Skip to content
2000
image of In-silico Lactochassis: In Silico Prediction of Essential Genes in Lacticaseibacillus casei: A Step towards Genome Minimisation

Abstract

Introduction

Synthetic biology using minimal-genome engineering has been proposed as the best way to optimize probiotic chassis. A minimal genome presents a significant advantage of enhanced production of heterologous proteins. This research article presents a comprehensive computational biology study for bacterial gene essentiality and genome reduction design within

Methods

This study used a computational biology approach to identify the essential genes of ATCC 393. Essential genes were identified using DELetion design by Essentiality Analysis Tool (DELEATv0.1), Gene Essentiality Prediction Tool for Complete-Genome Based on Orthology and Phylogeny (Geptop2), the Database of Essential Genes (DEG), and Alignable Tight Genomic Clusters-Clusters of Orthologous Genes (ATGC-COG). The criteria for identification of essential genes included phyletic retention (essential orthologs), codon usage, G + C content, length, hydrophobicity score, and essential genomic elements, such as protein-coding genes and noncoding RNAs, among other factors.

Results

Using a consensus approach, 633 putative essential genes were identified. In addition, 145 genes associated with probiotic attributes, such as the production of bacteriocins, bile and acid resistance, immune modulation, and adherence to host gut epithelia, were identified.

Discussion

The directed evolution by serial passage was initiated by streaking L. casei ATCC 393 as part of the test phase of the Design-Build-Test-Learn (DBTL) cycle. The survival rate data were calculated from mean 0D600 nm readings. The data revealed a significant difference in survival rates between E1 and E2 from day 1 to day 38 (V = 224, = 0.00745), indicating that factors, possibly inherent to the isolates themselves or subtle variations in the environment, may be influencing the results. Overall, the significant differences suggest that survival rates were affected by specific NaCl concentrations. Lower survival rates were observed at 50 g/L and 71g/L compared to other concentrations.

Conclusion

The in-silico analysis yielded valuable insights into the essential genes of ATCC 393. Further, it contributes to understanding the fundamental genetic makeup of ATCC 393 and its potential as a probiotic chassis for various applications, including the development of novel biotherapeutics.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501414874251020073637
2025-10-24
2025-10-29
Loading full text...

Full text loading...

References

  1. Martínez-García E. de Lorenzo V. The quest for the minimal bacterial genome. Curr. Opin. Biotechnol. 2016 42 216 224 10.1016/j.copbio.2016.09.001 27660908
    [Google Scholar]
  2. Zhang L. Chang S. Wang J. How to make a minimal genome for synthetic minimal cell. Protein Cell 2010 1 5 427 434 10.1007/s13238‑010‑0064‑4 21203957
    [Google Scholar]
  3. Nigatu D. Sobetzko P. Yousef M. Henkel W. Sequence-based information-theoretic features for gene essentiality prediction. BMC Bioinformatics 2017 18 1 473 10.1186/s12859‑017‑1884‑5 29121868
    [Google Scholar]
  4. Dong C. Jin Y.T. Hua H.L. Wen Q.F. Luo S. Zheng W.X. Guo F.B. Comprehensive review of the identification of essential genes using computational methods: Focusing on feature implementation and assessment. Brief. Bioinform. 2018 21 1 171 181 10.1093/bib/bby116 30496347
    [Google Scholar]
  5. Rancati G. Moffat J. Typas A. Pavelka N. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 2018 19 1 34 49 10.1038/nrg.2017.74 29033457
    [Google Scholar]
  6. Garner K.L. Principles of synthetic biology. Essays Biochem. 2021 65 5 791 811 10.1042/EBC20200059 34693448
    [Google Scholar]
  7. Solana J. Garrote-Sánchez E. Gil R. DELEAT: Gene essentiality prediction and deletion design for bacterial genome reduction. BMC Bioinformatics 2021 22 1 444 10.1186/s12859‑021‑04348‑5 34537011
    [Google Scholar]
  8. Gurumayum S. Jiang P. Hao X. Campos T.L. Young N.D. Korhonen P.K. Gasser R.B. Bork P. Zhao X.M. He L. Chen W.H. OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines. Nucleic Acids Res. 2021 49 D1 D998 D1003 10.1093/nar/gkaa884 33084874
    [Google Scholar]
  9. Yin D. Ji Y. Identification of essential genes in Staphylococcus aureus by construction and screening of conditional mutant library. Methods Mol. Biol. 2008 416 297 305 10.1007/978‑1‑59745‑321‑9_19 18392975
    [Google Scholar]
  10. Glass J.I. Assad-Garcia N. Alperovich N. Yooseph S. Lewis M.R. Maruf M. Hutchison C.A. III Smith H.O. Venter J.C. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA 2006 103 2 425 430 10.1073/pnas.0510013103 16407165
    [Google Scholar]
  11. Monteiro M.C. De Lucas J.R. Study of the essentiality of the Aspergillus fumigatus triA gene, encoding RNA triphosphatase, using the heterokaryon rescue technique and the conditional gene expression driven by the alcA and niiA promoters. Fungal Genet. Biol. 2010 47 1 66 79 10.1016/j.fgb.2009.10.010 19883779
    [Google Scholar]
  12. Calero P. Nikel P.I. Chasing bacterial chassis for metabolic engineering: A perspective review from classical to non‐traditional microorganisms. Microb. Biotechnol. 2019 12 1 98 124 10.1111/1751‑7915.13292 29926529
    [Google Scholar]
  13. Peng C. Lin Y. Luo H. Gao F. A comprehensive overview of online resources to identify and predict bacterial essential genes. Front. Microbiol. 2017 8 2331 10.3389/fmicb.2017.02331 29230204
    [Google Scholar]
  14. Luo H. Lin Y. Liu T. Lai F.L. Zhang C.T. Gao F. Zhang R. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res. 2021 49 D1 D677 D686 10.1093/nar/gkaa917 33095861
    [Google Scholar]
  15. Liu S. Wang S.X. Liu W. Wang C. Zhang F.Z. Ye Y.N. Wu C.S. Zheng W.X. Rao N. Guo F.B. CEG 2.0: An updated database of clusters of essential genes including eukaryotic organisms. Database 2020 2020 baaa112 10.1093/database/baaa112 33306800
    [Google Scholar]
  16. Chen W.-H. Minguez P. Lercher M. J. Bork P. OGEE: An online gene essentiality database. Nucleic Acids Res 2012 40 Database issue D901 D906 10.1093/nar/gkr986 22075992
    [Google Scholar]
  17. Kobayashi K. Ehrlich S.D. Albertini A. Amati G. Andersen K.K. Arnaud M. Asai K. Ashikaga S. Aymerich S. Bessieres P. Boland F. Brignell S.C. Bron S. Bunai K. Chapuis J. Christiansen L.C. Danchin A. Débarbouillé M. Dervyn E. Deuerling E. Devine K. Devine S.K. Dreesen O. Errington J. Fillinger S. Foster S.J. Fujita Y. Galizzi A. Gardan R. Eschevins C. Fukushima T. Haga K. Harwood C.R. Hecker M. Hosoya D. Hullo M.F. Kakeshita H. Karamata D. Kasahara Y. Kawamura F. Koga K. Koski P. Kuwana R. Imamura D. Ishimaru M. Ishikawa S. Ishio I. Le Coq D. Masson A. Mauël C. Meima R. Mellado R.P. Moir A. Moriya S. Nagakawa E. Nanamiya H. Nakai S. Nygaard P. Ogura M. Ohanan T. O’Reilly M. O’Rourke M. Pragai Z. Pooley H.M. Rapoport G. Rawlins J.P. Rivas L.A. Rivolta C. Sadaie A. Sadaie Y. Sarvas M. Sato T. Saxild H.H. Scanlan E. Schumann W. Seegers J.F.M.L. Sekiguchi J. Sekowska A. Séror S.J. Simon M. Stragier P. Studer R. Takamatsu H. Tanaka T. Takeuchi M. Thomaides H.B. Vagner V. van Dijl J.M. Watabe K. Wipat A. Yamamoto H. Yamamoto M. Yamamoto Y. Yamane K. Yata K. Yoshida K. Yoshikawa H. Zuber U. Ogasawara N. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 2003 100 8 4678 4683 10.1073/pnas.0730515100 12682299
    [Google Scholar]
  18. Ji Y. Zhang B. Van S.F. Horn Warren P. Woodnutt G. Burnham M.K.R. Rosenberg M. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 2001 293 5538 2266 2269 10.1126/science.1063566 11567142
    [Google Scholar]
  19. Gerdes S.Y. Scholle M.D. Campbell J.W. Balázsi G. Ravasz E. Daugherty M.D. Somera A.L. Kyrpides N.C. Anderson I. Gelfand M.S. Bhattacharya A. Kapatral V. D’Souza M. Baev M.V. Grechkin Y. Mseeh F. Fonstein M.Y. Overbeek R. Barabási A.L. Oltvai Z.N. Osterman A.L. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 2003 185 19 5673 5684 10.1128/JB.185.19.5673‑5684.2003 13129938
    [Google Scholar]
  20. Gallagher R.R. Patel J.R. Interiano A.L. Rovner A.J. Isaacs F.J. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res. 2015 43 3 1945 1954 10.1093/nar/gku1378 25567985
    [Google Scholar]
  21. Moule M.G. Hemsley C.M. Seet Q. Guerra-Assunção J.A. Lim J. Sarkar-Tyson M. Clark T.G. Tan P.B.O. Titball R.W. Cuccui J. Wren B.W. Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development. MBio 2014 5 1 e00926-13 10.1128/mBio.00926‑13 24520057
    [Google Scholar]
  22. Wonglapsuwan M. Pahumunto N. Teanpaisan R. Surachat K. Unlocking the genetic potential of Lacticaseibacillus rhamnosus strains: Medical applications of a promising probiotic for human and animal health. Heliyon 2024 10 8 29499 10.1016/j.heliyon.2024.e29499 38655288
    [Google Scholar]
  23. Toh H. Oshima K. Nakano A. Takahata M. Murakami M. Takaki T. Nishiyama H. Igimi S. Hattori M. Morita H. Genomic adaptation of the Lactobacillus casei group. PLoS One 2013 8 10 75073 10.1371/journal.pone.0075073 24116025
    [Google Scholar]
  24. Chen C. Yu L. Tian F. Zhao J. Zhai Q. Identification of novel bile salt-tolerant genes in Lactobacillus using comparative genomics and its application in the rapid screening of tolerant strains. Microorganisms 2022 10 12 2371 10.3390/microorganisms10122371 36557624
    [Google Scholar]
  25. Wang G. Zhai Z. Ren F. Li Z. Zhang B. Hao Y. Combined transcriptomic and proteomic analysis of the response to bile stress in a centenarian-originated probiotic Lactobacillus salivarius Ren. Food Res Int 2020 137 109331 10.1016/j.foodres.2020.109331 33233046
    [Google Scholar]
  26. van Heel A.J. de Jong A. Song C. Viel J.H. Kok J. Kuipers O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018 46 W1 W278 W281 10.1093/nar/gky383 29788290
    [Google Scholar]
  27. Blin K. Shaw S. Augustijn H.E. Reitz Z.L. Biermann F. Alanjary M. Fetter A. Terlouw B.R. Metcalf W.W. Helfrich E.J.N. van Wezel G.P. Medema M.H. Weber T. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023 51 W1 W46 W50 10.1093/nar/gkad344 37140036
    [Google Scholar]
  28. Wishart D.S. Han S. Saha S. Oler E. Peters H. Grant J.R. Stothard P. Gautam V. PHASTEST: Faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023 51 W1 W443 W450 10.1093/nar/gkad382 37194694
    [Google Scholar]
  29. Darling A.C.E. Mau B. Blattner F.R. Perna N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004 14 7 1394 1403 10.1101/gr.2289704 15231754
    [Google Scholar]
  30. Gaspar P. Carvalho A.L. Vinga S. Santos H. Neves A.R. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol. Adv. 2013 31 6 764 788 10.1016/j.biotechadv.2013.03.011 23567148
    [Google Scholar]
  31. Alayande K.A. Aiyegoro O.A. Nengwekhulu T.M. Katata-Seru L. Ateba C.N. Integrated genome-based probiotic relevance and safety evaluation of Lactobacillus reuteri PNW1. PLoS One 2020 15 7 0235873 10.1371/journal.pone.0235873 32687505
    [Google Scholar]
  32. Xu S. Cheng J. Meng X. Xu Y. Mu Y. Complete genome and comparative genome analysis of Lactobacillus reuteri YSJL-12, a potential probiotics strain isolated from healthy sow fresh feces. Evol. Bioinform. Online 2020 16 1176934320942192 10.1177/1176934320942192 32782425
    [Google Scholar]
  33. Hamon E. Horvatovich P. Bisch M. Bringel F. Marchioni E. Aoudé-Werner D. Ennahar S. Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. J. Proteome Res. 2012 11 1 109 118 10.1021/pr200828t 22040141
    [Google Scholar]
  34. Pan Q. Shen X. Yu L. Tian F. Zhao J. Zhang H. Chen W. Zhai Q. Comparative genomic analysis determines the functional genes related to bile salt resistance in Lactobacillus salivarius. Microorganisms 2021 9 10 2038 10.3390/microorganisms9102038 34683359
    [Google Scholar]
  35. Burns P. Sánchez B. Vinderola G. Ruas-Madiedo P. Ruiz L. Margolles A. Reinheimer J. de los Reyes-Gavilán C.G. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. Int. J. Food Microbiol. 2010 142 1-2 132 141 10.1016/j.ijfoodmicro.2010.06.013 20621375
    [Google Scholar]
  36. Wu R. Sun Z. Wu J. Meng H. Zhang H. Effect of bile salts stress on protein synthesis of Lactobacillus casei Zhang revealed by 2-dimensional gel electrophoresis. J. Dairy Sci. 2010 93 8 3858 3868 10.3168/jds.2009‑2967 20655455
    [Google Scholar]
  37. Chandran A. Duary R.K. Grover S. Batish V.K. Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91. Microbiol. Res. 2013 168 9 555 562 10.1016/j.micres.2013.04.010 23726792
    [Google Scholar]
  38. Douillard F. P. de Vos W. M. Functional genomics of lactic acid bacteria: From food to health. Microb Cell Fact 2014 13 Suppl 1 S8 10.1186/1475‑2859‑13‑S1‑S8 25186768
    [Google Scholar]
  39. Reunanen J. von Ossowski I. Hendrickx A.P.A. Palva A. de Vos W.M. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 2012 78 7 2337 2344 10.1128/AEM.07047‑11 22247175
    [Google Scholar]
  40. Malik S. Petrova M.I. Claes I.J.J. Verhoeven T.L.A. Busschaert P. Vaneechoutte M. Lievens B. Lambrichts I. Siezen R.J. Balzarini J. Vanderleyden J. Lebeer S. The highly autoaggregative and adhesive phenotype of the vaginal Lactobacillus plantarum strain CMPG5300 is sortase dependent. Appl. Environ. Microbiol. 2013 79 15 4576 4585 10.1128/AEM.00926‑13 23709503
    [Google Scholar]
  41. Kant R. Rintahaka J. Yu X. Sigvart-Mattila P. Paulin L. Mecklin J.P. Saarela M. Palva A. von Ossowski I. A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus. PLoS One 2014 9 7 102762 10.1371/journal.pone.0102762 25032833
    [Google Scholar]
  42. Mobegi F.M. van Hijum S.A.F.T. Burghout P. Bootsma H.J. de Vries S.P.W. van der Gaast-de Jongh C.E. Simonetti E. Langereis J.D. Hermans P.W.M. de Jonge M.I. Zomer A. From microbial gene essentiality to novel antimicrobial drug targets. BMC Genomics 2014 15 1 958 10.1186/1471‑2164‑15‑958 25373505
    [Google Scholar]
  43. Gil R. Silva F. J. Peretó J. Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 2004 68 3 518 537 10.1128/MMBR.68.3.518‑537.2004 15353568
    [Google Scholar]
  44. Juhas M. Eberl L. Glass J.I. Essence of life: Essential genes of minimal genomes. Trends Cell Biol. 2011 21 10 562 568 10.1016/j.tcb.2011.07.005 21889892
    [Google Scholar]
  45. Kuo Y.C. Liu C.F. Lin J.F. Li A.C. Lo T.C. Lin T.H. Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334. Appl. Microbiol. Biotechnol. 2013 97 1 237 246 10.1007/s00253‑012‑4149‑2 22688903
    [Google Scholar]
  46. Kiousi D.E. Efstathiou C. Tzampazlis V. Plessas S. Panopoulou M. Koffa M. Galanis A. Genetic and phenotypic assessment of the antimicrobial activity of three potential probiotic lactobacilli against human enteropathogenic bacteria. Front. Cell. Infect. Microbiol. 2023 13 1127256 10.3389/fcimb.2023.1127256 36844407
    [Google Scholar]
  47. Mechoud M.A. Álvarez O.E. Cayré M.E. Castro M.P. Minahk C. Saavedra L. Sakacin G is the main responsible bacteriocin for the anti-listerial activity of meat-borne Lactobacillus curvatus ACU-1. Ann. Microbiol. 2017 67 9 615 621 10.1007/s13213‑017‑1288‑9
    [Google Scholar]
  48. Tenea G.N. Ortega C. Genome characterization of Lactiplantibacillus plantarum Strain UTNGt2 originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial peptides from safety to potential applications. Antibiotics 2021 10 4 383 10.3390/antibiotics10040383 33916842
    [Google Scholar]
  49. Hu C.B. Malaphan W. Zendo T. Nakayama J. Sonomoto K. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl. Environ. Microbiol. 2010 76 13 4542 4545 10.1128/AEM.02264‑09 20418437
    [Google Scholar]
  50. McAnulty M.J. Guron G.K. Oest A.M. Miller A.L. Renye J.A. Jr The quorum sensing peptide BlpC regulates the transcription of genes outside its associated gene cluster and impacts the growth of Streptococcus thermophilus. Front. Microbiol. 2024 14 1304136 10.3389/fmicb.2023.1304136 38293552
    [Google Scholar]
  51. Zhang D. Zhang J. Kalimuthu S. Liu J. Song Z.M. He B. Cai P. Zhong Z. Feng C. Neelakantan P. Li Y.X. A systematically biosynthetic investigation of lactic acid bacteria reveals diverse antagonistic bacteriocins that potentially shape the human microbiome. Microbiome 2023 11 1 91 10.1186/s40168‑023‑01540‑y 37101246
    [Google Scholar]
  52. Revilla-Guarinos A. Alcántara C. Rozès N. Voigt B. Zúñiga M. Characterization of the response to low pH of Lactobacillus casei ΔRR12, a mutant strain with low D-alanylation activity and sensitivity to low pH. J. Appl. Microbiol. 2014 116 5 1250 1261 10.1111/jam.12442 24506696
    [Google Scholar]
  53. Kang S.S. Ryu Y.H. Baik J.E. Yun C.H. Lee K. Chung D.K. Han S.H. Lipoteichoic acid from Lactobacillus plantarum induces nitric oxide production in the presence of interferon-γ in murine macrophages. Mol. Immunol. 2011 48 15-16 2170 2177 10.1016/j.molimm.2011.07.009 21835472
    [Google Scholar]
  54. Proux C. van Sinderen D. Suarez J. Garcia P. Ladero V. Fitzgerald G.F. Desiere F. Brüssow H. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria. J. Bacteriol. 2002 184 21 6026 6036 10.1128/JB.184.21.6026‑6036.2002 12374837
    [Google Scholar]
  55. Cornuault J.K. Moineau S. Induction and elimination of prophages using CRISPR interference. CRISPR J. 2021 4 4 549 557 10.1089/crispr.2021.0026 34406037
    [Google Scholar]
  56. Xin Y. Guo T. Mu Y. Kong J. Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei. Microb. Cell Fact. 2018 17 1 21 10.1186/s12934‑018‑0872‑4 29433512
    [Google Scholar]
  57. Qiao W. Liu F. Wan X. Qiao Y. Li R. Wu Z. Saris P.E.J. Xu H. Qiao M. Genomic features and construction of streamlined genome chassis of Nisin Z producer Lactococcus lactis N8. Microorganisms 2021 10 1 47 10.3390/microorganisms10010047 35056496
    [Google Scholar]
  58. Broadbent J.R. Neeno-Eckwall E.C. Stahl B. Tandee K. Cai H. Morovic W. Horvath P. Heidenreich J. Perna N.T. Barrangou R. Steele J.L. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics 2012 13 1 533 10.1186/1471‑2164‑13‑533 23035691
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501414874251020073637
Loading
/content/journals/cbiot/10.2174/0122115501414874251020073637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test