Skip to content
2000
image of Optimization of Bioemulsifier Extraction from Candida tropicalis Isolated from Overripe Banana and its Potential as a Food Additive

Abstract

Introduction

Improvement in food processing can be achieved by applying a bioemulsifier produced from microorganisms isolated from overripe fruit. The study aims to isolate, optimize, characterize, and determine the application of a bioemulsifier from , obtained from overripe bananas.

Methods

was identified using 16S rRNA sequencing and BLAST analysis. The autoclaving extraction procedure was optimized using a 5-level, 2-factor central composite design (CCD). Purification was conducted Sephadex G-50 gel filtration chromatography. Comprehensive characterization was performed using HPLC, SEM-EDX FTIR, 1H and 13C NMR, and SDS-PAGE. The bioemulsifier was applied as a food additive in mayonnaise production at a concentration of 0.5% (w/v) and evaluated for its sensory and toxicological properties.

Results

The bioemulsifier composition exhibited similarity to structural mannoprotein, with 11.32% protein and 88.68% carbohydrate. The optimized conditions, at 121 ºC for 120 min, yielded 0.232 g per 0.3 g dry cells, with an emulsification index of 55.5%, a protein content of 0.488 mg/mL, and a carbohydrate content of 5.4 mg/g. SDS-PAGE revealed a molecular mass of 38 kDa. FTIR confirmed the presence of glycoprotein, while HPLC revealed various molecular weight fractions, including monosaccharides, polysaccharides, and glycoproteins. SEM-EDX analysis confirmed porous, aggregated biopolymer structures with an elemental composition predominantly consisting of carbon, oxygen, nitrogen, and phosphorus. 1H NMR validated glycoprotein structures with characteristic functional groups. Toxicity evaluation indicated an LD above 5000 mg/kg. Sensory analysis demonstrated functional properties comparable to those of commercial emulsifiers.

Discussion

Physicochemical, structural, and functional analyses jointly support the classification of the purified compound as a glycoprotein-based bioemulsifier. The absence of toxicity at high doses supports its safety; however, long-term assessments and broader application across food matrices are recommended.

Conclusion

The bioemulsifier from demonstrates promising emulsification, physicochemical, toxicological, and sensory properties, supporting its potential use as a food additive.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501409925251206220128
2025-12-22
2026-02-11
Loading full text...

Full text loading...

References

  1. Lavanya M. Namasivayam S.K.R. John A. Developmental formulation principles of food preservatives by nanoencapsulation—fundamentals, application, and challenges. Appl. Biochem. Biotechnol. 2024 196 10 7503 7533 10.1007/s12010‑024‑04943‑1 38713338
    [Google Scholar]
  2. Rahaman S.M. Bhattarai A. Kumar D. Singh B. Saha B. Application of biosurfactants as emulsifiers in the processing of food products with diverse utilization in the baked goods. Applications of Next Generation Biosurfactants in the Food Sector. Elsevier 2023 203 237 10.1016/B978‑0‑12‑824283‑4.00021‑6
    [Google Scholar]
  3. Venkataraman S. Rajendran D.S. Vaidyanathan V.K. An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector. Food Sci. Biotechnol. 2024 33 2 245 273 10.1007/s10068‑023‑01435‑6 38222912
    [Google Scholar]
  4. Ribeiro B.G. Guerra J.M.C. Sarubbo L.A. Biosurfactants: Production and application prospects in the food industry. Biotechnol. Prog. 2020 36 5 e3030 10.1002/btpr.3030 32463167
    [Google Scholar]
  5. Dammak I. Sobral P.J.A. Aquino A. Neves M.A. Conte-Junior C.A. Nanoemulsions: Using emulsifiers from natural sources replacing synthetic ones—A review. Compr. Rev. Food Sci. Food Saf. 2020 19 5 2721 2746 10.1111/1541‑4337.12606 33336986
    [Google Scholar]
  6. Kashif A. Rehman R. Fuwad A. Current advances in the classification, production, properties and applications of microbial biosurfactants – A critical review. Adv. Colloid Interface Sci. 2022 306 102718 10.1016/j.cis.2022.102718 35714572
    [Google Scholar]
  7. Ali A. Aziz A.R.A. A Ismael M, Alqaed S. Biosurfactants as an alternative eco-friendly solution for water-in-diesel emulsions-A review paper. Heliyon 2024 10 17 e37485 10.1016/j.heliyon.2024.e37485 39290264
    [Google Scholar]
  8. Karmakar K. Sarkar R. Pal A. Rahaman S.M. Acharjee A. Saha B. Recent advances and emerging trends in biosurfactants: a concise review. J. Solution Chem. 2025 54 4 393 420 10.1007/s10953‑024‑01425‑0
    [Google Scholar]
  9. Al-Sakkaf M.K. Onaizi S.A. Effects of emulsification factors on the characteristics of crude oil emulsions stabilized by chemical and Biosurfactants: A review. Fuel 2024 361 130604 10.1016/j.fuel.2023.130604
    [Google Scholar]
  10. Luft L. Fungal polysaccharides as biosurfactants and bioemulsifiers. Fungal Biopolymers and Biocomposites. Springer 2022 10.1007/978‑981‑19‑1000‑5_7
    [Google Scholar]
  11. Mohanty S.S. Koul Y. Varjani S. A critical review on various feedstocks as sustainable substrates for biosurfactants production: A way towards cleaner production. Microb. Cell Fact. 2021 20 1 120 10.1186/s12934‑021‑01613‑3 34174898
    [Google Scholar]
  12. Jui A.H. Hossain M.N. Afrin S. Bhowmik B. Ranadheera C.S. Bhuiyan M.H.R. Microbial Biosurfactants: Prospect and Challenges for Application in Food Industry. Food Rev. Int. 2025 1 34 10.1080/87559129.2025.2478199
    [Google Scholar]
  13. Pal P. Singh A.K. Srivastava R.K. Circular bioeconomy in action: Transforming food wastes into renewable food resources. Foods 2024 13 18 3007 10.3390/foods13183007 39335935
    [Google Scholar]
  14. Roy P. Mohanty A.K. Dick P. Misra M. A review on the challenges and choices for food waste valorization: environmental and economic impacts. ACS Environ Au 2023 3 2 58 75 10.1021/acsenvironau.2c00050 36941850
    [Google Scholar]
  15. Tamasiga P. Miri T. Onyeaka H. Hart A. Food waste and circular economy: Challenges and opportunities. Sustainability 2022 14 16 9896 10.3390/su14169896
    [Google Scholar]
  16. Lakatos E.S. Cioca L.I. Szilagyi A. Vladu M.G. Stoica R.M. Moscovici M. A systematic review on biosurfactants contribution to the transition to a circular economy. Processes 2022 10 12 2647 10.3390/pr10122647
    [Google Scholar]
  17. Sondhi S. Application of biosurfactant as an emulsifying agent. Applications of Next Generation Biosurfactants in the Food Sector. Elsevier 2023 43 56 10.1016/B978‑0‑12‑824283‑4.00025‑3
    [Google Scholar]
  18. Santamaria-Echart A. New trends in natural emulsifiers and emulsion technology for the food industry. Natural food additives. IntechOpen 2021
    [Google Scholar]
  19. Wang Z. Deng D. Pei X. Chemical modification of starch-based nanoparticles for Pickering emulsions: A review. J. Polym. Res. 2025 32 4 102 10.1007/s10965‑025‑04326‑y
    [Google Scholar]
  20. Irianto I. Putra N.R. Yustisia Y. Green technologies in food colorant extraction: A comprehensive review. S. Afr. J. Chem. Eng. 2025 51 1 22 34 10.1016/j.sajce.2024.10.013
    [Google Scholar]
  21. Adama K. Aluyor E. Liquid-liquid equilibrium of ternary mixture containing castor oil biodiesel, methanol and glycerol at different temperatures and atmospheric pressure. J Niger Soc Chem Eng 2023 38 1
    [Google Scholar]
  22. Balakrishnan S. Arunagirinathan N. Rameshkumar M.R. Molecular characterization of biosurfactant producing marine bacterium isolated from hydrocarbon-contaminated soil using 16S rRNA gene sequencing. J. King Saud Univ. Sci. 2022 34 3 101871 10.1016/j.jksus.2022.101871
    [Google Scholar]
  23. O’Connor G.M. Sanchez-Riera F. Cooney C.L. Design and evalution of control strategies for high cell density fermentations. Biotechnol. Bioeng. 1992 39 3 293 304 10.1002/bit.260390307 18600945
    [Google Scholar]
  24. Colin V.L. Pereira C.E. Villegas L.B. Amoroso M.J. Abate C.M. Production and partial characterization of bioemulsifier from a chromium-resistant actinobacteria. Chemosphere 2013 90 4 1372 1378 10.1016/j.chemosphere.2012.08.002 22985590
    [Google Scholar]
  25. Sumbhate S. Nayak S. Goupale D. Tiwari A. Jadon R.S. Colorimetric method for the estimation of ethanol in alcoholic drinks. J Anal Tech 2012 1 1 1 6
    [Google Scholar]
  26. Miller G.L. Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 1959 31 3 426 428 10.1021/ac60147a030
    [Google Scholar]
  27. Torabizadeh H. Shojaosadati S.A. Tehrani H.A. Preparation and characterisation of bioemulsifier from Saccharomyces cerevisia eand its application in food products. Lebensm. Wiss. Technol. 1996 29 8 734 737 10.1006/fstl.1996.0114
    [Google Scholar]
  28. Cameron D.R. Cooper D.G. Neufeld R.J. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol. 1988 54 6 1420 1425 10.1128/aem.54.6.1420‑1425.1988 3046488
    [Google Scholar]
  29. Zamir Hashmi S.R. Khan M.I. Khahro S.H. Zaid O. Shahid Siddique M. Md Yusoff N.I. Prediction of strength properties of concrete containing waste marble aggregate and stone dust—modeling and optimization using RSM. Materials 2022 15 22 8024 10.3390/ma15228024 36431509
    [Google Scholar]
  30. Krivoruchko A.A. Zdorovenko E.L. Ivanova M.F. Structure, physicochemical properties and biological activity of lipopolysaccharide from the rhizospheric bacterium Ochrobactrum quorumnocens T1Kr02, containing d-fucose residues. Int. J. Mol. Sci. 2024 25 4 1970 10.3390/ijms25041970 38396650
    [Google Scholar]
  31. Adeyi A.O. Mustapha K.K. Ajisebiola B.S. Adeyi O.E. Metibemu D.S. Okonji R.E. Inhibition of Echis ocellatus venom metalloprotease by flavonoid-rich ethyl acetate sub-fraction of Moringa oleifera (Lam.) leaves: in vitro and in silico approaches. Toxin Rev. 2022 41 2 476 486 10.1080/15569543.2021.1893334
    [Google Scholar]
  32. DuBois M. Gilles K.A. Hamilton J.K. Rebers P.A. Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956 28 3 350 356 10.1021/ac60111a017
    [Google Scholar]
  33. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  34. Weber K. Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 1969 244 16 4406 4412 10.1016/S0021‑9258(18)94333‑4 5806584
    [Google Scholar]
  35. Elsaygh Y.A. Gouda M.K. Elbahloul Y. Hakim M.A. El Halfawy N.M. Production and structural characterization of eco-friendly bioemulsifier SC04 from Saccharomyces cerevisiae strain MYN04 with potential applications. Microb. Cell Fact. 2023 22 1 176 10.1186/s12934‑023‑02186‑z 37679768
    [Google Scholar]
  36. Silva T. Paixão S. Tavares J. A new biosurfactant/bioemulsifier from gordonia alkanivorans strain 1B: Production and characterization. Processes 2022 10 5 845 10.3390/pr10050845
    [Google Scholar]
  37. Moura S.R. Furtado A. Pellegrino O. Surface tension measurements: A comparative study. Acta IMEKO 2023 12 4 1 6 10.21014/actaimeko.v12i4.1418
    [Google Scholar]
  38. Ba-Salem AO Duhamel J Synthesis and Characterization of a Pyrene-Labeled Gemini Surfactant Sensitive to the Polarity of Its Environment. Langmuir. 2021 37 47 13824 13837 10.1021/acs.langmuir.1c01759 34791874
    [Google Scholar]
  39. Sousa A.M. Pereira M.J. Matos H.A. Oil-in-water and water-in-oil emulsions formation and demulsification. J. Petrol. Sci. Eng. 2022 210 110041 10.1016/j.petrol.2021.110041
    [Google Scholar]
  40. Sturm M.T. Horn H. Schuhen K. The potential of fluorescent dyes—comparative study of Nile red and three derivatives for the detection of microplastics. Anal. Bioanal. Chem. 2021 413 4 1059 1071 10.1007/s00216‑020‑03066‑w 33415434
    [Google Scholar]
  41. Kowsalya M. Velmurugan T. Mythili R. Extraction and characterization of exopolysaccharides from Lactiplantibacillus plantarum strain PRK7 and PRK 11, and evaluation of their antioxidant, emulsion, and antibiofilm activities. Int. J. Biol. Macromol. 2023 242 Pt 2 124842 10.1016/j.ijbiomac.2023.124842 37182634
    [Google Scholar]
  42. Churms S.C. High performance hydrophilic interaction chromatography of carbohydrates with polar sorbents. J Chromatography Library 2002 66 121 163 10.1016/S0301‑4770(02)80029‑X
    [Google Scholar]
  43. Lickorish D. Ramshaw J.A.M. Werkmeister J.A. Glattauer V. Howlett C.R. Collagen–hydroxyapatite composite prepared by biomimetic process. J. Biomed. Mater. Res. A 2004 68A 1 19 27 10.1002/jbm.a.20031 14661245
    [Google Scholar]
  44. Aliev A. Law R. Solid State NMR Spectroscopy. Nucl Magn Reson 2004 33 233
    [Google Scholar]
  45. Xue W.L. Deng W.H. Chen H. MOF‐directed synthesis of crystalline ionic liquids with enhanced proton conduction. Angew. Chem. Int. Ed. 2021 60 3 1290 1297 10.1002/anie.202010783 32996683
    [Google Scholar]
  46. Gunawan R. Nandiyanto A.B.D. How to read and interpret 1H-NMR and 13C-NMR spectrums. Indonesian J Sci Technol 2021 6 2 267 298 10.17509/ijost.v6i2.34189
    [Google Scholar]
  47. Lira I.R.S. Santos E.M. dos Santos J.C. Production of biosurfactant by Candida guilliermondii and application in a mayonnaise emulsion. Chem. Eng. Trans. 2021 87 259 264 [https://doi.org/10.3303/CET2187044
    [Google Scholar]
  48. Lorke D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983 54 4 275 287 10.1007/BF01234480 6667118
    [Google Scholar]
  49. Osuntokun O. Oluduro O. In-vivo toxicity assessment of stem bark extracts of Spondias mombin (Linn) on male and female albino rats. Pharm. Res. 2018 2 000152
    [Google Scholar]
  50. Kpemissi M. Metowogo K. Melila M. Acute and subchronic oral toxicity assessments of Combretum micranthum (Combretaceae) in Wistar rats. Toxicol. Rep. 2020 7 162 168 10.1016/j.toxrep.2020.01.007 31993335
    [Google Scholar]
  51. Malomo A.A. Influence of pre-treatment on the microbiological and biochemical properties of wine produced from overripe plantain: Production of Agadagidi. J. Microbiol. Biotechnol. Food Sci. 2023 12 4 e8258 e8
    [Google Scholar]
  52. Rozaini M.A. Hamid H.A. Hadzir N.M. Latif M.A. Som A.M. Evaluation of virgin coconut oil-in-water emulsion stability: insights from creaming index and polarised light microscopy analyses. Malays J Microsc 2024 20 2 174 185
    [Google Scholar]
  53. Tsujimura M. Saito K. Ishikita H. Stretching vibrational frequencies and pKa differences in H-bond networks of protein environments. Biophys. J. 2023 122 22 4336 4347 10.1016/j.bpj.2023.10.012 37838831
    [Google Scholar]
  54. Iwata T. Nozaki D. Sato Y. Identification of the C=O stretching vibrations of FMN and peptide backbone by 13C-labeling of the LOV2 domain of Adiantum phytochrome3. Biochemistry 2006 45 51 15384 15391 10.1021/bi061837v 17176060
    [Google Scholar]
  55. Shi L. Min W. Vibrational solvatochromism study of the C–H···O improper hydrogen bond. J. Phys. Chem. B 2023 127 17 3798 3805 10.1021/acs.jpcb.2c08119 37122158
    [Google Scholar]
  56. Tian R. Zhang Y.Z. Cheng X. Structural characterization, and in vitro hypoglycemic activity of a polysaccharide from the mushroom Cantharellus yunnanensis. Int. J. Biol. Macromol. 2023 253 Pt 5 127200 10.1016/j.ijbiomac.2023.127200 37793536
    [Google Scholar]
  57. Zhu B. Zhang W. Zhao J. Chen B. Liu F. Li S. Characterization and comparison of bioactive polysaccharides from Grifola frondosa by HPSEC-MALLS-RID and saccharide mapping based on HPAEC-PAD. Polymers 2022 15 10.3390/polym15010208
    [Google Scholar]
  58. Anumula K.R. Taylor P.B. Rapid characterization of asparagine‐linked oligosaccharides isolated from glycoproteins using a carbohydrate analyzer. Eur. J. Biochem. 1991 195 1 269 280 10.1111/j.1432‑1033.1991.tb15703.x 1991474
    [Google Scholar]
  59. Wang H. Ke L. Ding Y. Effect of calcium ions on rheological properties and structure of Lycium barbarum L. polysaccharide and its gelation mechanism. Food Hydrocoll. 2022 122 107079 10.1016/j.foodhyd.2021.107079
    [Google Scholar]
  60. Wang Y. Li Y. Liu Y. Chen X. Wei X. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides. Int. J. Biol. Macromol. 2015 77 76 84 10.1016/j.ijbiomac.2015.02.052 25783017
    [Google Scholar]
  61. Bhaumik M. Maity A. Brink H.G. Zero valent nickel nanoparticles decorated polyaniline nanotubes for the efficient removal of Pb(II) from aqueous solution: Synthesis, characterization and mechanism investigation. Chem. Eng. J. 2021 417 127910 10.1016/j.cej.2020.127910
    [Google Scholar]
  62. Alexandersson E. Nestor G. Complete 1H and 13C NMR spectral assignment of d-glucofuranose. Carbohydr. Res. 2022 511 108477 10.1016/j.carres.2021.108477 34784518
    [Google Scholar]
  63. Zhang C. Tang L. Su X. Research on the impact of deep eutectic solvent and hot-water extraction methods on the structure of Polygonatum sibiricum polysaccharides. Molecules 2023 28 19 6981 10.3390/molecules28196981 37836822
    [Google Scholar]
  64. Zhang H. Wang X. Chen A. Comparison of the full-length sequence and sub-regions of 16S rRNA gene for skin microbiome profiling. mSystems 2024 9 7 e00399 e24 10.1128/msystems.00399‑24 38934545
    [Google Scholar]
  65. Boodhoo K.V.K. Flickinger M.C. Woodley J.M. Emanuelsson E.A.C. Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chem. Eng. Process. 2022 172 108793 10.1016/j.cep.2022.108793
    [Google Scholar]
  66. Mahakuntha C Reungsang A Nunta R Leksawasdi N Kinetics of whole cells and ethanol production from Candida tropicalis TISTR 5306 cultivation in batch and fed-batch modes using assorted grade fresh longan juice. An Acad Bras Cienc 2021 93 e20200220. (Suppl. 3) 10.1590/0001‑3765202120200220 34877969
    [Google Scholar]
  67. Verma A. Gupta N. Verma S.K. Das M.D. Multifactorial approach to biosurfactant production by adaptive strain Candida tropicalis MTCC 230 in the presence of hydrocarbons. J. Surfactants Deterg. 2015 18 1 145 153 10.1007/s11743‑014‑1608‑z
    [Google Scholar]
  68. Almeida D.G. Soares da Silva R.C.F. Luna J.M. Rufino R.D. Santos V.A. Sarubbo L.A. Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Front. Microbiol. 2017 8 157 10.3389/fmicb.2017.00157 28223971
    [Google Scholar]
  69. Wang Y. Massey University, Auckland, New Zealand. Theis Massey University, Auckland 2014
    [Google Scholar]
  70. Malabuyoc J.A.S. Alcantara V.A. Arocena R.E. Elegado F.B. Substrate optimization for bioemulsification using Saccharomyces cerevisiae 2031 by response surface methodology. Agro Bali Agricultural J 2023 6 1 1 11 10.37637/ab.v6i1.1044
    [Google Scholar]
  71. Chicco D. Warrens M.J. Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021 7 e623 10.7717/peerj‑cs.623 34307865
    [Google Scholar]
  72. Dikit P. Extraction, purification and composition of bioemulsifier from spent yeast obtained from thai traditional liquor distillation and its application. Thesis Prince of Songkla University 2010
    [Google Scholar]
  73. Brito A. Kassem S. Reis R.L. Ulijn R.V. Pires R.A. Pashkuleva I. Carbohydrate amphiphiles for supramolecular biomaterials: Design, self-assembly, and applications. Chem 2021 7 11 2943 2964 10.1016/j.chempr.2021.04.011
    [Google Scholar]
  74. Sitohy M. Doheim M. Badr H. Isolation and characterization of a lectin with antifungal activity from Egyptian Pisum sativum seeds. Food Chem. 2007 104 3 971 979 10.1016/j.foodchem.2007.01.026
    [Google Scholar]
  75. Alcantara V.A. Pajares I.G. Simbahan J.F. Rubio M.D. Substrate-dependent production and isolation of an extracellular biosurfactant from Saccharomyces cerevisiae 2031. Philipp. J. Sci. 2012 141 13 24
    [Google Scholar]
  76. Al-Seraih A.A. Swadi W.A. Al-hejjaj M.Y. Al-Laibai F.H. Ghadban A.K. Isolation and partial characterization of glycolipopeptide biosurfactant derived from a novel lactiplantibacillus plantarum Lbp_WAM. Basrah J Agric Sci 2022 35 2 78 98 10.37077/25200860.2022.35.2.06
    [Google Scholar]
  77. Ron E.Z. Rosenberg E. Natural roles of biosurfactants. Environ. Microbiol. 2001 3 4 229 236 10.1046/j.1462‑2920.2001.00190.x 11359508
    [Google Scholar]
  78. Cameotra S. Makkar R. Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol. 2004 7 3 262 266 10.1016/j.mib.2004.04.006 15196493
    [Google Scholar]
  79. Wang P. Leng X. Duan J. Functional component isolated from Phaseolus vulgaris lectin exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Molecules 2021 26 2 498 10.3390/molecules26020498 33477737
    [Google Scholar]
  80. De Iseppi A. Marangon M. Vincenzi S. Lomolino G. Curioni A. Divol B. A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. Lebensm. Wiss. Technol. 2021 136 110274 10.1016/j.lwt.2020.110274
    [Google Scholar]
  81. Zargar A.N. Mishra S. Kumar M. Srivastava P. Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100. PLoS One 2022 17 4 e0264202 10.1371/journal.pone.0264202 35421133
    [Google Scholar]
  82. Sharma D. Singh D. Sukhbir-Singh G.M. Biosurfactants: Forthcomings and regulatory affairs in food-based industries. Molecules 2023 28 6 2823 10.3390/molecules28062823 36985795
    [Google Scholar]
  83. Reis S.F. Fernandes P.A.R. Martins V.J. Brewer’s spent yeast cell wall polysaccharides as vegan and clean label additives for mayonnaise formulation. Molecules 2023 28 8 3540 10.3390/molecules28083540 37110775
    [Google Scholar]
  84. Pereira R.C. Bourbon A.I. Azevedo A.G. Mayonnaise produced by ultrasound-assisted emulsification using plant-based and “clean label” ingredients. Food Biosci. 2024 61 104847 10.1016/j.fbio.2024.104847
    [Google Scholar]
  85. Böcker L. Bertsch P. Wenner D. Effect of Arthrospira platensis microalgae protein purification on emulsification mechanism and efficiency. J. Colloid Interface Sci. 2021 584 344 353 10.1016/j.jcis.2020.09.067 33070074
    [Google Scholar]
  86. Ai M. Xiao N. Jiang A. Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity. Food Hydrocoll. 2021 111 106271 10.1016/j.foodhyd.2020.106271
    [Google Scholar]
  87. Da Silva E. Hickey C. Ellis G. Hougaard K.S. Sørli J.B. In vitro prediction of clinical signs of respiratory toxicity in rats following inhalation exposure. Curr Res Toxicol 2021 2 204 209 10.1016/j.crtox.2021.05.002 34345862
    [Google Scholar]
  88. Toxicity–Up A.O. OECD guideline for testing of chemicals. Organisation for economic co-operation and development: Paris, France. 2001 1
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501409925251206220128
Loading
/content/journals/cbiot/10.2174/0122115501409925251206220128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test