Chemotherapeutic strategies that target irregularly produced or mutant proteins using monoclonal antibodies (mAbs) and tiny molecular inhibitors have been extensively employed to target cancer. However, because most intracellular proteins lack antigens or active sites with which mAbs or SMIs can engage, they have not been considered druggable targets. After extensive research, PROTACs (Proteolysis Targeting chimaeras) have become a promising way to work with proteins. Scaffolding proteins and transcription factors may also be targeted. The present targets of PROTACs include kinases like CDKs and RTKs, overexpressed oncogenic proteins like AR and BRDs, cancer-driven mutant proteins like EGFR, and disease-relevant fusion proteins like NPM/EML4-ALK and BCR-ABL. The inability of small-molecule intracellular degraders to enter cells and their low bioavailability can also be circumvented with PROTABs. The use of multispecific binding proteins is an improved way to target the breakdown of membrane-bound and cell-surface proteins.
ChenY.
JinJ.
The application of ubiquitin ligases in the PROTAC drug design.Acta Biochim. Biophys. Sin. (Shanghai)202052777679010.1093/abbs/gmaa053 32506133
BurslemG.M.
CrewsC.M.
Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.Cell2020181110211410.1016/j.cell.2019.11.031 31955850
KargboR.B.
Emerging proteolysis targeting antibodies (PROTABs) for application in cancer therapy.ACS Med. Chem. Lett.202213121833183410.1021/acsmedchemlett.2c00458 36518693
ChvatalS.A.
LogunM.T.
HayesH.B.
MillardD.C.
KarumbaiahL.
Abstract 2187: Kinetics and potency of T Cell-mediated cytolysis of glioblastoma.Cancer Res.202080Suppl. 162187710.1158/1538‑7445.AM2020‑2187
DanielsT.R.
BernabeuE.
RodríguezJ.A.
The transferrin receptor and the targeted delivery of therapeutic agents against cancer.Biochim. Biophys. Acta, Gen. Subj.20121820329131710.1016/j.bbagen.2011.07.016 21851850
HuangN.
SunX.
LiP.
TRIM family contribute to tumorigenesis, cancer development, and drug resistance.Exp. Hematol. Oncol.20221117510.1186/s40164‑022‑00322‑w 36261847
HershkoA.
The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture).Angew. Chem. Int. Ed.200544375932594310.1002/anie.200501724 16142823
HenleyM.J.
KoehlerA.N.
Advances in targeting ‘undruggable’ transcription factors with small molecules.Nat. Rev. Drug Discov.202120966968810.1038/s41573‑021‑00199‑0 34006959
ZhaoH.Y.
XinM.
ZhangS.Q.
Progress of small molecules for targeted protein degradation: PROTACs and other technologies.Drug Dev. Res.202384233739410.1002/ddr.22026 36606428
MoreauK.
CoenM.
ZhangA.X.
Proteolysis‐targeting chimeras in drug development: A safety perspective.Br. J. Pharmacol.202017781709171810.1111/bph.15014 32022252
VaidA.
GuptaA.
MomiG.
Overall survival in stage IV EGFR mutation positive NSCLC: Comparing first, second and third generation EGFR TKIs. (Review)Int. J. Oncol.202158217118410.3892/ijo.2021.5168 33491758
SitiaL.
SevieriM.
SignatiL.
HER-2-targeted nanoparticles for breast cancer diagnosis and treatment.Cancers (Basel)20221410242410.3390/cancers14102424 35626028
KoundeC.S.
ShchepinovaM.M.
SaundersC.N.
A caged E3 ligase ligand for PROTAC-mediated protein degradation with light.Chem. Commun. (Camb.)202056415532553510.1039/D0CC00523A 32297626
PfaffP.
SamarasingheK.T.G.
CrewsC.M.
CarreiraE.M.
Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs.ACS Cent. Sci.20195101682169010.1021/acscentsci.9b00713 31660436
SalamiJ.
AlabiS.
WillardR.R.
Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance.Commun. Biol.20181110010.1038/s42003‑018‑0105‑8 30271980
PetrylakD.P.
GaoX.
VogelzangN.J.
First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI).J. Clin. Oncol.202038Suppl. 153500010.1200/JCO.2020.38.15_suppl.3500
RugoH.S.
BardiaA.
TolaneyS.M.
TROPiCS-02: A Phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer.Future Oncol.2020161270571510.2217/fon‑2020‑0163 32223649
BondesonD.P.
MaresA.
SmithI.E.D.
Catalytic in vivo protein knockdown by small-molecule PROTACs.Nat. Chem. Biol.201511861161710.1038/nchembio.1858 26075522
WinterC.
NilssonM.P.
OlssonE.
Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic.Ann. Oncol.20162781532153810.1093/annonc/mdw209 27194814
FitzmauriceC.
AbateD.
AbbasiN.
Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017.JAMA Oncol.20195121749176810.1001/jamaoncol.2019.2996 31560378
WangW.
YangJ.
LiaoY.Y.
Aspeterreurone A, a cytotoxic dihydrobenzofuran–phenyl acrylate hybrid from the deep-sea-derived fungus Aspergillus terreus CC-S06-18.J. Nat. Prod.20208361998200310.1021/acs.jnatprod.0c00189 32489099
NowakR.P.
DeAngeloS.L.
BuckleyD.
Plasticity in binding confers selectivity in ligand-induced protein degradation.Nat. Chem. Biol.201814770671410.1038/s41589‑018‑0055‑y 29892083
ZhuH.
WangJ.
ZhangQ.
PanX.
ZhangJ.
Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance.Pharmacol. Ther.202324410837110.1016/j.pharmthera.2023.108371 36871783
FanR.
TaoX.
ZhaiX.
Application of aptamer-drug delivery system in the therapy of breast cancer.Biomed. Pharmacother.202316111444410.1016/j.biopha.2023.114444 36857912
Kumar DeshmukhF.
YaffeD.
OlshinaM.
Ben-NissanG.
SharonM.
The contribution of the 20S proteasome to proteostasis.Biomolecules20199519010.3390/biom9050190 31100951
BondesonD.P.
CrewsC.M.
Targeted protein degradation by small molecules.Annu. Rev. Pharmacol. Toxicol.201757110712310.1146/annurev‑pharmtox‑010715‑103507 27732798
FlanaganJ
QianY
GoughS
Abstract P5-04-18:
ARV-471, an oral estrogen receptor PROTAC degrader for breast
cancer. Cancer Res 79Suppl 4P5-04-1810.1158/1538‑7445.SABCS18‑P5‑04‑182019
EgorovaE.A.
NikitinM.P.
Delivery of theranostic nanoparticles to various cancers by means of integrin-binding peptides.Int. J. Mol. Sci.202223221373510.3390/ijms232213735 36430214
BennJ.A.
MukadamA.S.
McEwanW.A.
Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease.Semin. Cell Dev. Biol.202212613814910.1016/j.semcdb.2021.09.012 34654628
HochstrasserM.
Ubiquitin, proteasomes, and the regulation of intracellular protein degradation.Curr. Opin. Cell Biol.19957221522310.1016/0955‑0674(95)80031‑X 7612274
FossS.
WatkinsonR.
SandlieI.
JamesL.C.
AndersenJ.T.
TRIM 21: A cytosolic Fc receptor with broad antibody isotype specificity.Immunol. Rev.2015268132833910.1111/imr.12363 26497531
BushwellerJ.H.
Targeting transcription factors in cancer — From undruggable to reality.Nat. Rev. Cancer2019191161162410.1038/s41568‑019‑0196‑7 31511663
BuckleyD.L.
GustafsonJ.L.
Van MolleI.
Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α.Angew. Chem. Int. Ed.20125146114631146710.1002/anie.201206231 23065727
VivancosÁ.
SegarraC.
AlbrechtM.
Mesoionic and related less heteroatom-stabilized N-heterocyclic carbene complexes: Synthesis, catalysis, and other applications.Chem. Rev.2018118199493958610.1021/acs.chemrev.8b00148 30014699
NguyenT.T.L.
KimJ.W.
ChoiH.I.
MaengH.J.
KooT.S.
Development of an LC-MS/MS method for aRV-110, a PROTAC molecule, and applications to pharmacokinetic studies.Molecules2022276197710.3390/molecules27061977 35335338
ZorbaA.
NguyenC.
XuY.
Delineating the role of cooperativity in the design of potent PROTACs for BTK.Proc. Natl. Acad. Sci. USA201811531E7285E729210.1073/pnas.1803662115 30012605
BurslemG.M.
SmithB.E.
LaiA.C.
The advantages of targeted protein degradation over inhibition: An RTK case study.Cell Chem. Biol.20182516777.e310.1016/j.chembiol.2017.09.009 29129716
QuM.H.
ZengR.F.
FangS.
DaiQ.S.
LiH.P.
LongJ.T.
Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer.Int. J. Pharm.20144741-211212210.1016/j.ijpharm.2014.08.019 25138252
DristantU.
MukherjeeK.
SahaS.
MaityD.
Retracted: An overview of polymeric nanoparticles-based drug delivery system in cancer treatment.Technol. Cancer Res. Treat.2023221533033823115208310.1177/15330338231152083 36718541
ZhangR.X.
CaiP.
ZhangT.
Polymer–lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin–mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor.Nanomedicine 20161251279129010.1016/j.nano.2015.12.383 26772427
CavallaroG.
SardoC.
CraparoE.F.
PorsioB.
GiammonaG.
Polymeric nanoparticles for siRNA delivery: Production and applications.Int. J. Pharm.2017525231333310.1016/j.ijpharm.2017.04.008 28416401
BehC.W.
SeowW.Y.
WangY.
Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: Downregulating mRNA expression level and sensitizing cancer cells to anticancer drug.Biomacromolecules2009101414810.1021/bm801109g 19072631
TalaeiS.
MellatyarH.
AsadiA.
AkbarzadehA.
SheervalilouR.
ZarghamiN.
Spotlight on 17‐AAG as an Hsp90 inhibitor for molecular targeted cancer treatment.Chem. Biol. Drug Des.201993576078610.1111/cbdd.13486 30697932