In recent years, there has been a notable increase in the global incidence of oral cancer, leading to significant morbidity and mortality, especially when diagnosed at advanced stages. The integration of technology holds great promise for early detection and diagnosis, facilitating improved patient management for clinicians. The emergence of artificial intelligence (AI) presents a potential breakthrough in oral cancer screening, as it can meticulously analyze vast datasets from various imaging modalities, offering valuable support in the field of oncology. This review focuses on a spectrum of AI techniques utilized for early detection and diagnosis of oral cancer. Additionally, AI techniques may be employed for the effective treatment of oral cancer. Using the abundance of information acquired, this article provides an in-depth overview and discussion of AI's value and benefits in oral cancer screening, early detection, disease prediction, and therapy, among other areas. Furthermore, it identifies present limits and forecasts the hopeful future of AI in oral cancer research.
SoniV.
Mucoadhesive film for local delivery to oral cancer: Formulation development, box–behnken experimental design, and in vitro characterization.Asian J. Pharm.2022164
WarnakulasuriyaS.
KujanO.
Aguirre-UrizarJ.M.
BaganJ.V.
González-MolesM.Á.
KerrA.R.
LodiG.
MelloF.W.
MonteiroL.
OgdenG.R.
SloanP.
JohnsonN.W.
Oral potentially malignant disorders: A consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer.Oral Dis.20212781862188010.1111/odi.1370433128420
TanriverG.
Soluk TekkesinM.
ErgenO.
Automated detection and classification of oral lesions using deep learning to detect oral potentially malignant disorders.Cancers (Basel)20211311276610.3390/cancers1311276634199471
García-PolaM.
Pons-FusterE.
Suárez-FernándezC.
Seoane-RomeroJ.
Romero-MéndezA.
López-JornetP.
Role of artificial intelligence in the early diagnosis of oral cancer. A scoping review.Cancers (Basel)20211318460010.3390/cancers1318460034572831
LuJ.
SladojeN.
Runow StarkC.
Darai RamqvistE.
HirschJ-M.
LindbladJ.
A deep learning based pipeline for efficient oral cancer screening on whole slide images. Lu, J.; Sladoje, N.; Runow Stark, C.; Darai Ramqvist, E.; Hirsch, J-M.; Lindblad, J., Eds.; International Conference on Image Analysis and Recognition202010.1007/978‑3‑030‑50516‑5_22
KhanyileR.
MarimaR.
MbejeM.
MutambirwaS.
MontwediD.
DlaminiZ.
AI Tools Offering Cancer Clinical Applications for Risk Predictor, Early Detection, Diagnosis, and Accurate Prognosis: Perspectives in Personalised Care.Artificial Intelligence and Precision Oncology: Bridging Cancer Research and Clinical Decision Support.Springer2023293312
KumarY.
MahajanM.
Intelligent behavior of fog computing with IOT for healthcare system.International Journal of Scientific & Technology Research.201987674679
BansalK.
BatlaR.
KumarY.
ShafiJ.
Artificial intelligence techniques in health informatics for oral cancer detection.Connected e-Health. Studies in Computational IntelligenceSpringerCham20221021255279
GorokhovatskyiO.
PeredriiO.
GorokhovatskyiV.
VlasenkoN.
Explanation of CNN image classifiers with hiding parts.Explainable Deep Learning AI - Methods and ChallengesElsevier2023125146
VincentL.
JayasinghJ.R.
Comparison of psoriasis disease detection and classification through various image processing techniques- A review.6th International Conference on Devices, Circuits and Systems (ICDCS)2022
AlabiR.O.
AlmangushA.
ElmusratiM.
MäkitieA.A.
Deep machine learning for oral cancer: from precise diagnosis to precision medicine.Frontiers in Oral Health2022279424810.3389/froh.2021.79424835088057
WarinK.
LimprasertW.
SuebnukarnS.
JinapornthamS.
JantanaP.
VicharueangS.
AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer.PLoS One2022178e027350810.1371/journal.pone.027350836001628
AwaisM.
GhayvatH.
Krishnan PandarathodiyilA.
Nabillah GhaniW.M.
RamanathanA.
PandyaS.
WalterN.
SaadM.N.
ZainR.B.
FayeI.
Healthcare professional in the loop (HPIL): classification of standard and oral cancer-causing anomalous regions of oral cavity using textural analysis technique in autofluorescence imaging.Sensors (Basel)20202020578010.3390/s2020578033053886
TuttyM.A.
CarlasareL.E.
LloydS.
SinskyC.A.
The complex case of EHRs: examining the factors impacting the EHR user experience.J. Am. Med. Inform. Assoc.201926767367710.1093/jamia/ocz02130938754
BodleyT.
KwanJ.L.
MatelskiJ.
DarraghP.J.
CramP.
Test result management practices of Canadian internal medicine physicians and trainees.J. Gen. Intern. Med.201934111812410.1007/s11606‑018‑4656‑730298242
GroenhofT.K.J.
RittersmaZ.H.
BotsM.L.
BrandjesM.
JacobsJ.J.L.
GrobbeeD.E.
van SolingeW.W.
VisserenF.L.J.
HaitjemaS.
AsselbergsF.W.
A computerised decision support system for cardiovascular risk management ‘live’ in the electronic health record environment: development, validation and implementation—the Utrecht Cardiovascular Cohort Initiative.Neth. Heart J.201927943544210.1007/s12471‑019‑01308‑w31372838
ZhuX.
TuS.P.
SewellD.
YaoN.A.
MishraV.
DowA.
BanasC.
Measuring electronic communication networks in virtual care teams using electronic health records access-log data.Int. J. Med. Inform.2019128465210.1016/j.ijmedinf.2019.05.01231160011
LinW.C.
ChenJ.S.
ChiangM.F.
HribarM.R.
Applications of artificial intelligence to electronic health record data in ophthalmology.Transl. Vis. Sci. Technol.2020921310.1167/tvst.9.2.1332704419
LalA.
PinevichY.
GajicO.
HerasevichV.
PickeringB.
Artificial intelligence and computer simulation models in critical illness.World J. Crit. Care Med.202092131910.5492/wjccm.v9.i2.1332577412
MahmoodH.
ShabanM.
IndaveB.I.
Santos-SilvaA.R.
RajpootN.
KhurramS.A.
Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review.Oral Oncol.202011010488510.1016/j.oraloncology.2020.10488532674040
Chiesa-EstombaC.M.
GrañaM.
MedelaA.
Sistiaga-SuarezJ.A.
LechienJ.R.
Calvo-HenriquezC.
Mayo-YanezM.
VairaL.A.
GrammaticaA.
CammarotoG.
AyadT.
FaganJ.J.
Machine learning algorithms as a computer-assisted decision tool for oral cancer prognosis and management decisions: a systematic review.ORL J. Otorhinolaryngol. Relat. Spec.202284427828810.1159/00052067235021182
JubairF.
Al-karadshehO.
MalamosD.
Al MahdiS.
SaadY.
HassonaY.
A novel lightweight deep convolutional neural network for early detection of oral cancer.Oral Dis.20222841123113010.1111/odi.1382533636041
MarzoukR.
AlabdulkreemE.
DhahbiS.
NourM.K.
DuhayyimM.A.
OthmanM.
Deep Transfer Learning Driven Oral Cancer Detection and Classification Model.Comput. Mater. Continua202273210.32604/cmc.2022.029326
NguyenP-T-H.
SakamotoK.
IkedaT.
Deep-learning application for identifying histological features of epithelial dysplasia of tongue.J. Oral Maxillofac. Surg. Med. Pathol.202234451452210.1016/j.ajoms.2021.12.008
RahmanT.Y.
MahantaL.B.
ChoudhuryH.
DasA.K.
SarmaJ.D.
Study of morphological and textural features for classification of oral squamous cell carcinoma by traditional machine learning techniques.Cancer Rep.202036e129310.1002/cnr2.129333026718
SharmaD.
KudvaV.
PatilV.
KudvaA.
BhatR.S.
A convolutional neural network based deep learning algorithm for identification of oral precancerous and cancerous lesion and differentiation from normal mucosa: a retrospective study.Engineered Science20221827828710.30919/es8d663
WarinK.
LimprasertW.
SuebnukarnS.
JinapornthamS.
JantanaP.
Automatic classification and detection of oral cancer in photographic images using deep learning algorithms.J. Oral Pathol. Med.202150991191810.1111/jop.1322734358372
WarinK.
LimprasertW.
SuebnukarnS.
JinapornthamS.
JantanaP.
Performance of deep convolutional neural network for classification and detection of oral potentially malignant disorders in photographic images.Int. J. Oral Maxillofac. Surg.202251569970410.1016/j.ijom.2021.09.00134548194
KhanagarS.B.
NaikS.
Al KheraifA.A.
VishwanathaiahS.
MaganurP.C.
AlhazmiY.
MushtaqS.
SarodeS.C.
SarodeG.S.
ZanzaA.
TestarelliL.
PatilS.
Application and performance of artificial intelligence technology in oral cancer diagnosis and prediction of prognosis: a systematic review.Diagnostics (Basel)2021116100410.3390/diagnostics1106100434072804
HegdeS.
AjilaV.
ZhuW.
ZengC.
Artificial intelligence in early diagnosis and prevention of oral cancer.Asia Pac. J. Oncol. Nurs.202291210013310.1016/j.apjon.2022.10013336389623
HuangS.
YangJ.
FongS.
ZhaoQ.
Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.Cancer Lett.2020471617110.1016/j.canlet.2019.12.00731830558
JeyarajP.R.
Samuel NadarE.R.
Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm.J. Cancer Res. Clin. Oncol.2019145482983710.1007/s00432‑018‑02834‑730603908
RudinC.
Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.Nat. Mach. Intell.20191520621510.1038/s42256‑019‑0048‑x35603010
PesapaneF.
VolontéC.
CodariM.
SardanelliF.
Artificial intelligence as a medical device in radiology: Ethical and regulatory issues in Europe and the United States.Insights Imaging20189574575310.1007/s13244‑018‑0645‑y30112675
Arterys Receives First FDA Clearance for Broad Oncology Imaging Suite with Deep Learning.2018Available from: https://www.prnewswire.com/news-releases/arterys-receives-first-fda-clearance-for-broad-oncology-imaging-suite-with-deep-learning-300599275.html
BeraK.
SchalperK.A.
RimmD.L.
VelchetiV.
MadabhushiA.
Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology.Nat. Rev. Clin. Oncol.2019161170371510.1038/s41571‑019‑0252‑y31399699
FDA grants breakthrough designation to Paige AI.Available from: https://www.businesswire.com/news/home/20190307005205/en/FDA-Grants-Breakthrough-Designation-to-Paige.AI
2019
Garcia-RojoM.
De MenaD.
Muriel-CuetoP.
Atienza-CuevasL.
Dominguez-GomezM.
BuenoG.
New European Union Regulations Related to Whole Slide Image Scanners and Image Analysis Software.J Pathol Inform.2019102
BuenoG.
Fernández-CarroblesM.M.
DenizO.
García-RojoM.
New trends of emerging technologies in digital pathology.Pathobiology2016832-3616910.1159/00044348227100343
FDA issues warning letter to genomics lab for illegally marketing genetic test that claims to predict patients’ responses to specific medications.2019Available from: https://www.fda.gov/news-events/press-announcements/fda-issues-warning-letter-genomics-lab-illegally-marketing-genetic-test-claims-predict-patients
PaxtonA.
Laboratory-developed tests CAP suggests added oversight of homebrews.CAP Today2009
MadabhushiA.
LeeG.
Image analysis and machine learning in digital pathology: Challenges and opportunities.Med. Image Anal.20163317017510.1016/j.media.2016.06.03727423409
JanowczykA.
MadabhushiA.
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.J. Pathol. Inform.2016712910.4103/2153‑3539.18690227563488
Cruz-RoaA.
GilmoreH.
BasavanhallyA.
FeldmanM.
GanesanS.
ShihN.N.C.
TomaszewskiJ.
GonzálezF.A.
MadabhushiA.
Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent.Sci. Rep.2017714645010.1038/srep4645028418027
DoyleS.
FeldmanM.
TomaszewskiJ.
MadabhushiA.
A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies.IEEE Trans. Biomed. Eng.20125951205121810.1109/TBME.2010.205354020570758
WangX.
JanowczykA.
ZhouY.
ThawaniR.
FuP.
SchalperK.
VelchetiV.
MadabhushiA.
Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images.Sci. Rep.2017711354310.1038/s41598‑017‑13773‑729051570
CoudrayN.
OcampoP.S.
SakellaropoulosT.
NarulaN.
SnuderlM.
FenyöD.
MoreiraA.L.
RazavianN.
TsirigosA.
Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning.Nat. Med.201824101559156710.1038/s41591‑018‑0177‑530224757
TizhooshH.R.
PantanowitzL.
Artificial intelligence and digital pathology: challenges and opportunities.J. Pathol. Inform.2018913810.4103/jpi.jpi_53_1830607305
DasN.
HussainE.
MahantaL.B.
Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network.Neural Netw.2020128476010.1016/j.neunet.2020.05.00332416467