Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2212-697X
  • E-ISSN: 2212-6988

Abstract

Chemotherapeutic strategies that target irregularly produced or mutant proteins using monoclonal antibodies (mAbs) and tiny molecular inhibitors have been extensively employed to target cancer. However, because most intracellular proteins lack antigens or active sites with which mAbs or SMIs can engage, they have not been considered druggable targets. After extensive research, PROTACs (Proteolysis Targeting chimaeras) have become a promising way to work with proteins. Scaffolding proteins and transcription factors may also be targeted. The present targets of PROTACs include kinases like CDKs and RTKs, overexpressed oncogenic proteins like AR and BRDs, cancer-driven mutant proteins like EGFR, and disease-relevant fusion proteins like NPM/EML4-ALK and BCR-ABL. The inability of small-molecule intracellular degraders to enter cells and their low bioavailability can also be circumvented with PROTABs. The use of multispecific binding proteins is an improved way to target the breakdown of membrane-bound and cell-surface proteins.

Loading

Article metrics loading...

/content/journals/ccand/10.2174/012212697X323611241109143952
2024-01-01
2025-10-07
Loading full text...

Full text loading...

References

  1. BaylinS.B. JonesP.A. Epigenetic determinants of cancer.Cold Spring Harb. Perspect. Biol.201689a01950510.1101/cshperspect.a019505 27194046
    [Google Scholar]
  2. WongS.Y. HynesR.O. Lymphatic or hematogenous dissemination: How does a metastatic tumor cell decide?Cell Cycle20065881281710.4161/cc.5.8.2646 16627996
    [Google Scholar]
  3. KomanderD. RapeM. The ubiquitin code.Annu. Rev. Biochem.201281120322910.1146/annurev‑biochem‑060310‑170328 22524316
    [Google Scholar]
  4. ChenY. JinJ. The application of ubiquitin ligases in the PROTAC drug design.Acta Biochim. Biophys. Sin. (Shanghai)202052777679010.1093/abbs/gmaa053 32506133
    [Google Scholar]
  5. BurslemG.M. CrewsC.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.Cell2020181110211410.1016/j.cell.2019.11.031 31955850
    [Google Scholar]
  6. SalamiJ. CrewsC.M. Waste disposal - An attractive strategy for cancer therapy.Science201735563301163116710.1126/science.aam7340 28302825
    [Google Scholar]
  7. EderJ. HerrlingP.L. Trends in modern drug discovery.Handb. Exp. Pharmacol.201523232210.1007/164_2015_20 26330257
    [Google Scholar]
  8. LiuZ. HuM. YangY. An overview of PROTACs: A promising drug discovery paradigm.Mol. Biomed.2022314610.1186/s43556‑022‑00112‑0 36536188
    [Google Scholar]
  9. SakamotoK.M. KimK.B. KumagaiA. MercurioF. CrewsC.M. DeshaiesR.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation.Proc. Natl. Acad. Sci. USA200198158554855910.1073/pnas.141230798 11438690
    [Google Scholar]
  10. KargboR.B. Emerging proteolysis targeting antibodies (PROTABs) for application in cancer therapy.ACS Med. Chem. Lett.202213121833183410.1021/acsmedchemlett.2c00458 36518693
    [Google Scholar]
  11. ChvatalS.A. LogunM.T. HayesH.B. MillardD.C. KarumbaiahL. Abstract 2187: Kinetics and potency of T Cell-mediated cytolysis of glioblastoma.Cancer Res.202080Suppl. 162187710.1158/1538‑7445.AM2020‑2187
    [Google Scholar]
  12. DanielsT.R. BernabeuE. RodríguezJ.A. The transferrin receptor and the targeted delivery of therapeutic agents against cancer.Biochim. Biophys. Acta, Gen. Subj.20121820329131710.1016/j.bbagen.2011.07.016 21851850
    [Google Scholar]
  13. RamalhoM.J. LoureiroJ.A. CoelhoM.A.N. PereiraM.C. Transferrin receptor-targeted nanocarriers: Overcoming barriers to treat glioblastoma.Pharmaceutics202214227910.3390/pharmaceutics14020279 35214012
    [Google Scholar]
  14. HuangN. SunX. LiP. TRIM family contribute to tumorigenesis, cancer development, and drug resistance.Exp. Hematol. Oncol.20221117510.1186/s40164‑022‑00322‑w 36261847
    [Google Scholar]
  15. HershkoA. The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture).Angew. Chem. Int. Ed.200544375932594310.1002/anie.200501724 16142823
    [Google Scholar]
  16. HenleyM.J. KoehlerA.N. Advances in targeting ‘undruggable’ transcription factors with small molecules.Nat. Rev. Drug Discov.202120966968810.1038/s41573‑021‑00199‑0 34006959
    [Google Scholar]
  17. ZhaoH.Y. XinM. ZhangS.Q. Progress of small molecules for targeted protein degradation: PROTACs and other technologies.Drug Dev. Res.202384233739410.1002/ddr.22026 36606428
    [Google Scholar]
  18. BrienG.L. RemillardD. ShiJ. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma.eLife20187e4130510.7554/eLife.41305 30431433
    [Google Scholar]
  19. MoreauK. CoenM. ZhangA.X. Proteolysis‐targeting chimeras in drug development: A safety perspective.Br. J. Pharmacol.202017781709171810.1111/bph.15014 32022252
    [Google Scholar]
  20. IshoeyM. ChornS. SinghN. Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders.ACS Chem. Biol.201813355356010.1021/acschembio.7b00969 29356495
    [Google Scholar]
  21. VaidA. GuptaA. MomiG. Overall survival in stage IV EGFR mutation positive NSCLC: Comparing first, second and third generation EGFR TKIs. (Review)Int. J. Oncol.202158217118410.3892/ijo.2021.5168 33491758
    [Google Scholar]
  22. SitiaL. SevieriM. SignatiL. HER-2-targeted nanoparticles for breast cancer diagnosis and treatment.Cancers (Basel)20221410242410.3390/cancers14102424 35626028
    [Google Scholar]
  23. XueG. WangK. ZhouD. ZhongH. PanZ. Light-induced protein degradation with photocaged PROTACs.J. Am. Chem. Soc.201914146183701837410.1021/jacs.9b06422 31566962
    [Google Scholar]
  24. LiuJ. ChenH. MaL. Light-induced control of protein destruction by opto-PROTAC.Sci. Adv.202068eaay515410.1126/sciadv.aay5154 32128407
    [Google Scholar]
  25. KoundeC.S. ShchepinovaM.M. SaundersC.N. A caged E3 ligase ligand for PROTAC-mediated protein degradation with light.Chem. Commun. (Camb.)202056415532553510.1039/D0CC00523A 32297626
    [Google Scholar]
  26. NaroY. DarrahK. DeitersA. Optical control of small molecule-induced protein degradation.J. Am. Chem. Soc.202014252193219710.1021/jacs.9b12718 31927988
    [Google Scholar]
  27. ReyndersM. MatsuuraB.S. BéroutiM. PHOTACs enable optical control of protein degradation.Sci. Adv.202068eaay506410.1126/sciadv.aay5064 32128406
    [Google Scholar]
  28. PfaffP. SamarasingheK.T.G. CrewsC.M. CarreiraE.M. Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs.ACS Cent. Sci.20195101682169010.1021/acscentsci.9b00713 31660436
    [Google Scholar]
  29. SalamiJ. AlabiS. WillardR.R. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance.Commun. Biol.20181110010.1038/s42003‑018‑0105‑8 30271980
    [Google Scholar]
  30. PetrylakD.P. GaoX. VogelzangN.J. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI).J. Clin. Oncol.202038Suppl. 153500010.1200/JCO.2020.38.15_suppl.3500
    [Google Scholar]
  31. RugoH.S. BardiaA. TolaneyS.M. TROPiCS-02: A Phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer.Future Oncol.2020161270571510.2217/fon‑2020‑0163 32223649
    [Google Scholar]
  32. BondesonD.P. MaresA. SmithI.E.D. Catalytic in vivo protein knockdown by small-molecule PROTACs.Nat. Chem. Biol.201511861161710.1038/nchembio.1858 26075522
    [Google Scholar]
  33. WinterC. NilssonM.P. OlssonE. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic.Ann. Oncol.20162781532153810.1093/annonc/mdw209 27194814
    [Google Scholar]
  34. FitzmauriceC. AbateD. AbbasiN. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017.JAMA Oncol.20195121749176810.1001/jamaoncol.2019.2996 31560378
    [Google Scholar]
  35. Ruiz-SaenzA. DreyerC. CampbellM.R. SteriV. GuliziaN. MoasserM.M. HER2 amplification in tumors activates PI3K/Akt signaling independent of HER3.Cancer Res.201878133645365810.1158/0008‑5472.CAN‑18‑0430 29760043
    [Google Scholar]
  36. WangW. YangJ. LiaoY.Y. Aspeterreurone A, a cytotoxic dihydrobenzofuran–phenyl acrylate hybrid from the deep-sea-derived fungus Aspergillus terreus CC-S06-18.J. Nat. Prod.20208361998200310.1021/acs.jnatprod.0c00189 32489099
    [Google Scholar]
  37. NowakR.P. DeAngeloS.L. BuckleyD. Plasticity in binding confers selectivity in ligand-induced protein degradation.Nat. Chem. Biol.201814770671410.1038/s41589‑018‑0055‑y 29892083
    [Google Scholar]
  38. KaeferA. YangJ. NoertersheuserP. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia.Cancer Chemother. Pharmacol.201474359360210.1007/s00280‑014‑2530‑9 25053389
    [Google Scholar]
  39. ZhuH. WangJ. ZhangQ. PanX. ZhangJ. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance.Pharmacol. Ther.202324410837110.1016/j.pharmthera.2023.108371 36871783
    [Google Scholar]
  40. FanR. TaoX. ZhaiX. Application of aptamer-drug delivery system in the therapy of breast cancer.Biomed. Pharmacother.202316111444410.1016/j.biopha.2023.114444 36857912
    [Google Scholar]
  41. Kumar DeshmukhF. YaffeD. OlshinaM. Ben-NissanG. SharonM. The contribution of the 20S proteasome to proteostasis.Biomolecules20199519010.3390/biom9050190 31100951
    [Google Scholar]
  42. BondesonD.P. CrewsC.M. Targeted protein degradation by small molecules.Annu. Rev. Pharmacol. Toxicol.201757110712310.1146/annurev‑pharmtox‑010715‑103507 27732798
    [Google Scholar]
  43. FlanaganJ QianY GoughS Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer Res 79Suppl 4P5-04-1810.1158/1538‑7445.SABCS18‑P5‑04‑182019
    [Google Scholar]
  44. BondM.J. ChuL. NalawanshaD.A. LiK. CrewsC.M. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs.ACS Cent. Sci.2020681367137510.1021/acscentsci.0c00411 32875077
    [Google Scholar]
  45. EgorovaE.A. NikitinM.P. Delivery of theranostic nanoparticles to various cancers by means of integrin-binding peptides.Int. J. Mol. Sci.202223221373510.3390/ijms232213735 36430214
    [Google Scholar]
  46. BennJ.A. MukadamA.S. McEwanW.A. Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease.Semin. Cell Dev. Biol.202212613814910.1016/j.semcdb.2021.09.012 34654628
    [Google Scholar]
  47. HochstrasserM. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation.Curr. Opin. Cell Biol.19957221522310.1016/0955‑0674(95)80031‑X 7612274
    [Google Scholar]
  48. FossS. WatkinsonR. SandlieI. JamesL.C. AndersenJ.T. TRIM 21: A cytosolic Fc receptor with broad antibody isotype specificity.Immunol. Rev.2015268132833910.1111/imr.12363 26497531
    [Google Scholar]
  49. AlomariM. TRIM21 – A potential novel therapeutic target in cancer.Pharmacol. Res.202116510544310.1016/j.phrs.2021.105443 33508433
    [Google Scholar]
  50. BushwellerJ.H. Targeting transcription factors in cancer — From undruggable to reality.Nat. Rev. Cancer2019191161162410.1038/s41568‑019‑0196‑7 31511663
    [Google Scholar]
  51. BurslemG.M. CrewsC.M. Small-molecule modulation of protein homeostasis.Chem. Rev.201711717112691130110.1021/acs.chemrev.7b00077 28777566
    [Google Scholar]
  52. BuckleyD.L. GustafsonJ.L. Van MolleI. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α.Angew. Chem. Int. Ed.20125146114631146710.1002/anie.201206231 23065727
    [Google Scholar]
  53. LiR. LiuM. YangZ. LiJ. GaoY. TanR. Proteolysis-targeting chimeras (PROTACs) in cancer therapy: Present and future.Molecules20222724882810.3390/molecules27248828 36557960
    [Google Scholar]
  54. VivancosÁ. SegarraC. AlbrechtM. Mesoionic and related less heteroatom-stabilized N-heterocyclic carbene complexes: Synthesis, catalysis, and other applications.Chem. Rev.2018118199493958610.1021/acs.chemrev.8b00148 30014699
    [Google Scholar]
  55. NguyenT.T.L. KimJ.W. ChoiH.I. MaengH.J. KooT.S. Development of an LC-MS/MS method for aRV-110, a PROTAC molecule, and applications to pharmacokinetic studies.Molecules2022276197710.3390/molecules27061977 35335338
    [Google Scholar]
  56. ZorbaA. NguyenC. XuY. Delineating the role of cooperativity in the design of potent PROTACs for BTK.Proc. Natl. Acad. Sci. USA201811531E7285E729210.1073/pnas.1803662115 30012605
    [Google Scholar]
  57. NeklesaT.K. WinklerJ.D. CrewsC.M. Targeted protein degradation by PROTACs.Pharmacol. Ther.201717413814410.1016/j.pharmthera.2017.02.027 28223226
    [Google Scholar]
  58. KargboR.B. Potent PROTACs targeting EGFR mutants in drug discovery.ACS Med. Chem. Lett.202213121835183610.1021/acsmedchemlett.2c00459 36518691
    [Google Scholar]
  59. CeciC. LacalP.M. GrazianiG. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential.Pharmacol. Ther.202223610810610.1016/j.pharmthera.2021.108106 34990642
    [Google Scholar]
  60. SieversE.L. SenterP.D. Antibody-drug conjugates in cancer therapy.Annu. Rev. Med.2013641152910.1146/annurev‑med‑050311‑201823 23043493
    [Google Scholar]
  61. DragovichP.S. Degrader-antibody conjugates.Chem. Soc. Rev.202251103886389710.1039/D2CS00141A 35506708
    [Google Scholar]
  62. BurslemG.M. SmithB.E. LaiA.C. The advantages of targeted protein degradation over inhibition: An RTK case study.Cell Chem. Biol.20182516777.e310.1016/j.chembiol.2017.09.009 29129716
    [Google Scholar]
  63. McNeilC.M. SergioC.M. AndersonL.R. c-Myc overexpression and endocrine resistance in breast cancer.J. Steroid Biochem. Mol. Biol.20061021-514715510.1016/j.jsbmb.2006.09.028 17052904
    [Google Scholar]
  64. QuM.H. ZengR.F. FangS. DaiQ.S. LiH.P. LongJ.T. Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer.Int. J. Pharm.20144741-211212210.1016/j.ijpharm.2014.08.019 25138252
    [Google Scholar]
  65. DristantU. MukherjeeK. SahaS. MaityD. Retracted: An overview of polymeric nanoparticles-based drug delivery system in cancer treatment.Technol. Cancer Res. Treat.2023221533033823115208310.1177/15330338231152083 36718541
    [Google Scholar]
  66. ZhangR.X. CaiP. ZhangT. Polymer–lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin–mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor.Nanomedicine 20161251279129010.1016/j.nano.2015.12.383 26772427
    [Google Scholar]
  67. LuG. WangX. LiF. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma.Nat. Commun.2022131421410.1038/s41467‑022‑31799‑y 35864093
    [Google Scholar]
  68. ZhouR. ZhangM. XiJ. Gold nanorods-based photothermal therapy: Interactions between biostructure, nanomaterial, and near-infrared irradiation.Nanoscale Res. Lett.20221716810.1186/s11671‑022‑03706‑3 35882718
    [Google Scholar]
  69. CavallaroG. SardoC. CraparoE.F. PorsioB. GiammonaG. Polymeric nanoparticles for siRNA delivery: Production and applications.Int. J. Pharm.2017525231333310.1016/j.ijpharm.2017.04.008 28416401
    [Google Scholar]
  70. ChengY. JiaoX. FanW. YangZ. WenY. ChenX. Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics.Biomaterials202025612019110.1016/j.biomaterials.2020.120191 32593907
    [Google Scholar]
  71. BehC.W. SeowW.Y. WangY. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: Downregulating mRNA expression level and sensitizing cancer cells to anticancer drug.Biomacromolecules2009101414810.1021/bm801109g 19072631
    [Google Scholar]
  72. TalaeiS. MellatyarH. AsadiA. AkbarzadehA. SheervalilouR. ZarghamiN. Spotlight on 17‐AAG as an Hsp90 inhibitor for molecular targeted cancer treatment.Chem. Biol. Drug Des.201993576078610.1111/cbdd.13486 30697932
    [Google Scholar]
/content/journals/ccand/10.2174/012212697X323611241109143952
Loading
/content/journals/ccand/10.2174/012212697X323611241109143952
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; E3 ubiquitin ligase; PROTAB; PROTAC; SMI’s; TRIM21
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test