Skip to content
2000
image of Unveiling Lipid Signaling in Leishmania: Mechanisms and Implications for Therapeutics

Abstract

Lipid signaling plays a crucial role in the cellular survival, virulence, pathogenicity, and progression of leishmaniasis, which is a significant public health concern. The lack of effective therapeutics and high toxicity, and drug resistance of existing chemotherapy have delayed therapy progression and have proven to be overall insufficient for controlling disease load worldwide. This review explores the intricate mechanisms by which lipid signaling contributes to biology and highlights its potential as a therapeutic target. A range of cellular processes in the parasite, including membrane dynamics, energy metabolism, and immune evasion, depends on lipid signaling. Key components of the lipid signaling pathway, such as eicosanoids, sphingolipids & glycosyl-phosphoinositides, have been studied to make significant contributions in this area. Sphingolipids are implicated in the stress response and programmed cell death, whereas phosphoinositide signaling serves by acting as the anchor for the parasite to enter and survive within host macrophages. Eicosanoids, on the other hand, are a particularly intriguing target for therapeutic intervention due to their dual role in regulating both host immune responses and parasite survival. Since eukaryotic protein kinases control every critical process necessary for viability and the completion of the parasitic life cycle, including cell-cycle progression, differentiation, and virulence, their inhibition is predicted to modify the disease. This review provides a thorough overview of lipid signaling molecules and their roles in by delving into the recent developments in the field. It also explores the therapeutic possibilities of focusing on the eukaryotic protein kinases, emphasizing current therapies and repurposing of existing drugs. A better understanding of these pathways and strategies can potentially lead to improved patient outcomes and treatment in leishmaniasis.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501405284251117045640
2025-11-24
2026-02-22
Loading full text...

Full text loading...

References

  1. Leroux M. Luquain-Costaz C. Lawton P. Azzouz-Maache S. Delton I. Fatty acid composition and metabolism in Leishmania parasite species: Potential biomarkers or drug targets for leishmaniasis? Int. J. Mol. Sci. 2023 24 5 4702 10.3390/ijms24054702 36902138
    [Google Scholar]
  2. World Health Organization. Control of the leishmaniases. World Health Organ Tech Rep Ser. 2010 (949):xii-xiii 1 186 21485694
    [Google Scholar]
  3. Akuffo R. Wilson M. Sarfo B. Prevalence of Leishmania infection in three communities of Oti Region, Ghana. PLoS Negl. Trop. Dis. 2021 15 5 e0009413 10.1371/journal.pntd.0009413 34043625
    [Google Scholar]
  4. Sundar S. Chakravarty J. Liposomal amphotericin B and leishmaniasis: Dose and response. J. Glob. Infect. Dis. 2010 2 2 159 166 10.4103/0974‑777X.62886 20606972
    [Google Scholar]
  5. Gugliandolo E. Palma E. Peritore A.F. Effect of artesunate on leishmania amazonesis induced neuroinflammation and nociceptive behavior in male Balb/C mice. Animals 2020 10 4 557 10.3390/ani10040557 32230725
    [Google Scholar]
  6. Pijpers J. den Boer M.L. Essink D.R. Ritmeijer K. The safety and efficacy of miltefosine in the long-term treatment of post-kala-azar dermal leishmaniasis in South Asia – A review and meta-analysis. PLoS Negl. Trop. Dis. 2019 13 2 e0007173 10.1371/journal.pntd.0007173 30742620
    [Google Scholar]
  7. Hossain M.S. Kumar A. Hossain A.F.M.A. Using focused pharmacovigilance for ensuring patient safety against antileishmanial drugs in Bangladesh’s National Kala-azar Elimination Programme. Infect. Dis. Poverty 2018 7 1 80 10.1186/s40249‑018‑0461‑0 30099967
    [Google Scholar]
  8. Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020 2 4 100041 10.1016/j.cytox.2020.100041 33604563
    [Google Scholar]
  9. Mann S. Frasca K. Scherrer S. A review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep. 2021 8 2 121 132 10.1007/s40475‑021‑00232‑7 33747716
    [Google Scholar]
  10. Biagiotti M. Dominguez S. Yamout N. Zufferey R. Lipidomics and anti‐trypanosomatid chemotherapy. Clin. Transl. Med. 2017 6 1 e27 10.1186/s40169‑017‑0160‑7 28766182
    [Google Scholar]
  11. Burke J.E. Triscott J. Emerling B.M. Hammond G.R.V. Beyond PI3Ks: Targeting phosphoinositide kinases in disease. Nat. Rev. Drug Discov. 2023 22 5 357 386 10.1038/s41573‑022‑00582‑5 36376561
    [Google Scholar]
  12. Das K. Nozaki T. Non-vesicular lipid transport machinery in Leishmania donovani: Functional implications in host-parasite interaction. Int. J. Mol. Sci. 2023 24 13 10637 10.3390/ijms241310637 37445815
    [Google Scholar]
  13. Smirlis D. Soares M.B.P. Selection of molecular targets for drug development against trypanosomatids. Proteins and Proteomics of Leishmania and Trypanosoma. Dordrecht Springer 2013 43 76 10.1007/978‑94‑007‑7305‑9_2
    [Google Scholar]
  14. Zhang K. Showalter M. Revollo J. Hsu F.F. Turk J. Beverley S.M. Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J. 2003 22 22 6016 6026 10.1093/emboj/cdg584 14609948
    [Google Scholar]
  15. McCall L.I. El Aroussi A. Choi J.Y. Targeting Ergosterol biosynthesis in Leishmania donovani: Essentiality of sterol 14 alpha-demethylase. PLoS Negl. Trop. Dis. 2015 9 3 e0003588 10.1371/journal.pntd.0003588 25768284
    [Google Scholar]
  16. Hanna M. Guillén-Samander A. De Camilli P. RBG motif bridge-like lipid transport proteins: Structure, functions, and open questions. Annu. Rev. Cell Dev. Biol. 2023 39 1 409 434 10.1146/annurev‑cellbio‑120420‑014634 37406299
    [Google Scholar]
  17. Zhang K. Hsu F.F. Shotgun lipidomic analysis of leishmania cells. Methods Mol. Biol. 2021 2306 215 225 10.1007/978‑1‑0716‑1410‑5_14 33954949
    [Google Scholar]
  18. Voelker D.R. Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol. Rev. 1991 55 4 543 560 10.1128/mr.55.4.543‑560.1991 1779926
    [Google Scholar]
  19. Neuman S.D. Levine T.P. Bashirullah A. A novel superfamily of bridge-like lipid transfer proteins. Trends Cell Biol. 2022 32 11 962 974 10.1016/j.tcb.2022.03.011 35491307
    [Google Scholar]
  20. Zhang K. Balancing de novo synthesis and salvage of lipids by Leishmania amastigotes. Curr. Opin. Microbiol. 2021 63 98 103 10.1016/j.mib.2021.07.004 34311265
    [Google Scholar]
  21. Güther M.L.S. Lee S. Tetley L. Acosta-Serrano A. Ferguson M.A.J. GPI-anchored proteins and free GPI glycolipids of procyclic form Trypanosoma brucei are nonessential for growth, are required for colonization of the tsetse fly, and are not the only components of the surface coat. Mol. Biol. Cell 2006 17 12 5265 5274 10.1091/mbc.e06‑08‑0702 17035628
    [Google Scholar]
  22. Ferguson M.A. Kinoshita T. Hart G.W. Glycosylphosphatidylinositol anchors. Essentials of Glycobiology. 2nd ed Cold Spring Harbor Cold Spring Harbor Laboratory Press 2009
    [Google Scholar]
  23. Michels P.A.M. Bringaud F. Herman M. Hannaert V. Metabolic functions of glycosomes in trypanosomatids. Biochim. Biophys. Acta Mol. Cell Res. 2006 1763 12 1463 1477 10.1016/j.bbamcr.2006.08.019
    [Google Scholar]
  24. Proudfoot L. O’Donnell C.A. Liew F.Y. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur. J. Immunol. 1995 25 3 745 750 10.1002/eji.1830250318 7705404
    [Google Scholar]
  25. McConville M.J. Ferguson M.A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J. 1993 294 Pt 2 305 324 10.1042/bj2940305 8373346
    [Google Scholar]
  26. Etges R. Bouvier J. Bordier C. The major surface protein of Leishmania promastigotes is a protease. J. Biol. Chem. 1986 261 20 9098 9101 10.1016/S0021‑9258(18)67621‑5 3522584
    [Google Scholar]
  27. Lohman K.L. Langer P.J. McMahon-Pratt D. Molecular cloning and characterization of the immunologically protective surface glycoprotein GP46/M-2 of Leishmania amazonensis. Proc. Natl. Acad. Sci. USA 1990 87 21 8393 8397 10.1073/pnas.87.21.8393 2236047
    [Google Scholar]
  28. Murray P.J. Spithill T.W. Variants of a Leishmania surface antigen derived from a multigenic family. J. Biol. Chem. 1991 266 36 24477 24484 10.1016/S0021‑9258(18)54253‑8 1761547
    [Google Scholar]
  29. Hassani K. Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: A comparative proteomic and functional analysis. PLoS Negl. Trop. Dis. 2013 7 5 e2185 10.1371/journal.pntd.0002185 23658846
    [Google Scholar]
  30. Chang K.P. McGwire B.S. Molecular determinants and regulation of Leishmania virulence. Kinetoplastid Biol. Dis. 2002 1 1 1 10.1186/1475‑9292‑1‑1 12234388
    [Google Scholar]
  31. Gupta A.K. Das S. Kamran M. Ejazi S.A. Ali N. The pathogenicity and virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022 13 1 903 935 10.1080/21505594.2022.2074130 35531875
    [Google Scholar]
  32. Pinto-Martinez A.K. Rodriguez-Durán J. Serrano-Martin X. Hernandez-Rodriguez V. Benaim G. Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca2+ channel. Antimicrob. Agents Chemother. 2018 62 1 e01614 e01617 10.1128/AAC.01614‑17 29061745
    [Google Scholar]
  33. Isnard A. Shio M.T. Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front. Cell. Infect. Microbiol. 2012 2 72 10.3389/fcimb.2012.00072 22919663
    [Google Scholar]
  34. van Zandbergen G. Bollinger A. Wenzel A. Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. Proc. Natl. Acad. Sci. USA 2006 103 37 13837 13842 10.1073/pnas.0600843103 16945916
    [Google Scholar]
  35. Späth G.F. Epstein L. Leader B. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA 2000 97 16 9258 9263 10.1073/pnas.160257897 10908670
    [Google Scholar]
  36. Baker N. Catta-Preta C.M.C. Neish R. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival. Nat. Commun. 2021 12 1 1244 10.1038/s41467‑021‑21360‑8 33623024
    [Google Scholar]
  37. Efstathiou A. Smirlis D. Leishmania protein kinases: Important regulators of the parasite life cycle and molecular targets for treating leishmaniasis. Microorganisms 2021 9 4 691 10.3390/microorganisms9040691 33801655
    [Google Scholar]
  38. Gdovinova I. Descoteaux A. VAPA mediates lipid exchange between Leishmania amazonensis and host macrophages. bioRxiv 2024 2024.10.03.616432
    [Google Scholar]
  39. Banerjee S. Bose D. Das S. Chatterjee N. Mishra S. Das Saha K. Leishmania donovani infection induce Extracellular signal-regulated kinase 1/2 (ERK1/2) mediated lipid droplet generation in macrophages. Mol. Immunol. 2022 141 328 337 10.1016/j.molimm.2021.12.008 34953281
    [Google Scholar]
  40. Sannigrahi A. Ghosh S. Pradhan S. Jana P. Jawed J.J. Majumdar S. Leishmania protein KMP-11 modulates cholesterol transport and membrane fluidity to facilitate host cell invasion. EMBO Rep. 2024 25 12 5561 5598 10.1038/s44319‑024‑00302‑7 39482488
    [Google Scholar]
  41. Wu P. Nielsen T.E. Clausen M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015 36 7 422 439 10.1016/j.tips.2015.04.005 25975227
    [Google Scholar]
  42. Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2023 187 106552 10.1016/j.phrs.2022.106552 36403719
    [Google Scholar]
  43. Lui A. Vanleuven J. Perekopskiy D. FDA-approved kinase inhibitors in preclinical and clinical trials for neurological disorders. Pharmaceuticals 2022 15 12 1546 10.3390/ph15121546 36558997
    [Google Scholar]
  44. Lee P.Y. Yeoh Y. Low T.Y. A recent update on small‐molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry‐based proteomic analysis. FEBS J. 2023 290 11 2845 2864 10.1111/febs.16442 35313089
    [Google Scholar]
  45. Borba J.V.B. Silva A.C. Ramos P.I.P. Unveiling the kinomes of Leishmania infantum and L. braziliensis empowers the discovery of new kinase targets and antileishmanial compounds. Comput. Struct. Biotechnol. J. 2019 17 352 361 10.1016/j.csbj.2019.02.005 30949306
    [Google Scholar]
  46. Bates P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol. 2007 37 10 1097 1106 10.1016/j.ijpara.2007.04.003 17517415
    [Google Scholar]
  47. Morales M.A. Watanabe R. Laurent C. Phosphoproteomic analysis of Leishmania donovani pro‐ and amastigote stages. Proteomics 2008 8 2 350 363 10.1002/pmic.200700697 18203260
    [Google Scholar]
  48. Naula C. Parsons M. Mottram J.C. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim. Biophys. Acta. Proteins Proteomics 2005 1754 1-2 151 159 10.1016/j.bbapap.2005.08.018
    [Google Scholar]
  49. Morgan D.O. The cell cycle: Principles of control. New Science Press 2007
    [Google Scholar]
  50. Hassan P. Fergusson D. Grant K.M. Mottram J.C. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol. Biochem. Parasitol. 2001 113 2 189 198 10.1016/S0166‑6851(01)00220‑1 11295173
    [Google Scholar]
  51. Duncan S.M. Myburgh E. Philipon C. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol. Microbiol. 2016 100 6 931 944 10.1111/mmi.13375 26991545
    [Google Scholar]
  52. Grant K.M. Dunion M.H. Yardley V. Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: Chemical library screen and antileishmanial activity. Antimicrob. Agents Chemother. 2004 48 8 3033 3042 10.1128/AAC.48.8.3033‑3042.2004 15273118
    [Google Scholar]
  53. Efstathiou A. Gaboriaud-Kolar N. Smirlis D. An inhibitor-driven study for enhancing the selectivity of indirubin derivatives towards leishmanial Glycogen Synthase Kinase-3 over leishmanial cdc2-related protein kinase 3. Parasit. Vectors 2014 7 1 234 10.1186/1756‑3305‑7‑234 24886176
    [Google Scholar]
  54. Xingi E. Smirlis D. Myrianthopoulos V. 6-Br-5methylindirubin-3′oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: Exploitation of GSK-3 for treating leishmaniasis. Int. J. Parasitol. 2009 39 12 1289 1303 10.1016/j.ijpara.2009.04.005 19445946
    [Google Scholar]
  55. Sebastián Pérez V. Drug discovery for infectious diseases: Target-based and ligand-based approaches. Tesis Doctorales 2020
    [Google Scholar]
  56. Singh VK Tiwari R Rajneesh Advancing treatment for leishmaniasis: From overcoming challenges to embracing therapeutic innovations. ACS Infect. Dis. 2025 11 1 47 68 10.1021/acsinfecdis.4c00693 39737830
    [Google Scholar]
  57. Becker W. Joost H-G. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog. Nucleic Acid Res. Mol. Biol. 1999 62 1 17 10.1016/s0079‑6603(08)60503‑6 9932450
    [Google Scholar]
  58. Aranda S. Laguna A. Luna S. DYRK family of protein kinases: Evolutionary relationships, biochemical properties, and functional roles. FASEB J. 2011 25 2 449 462 10.1096/fj.10‑165837 21048044
    [Google Scholar]
  59. Dierssen M. de Lagrán M.M. DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A): A gene with dosage effect during development and neurogenesis. ScientificWorldJournal 2006 6 1 1911 1922 10.1100/tsw.2006.319 17205196
    [Google Scholar]
  60. Becker W. Sippl W. Activation, regulation, and inhibition of DYRK1A. FEBS J. 2011 278 2 246 256 10.1111/j.1742‑4658.2010.07956.x 21126318
    [Google Scholar]
  61. Rocha V.P.C. Dacher M. Young S.A. Leishmania dual‐specificity tyrosine‐regulated kinase 1 (DYRK1) is required for sustaining Leishmania stationary phase phenotype. Mol. Microbiol. 2020 113 5 983 1002 10.1111/mmi.14464 31975452
    [Google Scholar]
  62. Pradhan S. Dhar D. Manna D. Chakraborty S. Bhattacharyya A. Chauhan K. Scrutinized lipid utilization disrupts Amphotericin-B responsiveness in clinical isolates of Leishmania donovani. eLife 2025 14 RP102857 10.7554/eLife.102857 40424189
    [Google Scholar]
  63. Alpizar-Sosa E.A. Ithnin N.R.B. Wei W. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl. Trop. Dis. 2022 16 9 e0010779 10.1371/journal.pntd.0010779 36170238
    [Google Scholar]
  64. Sood C. Verma J.K. Basak R. Kapoor A. Gupta S. Mukhopadhyay A. Leishmania highjack host lipid body for its proliferation in macrophages by overexpressing host Rab18 and TRAPPC9 by downregulating miR-1914-3p expression. PLoS Pathog. 2024 20 2 e1012024 10.1371/journal.ppat.1012024 38412149
    [Google Scholar]
  65. Kumar G.A. Roy S. Jafurulla M. Mandal C. Chattopadhyay A. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol. Biochim. Biophys. Acta Biomembr. 2016 1858 9 2088 2096 10.1016/j.bbamem.2016.06.010 27319380
    [Google Scholar]
  66. Zhang K. Beverley S.M. Phospholipid and sphingolipid metabolism in Leishmania. Mol. Biochem. Parasitol. 2010 170 2 55 64 10.1016/j.molbiopara.2009.12.004 20026359
    [Google Scholar]
  67. Carfagna I.E. Penas F.N. Bott E. Involvement of lipids from Leishmania braziliensis promastigotes and amastigotes in macrophage activation. Mol. Immunol. 2020 125 104 114 10.1016/j.molimm.2020.06.023 32659595
    [Google Scholar]
  68. Alpizar-Sosa E.A. Zimbres F.M. Mantilla B.S. Evaluation of the Leishmania inositol phosphorylceramide synthase as a drug target using a chemical and genetic approach. ACS Infect. Dis. 2024 10 8 2913 2928 10.1021/acsinfecdis.4c00284 39023360
    [Google Scholar]
  69. Gutierrez Guarnizo S.A. Tikhonova E.B. Zabet-Moghaddam M. Drug-induced lipid remodeling in Leishmania parasites. Microorganisms 2021 9 4 790 10.3390/microorganisms9040790 33918954
    [Google Scholar]
  70. Scarpini S. Dondi A. Totaro C. Visceral leishmaniasis: Epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms 2022 10 10 1887 10.3390/microorganisms10101887 36296164
    [Google Scholar]
  71. Rahman R. Goyal V. Haque R. Safety and efficacy of short course combination regimens with AmBisome, miltefosine and paromomycin for the treatment of visceral leishmaniasis (VL) in Bangladesh. PLoS Negl. Trop. Dis. 2017 11 5 e0005635 10.1371/journal.pntd.0005635 28558062
    [Google Scholar]
  72. Webb J.R. McMaster W.R. Molecular cloning and expression of a Leishmania major gene encoding a single-stranded DNA-binding protein containing nine “CCHC” zinc finger motifs. J. Biol. Chem. 1993 268 19 13994 14002 10.1016/S0021‑9258(19)85200‑6 8314766
    [Google Scholar]
  73. Haldar A.K. Sen P. Roy S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int. 2011 2011 1 23 10.4061/2011/571242 22091408
    [Google Scholar]
  74. Croft S.L. Coombs G.H. Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003 19 11 502 508 10.1016/j.pt.2003.09.008 14580961
    [Google Scholar]
  75. Aronson N.E. Billick K. Intralesional antimonial drug treatment for Leishmania braziliensis cutaneous leishmaniasis: The knowns and the unknowns. Clin. Infect. Dis. 2023 77 4 583 588 10.1093/cid/ciad248 37185765
    [Google Scholar]
  76. Soto J. Gutiérrez P. Soto P. Treatment of Bolivian leishmania braziliensis cutaneous and mucosal leishmaniasis. Am. J. Trop. Med. Hyg. 2022 106 4 1182 1190 10.4269/ajtmh.21‑0928 35385826
    [Google Scholar]
  77. Mazire P. Agarwal V. Roy A. Road‐map of pre‐clinical treatment for Visceral Leishmaniasis. Drug Dev. Res. 2022 83 2 317 327 10.1002/ddr.21907 34962315
    [Google Scholar]
  78. Bern C. Adler-Moore J. Berenguer J. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin. Infect. Dis. 2006 43 7 917 924 10.1086/507530 16941377
    [Google Scholar]
  79. Lockwood D.N. Moore E.M. Treatment of visceral leishmaniasis. J. Glob. Infect. Dis. 2010 2 2 151 158 10.4103/0974‑777X.62883 20606971
    [Google Scholar]
  80. Ready P. Epidemiology of visceral leishmaniasis. Clin. Epidemiol. 2014 6 147 154 10.2147/CLEP.S44267 24833919
    [Google Scholar]
  81. Kima P.E. PI3K signaling in Leishmania infections. Cell. Immunol. 2016 309 19 22 10.1016/j.cellimm.2016.09.004 27622385
    [Google Scholar]
  82. Oghumu S. Satoskar A.R. PI3K-γ inhibitors in the therapeutic intervention of diseases caused by obligate intracellular pathogens. Commun. Integr. Biol. 2013 6 2 e23360 10.4161/cib.23360 23749323
    [Google Scholar]
  83. Ochoa R. Ortega-Pajares A. Castello F.A. Identification of potential kinase inhibitors within the PI3K/AKT pathway of Leishmania species. Biomolecules 2021 11 7 1037 10.3390/biom11071037 34356660
    [Google Scholar]
  84. Bhattacharjee A. Bagchi A. Sarkar S. Bawali S. Bhattacharya A. Biswas A. Repurposing approved protein kinase inhibitors as potent anti-leishmanials targeting Leishmania MAP kinases. Life Sci. 2024 351 122844 10.1016/j.lfs.2024.122844 38897344
    [Google Scholar]
  85. Sundar S. Chakravarty J. Antimony toxicity. Int. J. Environ. Res. Public Health 2010 7 12 4267 4277 10.3390/ijerph7124267 21318007
    [Google Scholar]
  86. Sereno D. Lemesre J.L. In vitro life cycle of pentamidine-resistant amastigotes: Stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrob. Agents Chemother. 1997 41 9 1898 1903 10.1128/AAC.41.9.1898 9303381
    [Google Scholar]
  87. Croft S.L. Olliaro P. Leishmaniasis chemotherapy—challenges and opportunities. Clin. Microbiol. Infect. 2011 17 10 1478 1483 10.1111/j.1469‑0691.2011.03630.x 21933306
    [Google Scholar]
  88. Sundar S. Jha T.K. Thakur C.P. Sinha P.K. Bhattacharya S.K. Injectable paromomycin for Visceral leishmaniasis in India. N. Engl. J. Med. 2007 356 25 2571 2581 10.1056/NEJMoa066536 17582067
    [Google Scholar]
  89. Ballesta S. Garcia I. Perea E. Antimicrobial agents: Bacterial/fungal. Medicine 2003 82 309 321
    [Google Scholar]
  90. Sundar S. Chatterjee M. Visceral leishmaniasis - Current therapeutic modalities. Indian J. Med. Res. 2006 123 3 345 352 [PMID: 16778315
    [Google Scholar]
  91. Sundar S. Rai M. Treatment of visceral leishmaniasis. Expert Opin. Pharmacother. 2005 6 16 2821 2829 10.1517/14656566.6.16.2821 16318433
    [Google Scholar]
  92. Dorlo T.P.C. Balasegaram M. Beijnen J.H. de Vries P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 2012 67 11 2576 2597 10.1093/jac/dks275 22833634
    [Google Scholar]
  93. Rakotomanga M. Blanc S. Gaudin K. Chaminade P. Loiseau P.M. Miltefosine affects lipid metabolism in Leishmania donovani promastigotes. Antimicrob. Agents Chemother. 2007 51 4 1425 1430 10.1128/AAC.01123‑06 17242145
    [Google Scholar]
  94. Moitra S Mukherjee S Hernandez VL Zhang K Leishmania major 2025
    [Google Scholar]
  95. Young S.A. Roberts M.D. Smith T.K. The importance of targeting lipid metabolism in parasites for drug discovery. Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA 2016 335 361 10.1002/9783527694082.ch15
    [Google Scholar]
  96. Alexander J. Satoskar A.R. Russell D.G. Leishmania species: Models of intracellular parasitism. J. Cell Sci. 1999 112 18 2993 3002 10.1242/jcs.112.18.2993 10462516
    [Google Scholar]
  97. Whitley E.M. Jeronimo S.M. Sutterwala F.S. Haynes J.S. Petersen C.A. Activation of autophagy and nucleotide-binding domain leucine-rich repeatecontaining-like receptor family, pyrin domain containing 3 inflammasome. Am. J. Pathol. 2015 185 8 1
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501405284251117045640
Loading
/content/journals/cbiot/10.2174/0122115501405284251117045640
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test