625610.3389/fonc.2016.00256 28003994
ShraibmanB.
BarneaE.
KadoshD.M.
Identification of tumor antigens among the hla peptidomes of glioblastoma tumors and plasma.Mol. Cell. Proteomics20191861255126810.1074/mcp.RA119.001524 31154438
FacoettiA.
NanoR.
ZeliniP.
Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors.Clin. Cancer Res.200511238304831110.1158/1078‑0432.CCR‑04‑2588 16322289
RatnamN.M.
GilbertM.R.
GilesA.J.
Immunotherapy in CNS cancers: the role of immune cell trafficking.Neuro-oncol.2019211374610.1093/neuonc/noy084 29771386
YinJ.
ValinK.L.
DixonM.L.
LeavenworthJ.W.
The role of microglia and macrophages in cns homeostasis, autoimmunity, and cancer.J. Immunol. Res.2017201711210.1155/2017/5150678 29410971
EckerdtF.
PlataniasL.C.
Emerging role of glioma stem cells in mechanisms of therapy resistance.Cancers (Basel)20231513345810.3390/cancers15133458 37444568
GuptaA.
DwivediT.
A simplified overview of World Health Organization classification update of central nervous system tumors 2016.J. Neurosci. Rural Pract.20178462964110.4103/jnrp.jnrp_168_17 29204027
RayatiM.
MansouriV.
AhmadbeigiN.
Gene therapy in glioblastoma multiforme: Can it be a role changer?Heliyon2024105e2708710.1016/j.heliyon.2024.e27087 38439834
GroblewskaM.
Litman-ZawadzkaA.
MroczkoB.
The role of selected chemokines and their receptors in the development of gliomas.Int. J. Mol. Sci.20202110370410.3390/ijms21103704 32456359
ZhangJ.
CarusoF.P.
SaJ.K.
The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival.Commun. Biol.20192113510.1038/s42003‑019‑0369‑7 31044160
BroekmanM.L.
MaasS.L.N.
AbelsE.R.
MempelT.R.
KrichevskyA.M.
BreakefieldX.O.
Multidimensional communication in the microenvirons of glioblastoma.Nat. Rev. Neurol.201814848249510.1038/s41582‑018‑0025‑8 29985475
RoyL.O.
PoirierM.B.
FortinD.
Transforming growth factor-beta and its implication in the malignancy of gliomas.Target. Oncol.201510111410.1007/s11523‑014‑0308‑y 24590691
HazratiA.
SoudiS.
MalekpourK.
Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications.Biomark. Res.20221013010.1186/s40364‑022‑00374‑4 35550636
LohrJ.
RatliffT.
HuppertzA.
Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β.Clin. Cancer Res.201117134296430810.1158/1078‑0432.CCR‑10‑2557 21478334
PiccirilloC.A.
LetterioJ.J.
ThorntonA.M.
CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness.J. Exp. Med.2002196223724610.1084/jem.20020590 12119348
LynesJ.P.
NwankwoA.K.
SurH.P.
Biomarkers for immunotherapy for treatment of glioblastoma.J. Immunother. Cancer202081e00034810.1136/jitc‑2019‑000348 32474411
WellerM.
ButowskiN.
TranD.D.
Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial.Lancet Oncol.201718101373138510.1016/S1470‑2045(17)30517‑X 28844499
LimM.
XiaY.
BettegowdaC.
WellerM.
Current state of immunotherapy for glioblastoma.Nat. Rev. Clin. Oncol.201815742244210.1038/s41571‑018‑0003‑5 29643471
SuryadevaraC.M.
DesaiR.
AbelM.L.
Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma.OncoImmunology201876e143446410.1080/2162402X.2018.1434464 29872570
LiauL.M.
AshkanK.
TranD.D.
First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma.J. Transl. Med.2018161
EoliM.
CorbettaC.
AnghileriE.
Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy.Neurooncol. Adv.201911vdz02210.1093/noajnl/vdz022 32642658
DiefenbachA.
RauletD.H.
The innate immune response to tumors and its role in the induction of T‐cell immunity.Immunol. Rev.2002188192110.1034/j.1600‑065X.2002.18802.x 12445277
O’RourkeD.M.
NasrallahM.P.
DesaiA.
A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma.Sci. Transl. Med.20179399eaaa098410.1126/scitranslmed.aaa0984 28724573
KleinE.
HauA.C.
OudinA.
GolebiewskaA.
NiclouS.P.
Glioblastoma organoids: Pre-clinical applications and challenges in the context of immunotherapy.Front. Oncol.20201060412110.3389/fonc.2020.604121 33364198
GoodspeedA.
HeiserL.M.
GrayJ.W.
CostelloJ.C.
Tumor-derived cell lines as molecular models of cancer pharmacogenomics.Mol. Cancer Res.201614131310.1158/1541‑7786.MCR‑15‑0189 26248648
LeeJ.
KotliarovaS.
KotliarovY.
Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.Cancer Cell20069539140310.1016/j.ccr.2006.03.030 16697959
KaurK.
TopchyanP.
KozlowskaA.K.
Super-charged NK cells inhibit growth and progression of stem-like/poorly differentiated oral tumors in vivo in humanized BLT mice; effect on tumor differentiation and response to chemotherapeutic drugs.OncoImmunology201875e142651810.1080/2162402X.2018.1426518 29721395
MerzF.
GaunitzF.
DehghaniF.
Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments.Neuro-oncol.201315667068110.1093/neuonc/not003 23576601
ParkerJ.J.
LizarragaM.
WaziriA.
FoshayK.M.
A human glioblastoma organotypic slice culture model for study of tumor cell migration and patient-specific effects of anti-invasive drugs.J. Vis. Exp.2017201712553557 28784966
HubertC.G.
RiveraM.
SpanglerL.C.
A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo.Cancer Res.20167682465247710.1158/0008‑5472.CAN‑15‑2402 26896279
JacobF.
SalinasR.D.
ZhangD.Y.
A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity.Cell20201801188204.e2210.1016/j.cell.2019.11.036 31883794
ZhaoY.
ShuenT.W.H.
TohT.B.
Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy.Gut201867101845185410.1136/gutjnl‑2017‑315201 29602780
BaoS.
WuQ.
McLendonR.E.
Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.Nature2006444712075676010.1038/nature05236 17051156
HaddadA.F.
YoungJ.S.
AmaraD.
Mouse models of glioblastoma for the evaluation of novel therapeutic strategies.Neurooncol. Adv.202131vdab10010.1093/noajnl/vdab100 34466804
WoJ.Y.
ViswanathanA.N.
Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients.Int. J. Radiat. Oncol. Biol. Phys.20097351304131210.1016/j.ijrobp.2008.12.016
BalachandranV.P.
BeattyG.L.
DouganS.K.
Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities.Gastroenterology201915672056207210.1053/j.gastro.2018.12.038 30660727
ShergalisA.
BankheadA.III
LuesakulU.
MuangsinN.
NeamatiN.
Current challenges and opportunities in treating glioblastoma.Pharmacol. Rev.201870341244510.1124/pr.117.014944 29669750
BeldenC.J.
ValdesP.A.
RanC.
Genetics of glioblastoma: a window into its imaging and histopathologic variability.Radiographics20113161717174010.1148/rg.316115512 21997991
Martínez BedoyaD.
DutoitV.
MiglioriniD.
Allogeneic CAR T cells: an alternative to overcome challenges of CAR T cell therapy in glioblastoma.Front. Immunol.20211264008210.3389/fimmu.2021.640082 33746981
TaylorT.E.
FurnariF.B.
CaveneeW.K.
Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance.Curr. Cancer Drug Targets201212319720910.2174/156800912799277557 22268382
GarnierD.
MeehanB.
KislingerT.
Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization.Neuro-oncol.201820223624810.1093/neuonc/nox142 29016925
DoucetteT.
RaoG.
RaoA.
Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas.Cancer Immunol. Res.20131211212210.1158/2326‑6066.CIR‑13‑0028 24409449
WangQ.
HuB.
HuX.
Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment.Cancer Cell20173214256.e610.1016/j.ccell.2017.06.003 28697342
OhH.C.
ShimJ.K.
ParkJ.
Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres.J. Cancer Res. Clin. Oncol.2020146112817282810.1007/s00432‑020‑03330‑7 32712753
XieX.P.
LaksD.R.
SunD.
Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy.Dev. Cell20225713246.e810.1016/j.devcel.2021.12.007 35016005
Revolutionizing Glioblastoma Immunotherapy Conquering Transport and Biological Challenges, Innovating Combinatorial Approaches for Unprecedented Treatment Success
Revolutionizing Glioblastoma Immunotherapy Conquering Transport and Biological Challenges, Innovating Combinatorial Approaches for Unprecedented Treatment Success