Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

Synthetic biology using minimal-genome engineering has been proposed as the best way to optimize probiotic chassis. A minimal genome presents a significant advantage of enhanced production of heterologous proteins. This research article presents a comprehensive computational biology study for bacterial gene essentiality and genome reduction design within

Methods

This study used a computational biology approach to identify the essential genes of ATCC 393. Essential genes were identified using DELetion design by Essentiality Analysis Tool (DELEATv0.1), Gene Essentiality Prediction Tool for Complete-Genome Based on Orthology and Phylogeny (Geptop2), the Database of Essential Genes (DEG), and Alignable Tight Genomic Clusters-Clusters of Orthologous Genes (ATGC-COG). The criteria for identification of essential genes included phyletic retention (essential orthologs), codon usage, G + C content, length, hydrophobicity score, and essential genomic elements, such as protein-coding genes and noncoding RNAs, among other factors.

Results

Using a consensus approach, 633 putative essential genes were identified. In addition, 145 genes associated with probiotic attributes, such as the production of bacteriocins, bile and acid resistance, immune modulation, and adherence to host gut epithelia, were identified.

Discussion

The directed evolution by serial passage was initiated by streaking L. casei ATCC 393 as part of the test phase of the Design-Build-Test-Learn (DBTL) cycle. The survival rate data were calculated from mean 0D600 nm readings. The data revealed a significant difference in survival rates between E1 and E2 from day 1 to day 38 (V = 224, = 0.00745), indicating that factors, possibly inherent to the isolates themselves or subtle variations in the environment, may be influencing the results. Overall, the significant differences suggest that survival rates were affected by specific NaCl concentrations. Lower survival rates were observed at 50 g/L and 71g/L compared to other concentrations.

Conclusion

The in silico analysis yielded valuable insights into the essential genes of ATCC 393. Further, it contributes to understanding the fundamental genetic makeup of ATCC 393 and its potential as a probiotic chassis for various applications, including the development of novel biotherapeutics.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501414874251020073637
2025-10-24
2025-12-20
Loading full text...

Full text loading...

References

  1. Martínez-GarcíaE. de LorenzoV. The quest for the minimal bacterial genome.Curr. Opin. Biotechnol.20164221622410.1016/j.copbio.2016.09.001 27660908
    [Google Scholar]
  2. ZhangL. ChangS. WangJ. How to make a minimal genome for synthetic minimal cell.Protein Cell20101542743410.1007/s13238‑010‑0064‑4 21203957
    [Google Scholar]
  3. NigatuD. SobetzkoP. YousefM. HenkelW. Sequence-based information-theoretic features for gene essentiality prediction.BMC Bioinformatics201718147310.1186/s12859‑017‑1884‑5 29121868
    [Google Scholar]
  4. DongC. JinY.T. HuaH.L. Comprehensive review of the identification of essential genes using computational methods: Focusing on feature implementation and assessment.Brief. Bioinform.201821117118110.1093/bib/bby116 30496347
    [Google Scholar]
  5. RancatiG. MoffatJ. TypasA. PavelkaN. Emerging and evolving concepts in gene essentiality.Nat. Rev. Genet.2018191344910.1038/nrg.2017.74 29033457
    [Google Scholar]
  6. GarnerK.L. Principles of synthetic biology.Essays Biochem.202165579181110.1042/EBC20200059 34693448
    [Google Scholar]
  7. SolanaJ. Garrote-SánchezE. GilR. DELEAT: Gene essentiality prediction and deletion design for bacterial genome reduction.BMC Bioinformatics202122144410.1186/s12859‑021‑04348‑5 34537011
    [Google Scholar]
  8. GurumayumS. JiangP. HaoX. OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines.Nucleic Acids Res.202149D1D998D100310.1093/nar/gkaa884 33084874
    [Google Scholar]
  9. YinD. JiY. Identification of essential genes in Staphylococcus aureus by construction and screening of conditional mutant library.Methods Mol. Biol.200841629730510.1007/978‑1‑59745‑321‑9_19 18392975
    [Google Scholar]
  10. GlassJ.I. Assad-GarciaN. AlperovichN. Essential genes of a minimal bacterium.Proc. Natl. Acad. Sci. USA2006103242543010.1073/pnas.0510013103 16407165
    [Google Scholar]
  11. MonteiroM.C. De LucasJ.R. Study of the essentiality of the Aspergillus fumigatus triA gene, encoding RNA triphosphatase, using the heterokaryon rescue technique and the conditional gene expression driven by the alcA and niiA promoters.Fungal Genet. Biol.2010471667910.1016/j.fgb.2009.10.010 19883779
    [Google Scholar]
  12. CaleroP. NikelP.I. Chasing bacterial chassis for metabolic engineering: A perspective review from classical to non‐traditional microorganisms.Microb. Biotechnol.20191219812410.1111/1751‑7915.13292 29926529
    [Google Scholar]
  13. PengC. LinY. LuoH. GaoF. A comprehensive overview of online resources to identify and predict bacterial essential genes.Front. Microbiol.20178233110.3389/fmicb.2017.02331 29230204
    [Google Scholar]
  14. LuoH. LinY. LiuT. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools.Nucleic Acids Res.202149D1D677D68610.1093/nar/gkaa917 33095861
    [Google Scholar]
  15. LiuS. WangS.X. LiuW. CEG 2.0: An updated database of clusters of essential genes including eukaryotic organisms.Database20202020baaa11210.1093/database/baaa112 33306800
    [Google Scholar]
  16. ChenW-H. MinguezP. LercherM.J. BorkP. OGEE: An online gene essentiality database.Nucleic Acids Res.201240Database issueD901D90610.1093/nar/gkr986 22075992
    [Google Scholar]
  17. KobayashiK. EhrlichS.D. AlbertiniA. Essential Bacillus subtilis genes.Proc. Natl. Acad. Sci. USA200310084678468310.1073/pnas.0730515100 12682299
    [Google Scholar]
  18. JiY. ZhangB. VanS.F. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA.Science200129355382266226910.1126/science.1063566 11567142
    [Google Scholar]
  19. GerdesS.Y. ScholleM.D. CampbellJ.W. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655.J. Bacteriol.2003185195673568410.1128/JB.185.19.5673‑5684.2003 13129938
    [Google Scholar]
  20. GallagherR.R. PatelJ.R. InterianoA.L. RovnerA.J. IsaacsF.J. Multilayered genetic safeguards limit growth of microorganisms to defined environments.Nucleic Acids Res.20154331945195410.1093/nar/gku1378 25567985
    [Google Scholar]
  21. MouleM.G. HemsleyC.M. SeetQ. Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development.MBio201451e00926e1310.1128/mBio.00926‑13 24520057
    [Google Scholar]
  22. WonglapsuwanM. PahumuntoN. TeanpaisanR. SurachatK. Unlocking the genetic potential of Lacticaseibacillus rhamnosus strains: Medical applications of a promising probiotic for human and animal health.Heliyon20241082949910.1016/j.heliyon.2024.e29499 38655288
    [Google Scholar]
  23. TohH. OshimaK. NakanoA. Genomic adaptation of the Lactobacillus casei group.PLoS One20138107507310.1371/journal.pone.0075073 24116025
    [Google Scholar]
  24. ChenC. YuL. TianF. ZhaoJ. ZhaiQ. Identification of novel bile salt-tolerant genes in Lactobacillus using comparative genomics and its application in the rapid screening of tolerant strains.Microorganisms20221012237110.3390/microorganisms10122371 36557624
    [Google Scholar]
  25. WangG. ZhaiZ. RenF. LiZ. ZhangB. HaoY. Combined transcriptomic and proteomic analysis of the response to bile stress in a centenarian-originated probiotic Lactobacillus salivarius Ren.Food Res. Int.202013710933110.1016/j.foodres.2020.109331 33233046
    [Google Scholar]
  26. van HeelA.J. de JongA. SongC. VielJ.H. KokJ. KuipersO.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins.Nucleic Acids Res.201846W1W278-8110.1093/nar/gky383 29788290
    [Google Scholar]
  27. BlinK. ShawS. AugustijnH.E. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation.Nucleic Acids Res.202351W1W46-5010.1093/nar/gkad344 37140036
    [Google Scholar]
  28. WishartD.S. HanS. SahaS. PHASTEST: Faster than PHASTER, better than PHAST.Nucleic Acids Res.202351W1W443-5010.1093/nar/gkad382 37194694
    [Google Scholar]
  29. DarlingA.C.E. MauB. BlattnerF.R. PernaN.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements.Genome Res.20041471394140310.1101/gr.2289704 15231754
    [Google Scholar]
  30. GasparP. CarvalhoA.L. VingaS. SantosH. NevesA.R. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.Biotechnol. Adv.201331676478810.1016/j.biotechadv.2013.03.011 23567148
    [Google Scholar]
  31. AlayandeK.A. AiyegoroO.A. NengwekhuluT.M. Katata-SeruL. AtebaC.N. Integrated genome-based probiotic relevance and safety evaluation of Lactobacillus reuteri PNW1.PLoS One2020157023587310.1371/journal.pone.0235873 32687505
    [Google Scholar]
  32. XuS. ChengJ. MengX. XuY. MuY. Complete genome and comparative genome analysis of Lactobacillus reuteri YSJL-12, a potential probiotics strain isolated from healthy sow fresh feces.Evol. Bioinform. Online202016117693432094219210.1177/1176934320942192 32782425
    [Google Scholar]
  33. HamonE. HorvatovichP. BischM. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics.J. Proteome Res.201211110911810.1021/pr200828t 22040141
    [Google Scholar]
  34. PanQ. ShenX. YuL. Comparative genomic analysis determines the functional genes related to bile salt resistance in Lactobacillus salivarius.Microorganisms2021910203810.3390/microorganisms9102038 34683359
    [Google Scholar]
  35. BurnsP. SánchezB. VinderolaG. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile.Int. J. Food Microbiol.20101421-213214110.1016/j.ijfoodmicro.2010.06.013 20621375
    [Google Scholar]
  36. WuR. SunZ. WuJ. MengH. ZhangH. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis.J. Dairy Sci.20109383858386810.3168/jds.2009‑2967 20655455
    [Google Scholar]
  37. ChandranA. DuaryR.K. GroverS. BatishV.K. Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91.Microbiol. Res.2013168955556210.1016/j.micres.2013.04.010 23726792
    [Google Scholar]
  38. DouillardF.P. de VosW.M. Functional genomics of lactic acid bacteria: From food to health.Microb. Cell Fact.201413Suppl. 1S810.1186/1475‑2859‑13‑S1‑S8 25186768
    [Google Scholar]
  39. ReunanenJ. von OssowskiI. HendrickxA.P.A. PalvaA. de VosW.M. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG.Appl. Environ. Microbiol.20127872337234410.1128/AEM.07047‑11 22247175
    [Google Scholar]
  40. MalikS. PetrovaM.I. ClaesI.J.J. The highly autoaggregative and adhesive phenotype of the vaginal Lactobacillus plantarum strain CMPG5300 is sortase dependent.Appl. Environ. Microbiol.201379154576458510.1128/AEM.00926‑13 23709503
    [Google Scholar]
  41. KantR. RintahakaJ. YuX. A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus.PLoS One20149710276210.1371/journal.pone.0102762 25032833
    [Google Scholar]
  42. MobegiF.M. van HijumS.A.F.T. BurghoutP. From microbial gene essentiality to novel antimicrobial drug targets.BMC Genomics201415195810.1186/1471‑2164‑15‑958 25373505
    [Google Scholar]
  43. GilR. SilvaF.J. PeretóJ. MoyaA. Determination of the core of a minimal bacterial gene set.Microbiol. Mol. Biol. Rev.200468351853710.1128/MMBR.68.3.518‑537.2004 15353568
    [Google Scholar]
  44. JuhasM. EberlL. GlassJ.I. Essence of life: Essential genes of minimal genomes.Trends Cell Biol.2011211056256810.1016/j.tcb.2011.07.005 21889892
    [Google Scholar]
  45. KuoY.C. LiuC.F. LinJ.F. LiA.C. LoT.C. LinT.H. Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334.Appl. Microbiol. Biotechnol.201397123724610.1007/s00253‑012‑4149‑2 22688903
    [Google Scholar]
  46. KiousiD.E. EfstathiouC. TzampazlisV. Genetic and phenotypic assessment of the antimicrobial activity of three potential probiotic lactobacilli against human enteropathogenic bacteria.Front. Cell. Infect. Microbiol.202313112725610.3389/fcimb.2023.1127256 36844407
    [Google Scholar]
  47. MechoudM.A. ÁlvarezO.E. CayréM.E. CastroM.P. MinahkC. SaavedraL. Sakacin G is the main responsible bacteriocin for the anti-listerial activity of meat-borne Lactobacillus curvatus ACU-1.Ann. Microbiol.201767961562110.1007/s13213‑017‑1288‑9
    [Google Scholar]
  48. TeneaG.N. OrtegaC. Genome characterization of Lactiplantibacillus plantarum Strain UTNGt2 originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial peptides from safety to potential applications.Antibiotics202110438310.3390/antibiotics10040383 33916842
    [Google Scholar]
  49. HuC.B. MalaphanW. ZendoT. NakayamaJ. SonomotoK. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides.Appl. Environ. Microbiol.201076134542454510.1128/AEM.02264‑09 20418437
    [Google Scholar]
  50. McAnultyM.J. GuronG.K. OestA.M. MillerA.L. RenyeJ.A. The quorum sensing peptide BlpC regulates the transcription of genes outside its associated gene cluster and impacts the growth of Streptococcus thermophilus.Front. Microbiol.202414130413610.3389/fmicb.2023.1304136 38293552
    [Google Scholar]
  51. ZhangD. ZhangJ. KalimuthuS. A systematically biosynthetic investigation of lactic acid bacteria reveals diverse antagonistic bacteriocins that potentially shape the human microbiome.Microbiome20231119110.1186/s40168‑023‑01540‑y 37101246
    [Google Scholar]
  52. Revilla-GuarinosA. AlcántaraC. RozèsN. VoigtB. ZúñigaM. Characterization of the response to low pH of Lactobacillus casei ΔRR12, a mutant strain with low D-alanylation activity and sensitivity to low pH.J. Appl. Microbiol.201411651250126110.1111/jam.12442 24506696
    [Google Scholar]
  53. KangS.S. RyuY.H. BaikJ.E. Lipoteichoic acid from Lactobacillus plantarum induces nitric oxide production in the presence of interferon-γ in murine macrophages.Mol. Immunol.20114815-162170217710.1016/j.molimm.2011.07.009 21835472
    [Google Scholar]
  54. ProuxC. van SinderenD. SuarezJ. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria.J. Bacteriol.2002184216026603610.1128/JB.184.21.6026‑6036.2002 12374837
    [Google Scholar]
  55. CornuaultJ.K. MoineauS. Induction and elimination of prophages using CRISPR interference.CRISPR J.20214454955710.1089/crispr.2021.0026 34406037
    [Google Scholar]
  56. XinY. GuoT. MuY. KongJ. Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei.Microb. Cell Fact.20181712110.1186/s12934‑018‑0872‑4 29433512
    [Google Scholar]
  57. QiaoW. LiuF. WanX. Genomic features and construction of streamlined genome chassis of Nisin Z producer Lactococcus lactis N8.Microorganisms20211014710.3390/microorganisms10010047 35056496
    [Google Scholar]
  58. BroadbentJ.R. Neeno-EckwallE.C. StahlB. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation.BMC Genomics201213153310.1186/1471‑2164‑13‑533 23035691
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501414874251020073637
Loading
/content/journals/cbiot/10.2174/0122115501414874251020073637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test