Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is still a great challenge in the public health domain to this day. Sputum collection from TB patients followed by an examination of acid-fast bacilli (AFB) is a common diagnostic tool routinely done; however, it could lead to false negative results when the patient excretes saliva instead of sputum. Meanwhile, bacterial culture, which is the gold standard, is time- and labor-consuming. MicroRNAs (miRNAs) are a type of RNA that is small (18-25 nucleotides) and controls the function of messenger RNA (mRNA). MicroRNA is the 6th and most recent cell communication pathway discovered, as the secreted miRNAs are encased in exosomes and can circulate throughout the body and can be found in any body fluids including sputum. MiRNAs in TB patients associated with TB infection can be expressed as increased or decreased according to the severity of the infection. MiRNA-155 and 21 are miRNAs with increased expression in active pulmonary TB and decrease in the healing process, so both miRNAs hold the potency to be used as biomarkers to monitor the level of disease activity and the healing process.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501395403250908114647
2025-09-15
2026-01-03
Loading full text...

Full text loading...

References

  1. LoddenkemperR. MurrayJ.F. History of tuberculosis.Essential Tuberculosis.Springer20213910.1007/978‑3‑030‑66703‑0_1
    [Google Scholar]
  2. TripathyS SrivastavaK KantS SarinR. History of Tuberculosis.National Medicos Organisation Journal.20181201148
    [Google Scholar]
  3. ChakayaJ. KhanM. NtoumiF. AklilluE. FatimaR. MwabaP. KapataN. MfinangaS. HasnainS.E. KatotoP.D.M.C. BulabulaA.N.H. Sam-AguduN.A. NachegaJ.B. TiberiS. McHughT.D. AbubakarI. ZumlaA. Global Tuberculosis Report 2020 – Reflections on the Global TB burden, treatment and prevention efforts.Int. J. Infect. Dis.2021113Suppl 1Suppl. 1S7S1210.1016/j.ijid.2021.02.10733716195
    [Google Scholar]
  4. MenziesN.A. QuaifeM. AllwoodB.W. ByrneA.L. CoussensA.K. HarriesA.D. MarxF.M. MeghjiJ. PedrazzoliD. SalomonJ.A. SweeneyS. van KampenS.C. WallisR.S. HoubenR.M.G.J. CohenT. Lifetime burden of disease due to incident tuberculosis: a global reappraisal including post-tuberculosis sequelae.Lancet Glob. Health2021912e1679e168710.1016/S2214‑109X(21)00367‑334798027
    [Google Scholar]
  5. XueY. ZhouJ. WangP. LanJ. LianW. FanY.Y. XuB.N. YinJ.P. FengZ. ZhouJ. JiaC.Y. Burden of tuberculosis and its association with socio-economic development status in 204 countries and territories, 1990–2019.Front. Med. (Lausanne)2022990524510.3389/fmed.2022.90524535935764
    [Google Scholar]
  6. FukunagaR. GlaziouP. HarrisJ.B. DateA. FloydK. KasaevaT. Epidemiology of tuberculosis and progress toward meeting global targets—worldwide, 2019.MMWR Morb. Mortal. Wkly. Rep.2021701242743010.15585/mmwr.mm7012a433764960
    [Google Scholar]
  7. PetersenE. Al-AbriS. ChakayaJ. GolettiD. ParolinaL. WejseC. Mucheleng’angaL.A. KhaliliS.A. Yeboah-ManuD. Chanda-KapataP. NasiriM.J. LunguP.S. MaeurerM. TiberiS. NtoumiF. Battista-MiglioriG. ZumlaA. World TB Day 2022: Revamping and reshaping global TB control programs by advancing lessons learnt from the COVID-19 pandemic.Int. J. Infect. Dis.2022124Suppl. 1S1S310.1016/j.ijid.2022.02.05735248715
    [Google Scholar]
  8. KlintonJ.S. HeitkampP. RashidA. FaleyeB.O. Win HtatH. HussainH. SyedI. FaroughK. MorteraL. Moh LwinM. JhaN. AnanthakrishnanR. MahfuzaR. ChadhaS.S. BanuS. MannanS. VijayanS. AhmedS. AliT. Oga-OmenkaC. KaurM. SinghU. WellsW.A. StallworthyG. DiasH.M.Y. PaiM. One year of COVID-19 and its impact on private provider engagement for TB: A rapid assessment of intermediary NGOs in seven high TB burden countries.J. Clin. Tuberc. Other Mycobact. Dis.20212510027710.1016/j.jctube.2021.10027734545343
    [Google Scholar]
  9. PoudyalB.S. PaudelB. BistaB. ShresthaG.S. PudasainiP. Clinical, Laboratory and Radiological Features of Paragonimiasis Misdiagnosed as Pulmonary Tuberculosis.Iran. J. Parasitol.202217341041410.18502/ijpa.v17i3.1063236466025
    [Google Scholar]
  10. KongL. HuaL. LiuQ. BaoC. HuJ. XuS. One delayed diagnosis of paragonimiasis case and literature review.Respirol. Case Rep.202195e0075010.1002/rcr2.75033959297
    [Google Scholar]
  11. AleneK.A. WangdiK. ClementsA.C.A. Impact of the COVID-19 Pandemic on Tuberculosis Control: An Overview.Trop. Med. Infect. Dis.20205312310.3390/tropicalmed503012332722014
    [Google Scholar]
  12. ZimmerA.J. KlintonJ.S. Oga-OmenkaC. HeitkampP. Nawina NyirendaC. FurinJ. PaiM. Tuberculosis in times of COVID-19.J. Epidemiol. Community Health202276331031610.1136/jech‑2021‑21752934535539
    [Google Scholar]
  13. LiC. NiY.Q. XuH. XiangQ.Y. ZhaoY. ZhanJ.K. HeJ.Y. LiS. LiuY.S. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases.Signal Transduct. Target. Ther.20216138310.1038/s41392‑021‑00779‑x34753929
    [Google Scholar]
  14. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y8252621
    [Google Scholar]
  15. SaliminejadK. Khorram KhorshidH.R. Soleymani FardS. GhaffariS.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods.J. Cell. Physiol.201923455451546510.1002/jcp.2748630471116
    [Google Scholar]
  16. RajeshN. GuptaM.K. DondeR. SabarinathanS. GoudaG. DashG.K. Expression Profiling and Discovery of microRNA. Bioinformatics in Rice Research.SpringerSingapor202145948610.1007/978‑981‑16‑3993‑7_20
    [Google Scholar]
  17. AlmeidaM.I. ReisR.M. CalinG.A. MicroRNA history: Discovery, recent applications, and next frontiers.Mutat. Res.20117171-21810.1016/j.mrfmmm.2011.03.00921458467
    [Google Scholar]
  18. DashK.C. MahapatraN. BhuyanL. BehuraS. MishraP. PandaA. Biogenesis of microRNAs and its implication in head and neck pathologies: A narrative review.J. Int. Oral Health202113210110710.4103/jioh.jioh_226_20
    [Google Scholar]
  19. HammondS.M. An overview of microRNAs.Adv. Drug Deliv. Rev.20158731410.1016/j.addr.2015.05.00125979468
    [Google Scholar]
  20. O’BrienJ. HayderH. ZayedY. PengC. Overview of microRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol. (Lausanne)2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  21. LuY. DengM. WangK. PengY. OuyangM. The regulatory effects of micrornas on tumor immunity.BioMed Res. Int.202220221212199310.1155/2022/212199335909469
    [Google Scholar]
  22. GebertL.F.R. MacRaeI.J. Regulation of microRNA function in animals.Nat. Rev. Mol. Cell Biol.2019201213710.1038/s41580‑018‑0045‑730108335
    [Google Scholar]
  23. HashemiA. Gorji-bahriG. MicroRNA: Promising roles in cancer therapy.Curr. Pharm. Biotechnol.202021121186120310.2174/138920102166620042010161332310047
    [Google Scholar]
  24. MaY. ShenN. WichaM.S. LuoM. The roles of the Let-7 family of MicroRNAs in the regulation of cancer stemness.Cells2021109241510.3390/cells1009241534572067
    [Google Scholar]
  25. DexheimerP.J. CochellaL. MicroRNAs: From mechanism to organism.Front. Cell Dev. Biol.2020840910.3389/fcell.2020.0040932582699
    [Google Scholar]
  26. ErginK. ÇetinkayaR. Regulation of microRNAs.Methods Mol Biol.Springer202213210.1007/978‑1‑0716‑1170‑8_134432271
    [Google Scholar]
  27. PozniakT. ShcharbinD. BryszewskaM. Circulating microRNAs in medicine.Int. J. Mol. Sci.2022237399610.3390/ijms2307399635409354
    [Google Scholar]
  28. Rojas-PirelaM. Andrade-AlviárezD. MedinaL. CastilloC. LiempiA. Guerrero-MuñozJ. OrtegaY. MayaJ.D. RojasV. QuiñonesW. MichelsP.A. KemmerlingU. MicroRNAs: Master regulators in host–parasitic protist interactions.Open Biol.202212621039510.1098/rsob.21039535702995
    [Google Scholar]
  29. Starega-RoslanJ. KoscianskaE. KozlowskiP. KrzyzosiakW.J. The role of the precursor structure in the biogenesis of microRNA.Cell. Mol. Life Sci.201168172859287110.1007/s00018‑011‑0726‑221607569
    [Google Scholar]
  30. BartelD.P. Metazoan MicroRNAs.Cell20181731205110.1016/j.cell.2018.03.00629570994
    [Google Scholar]
  31. StavastC. ErkelandS. The non-canonical aspects of microRNAs: Many roads to gene regulation.Cells2019811146510.3390/cells811146531752361
    [Google Scholar]
  32. AbdelfattahA.M. ParkC. ChoiM.Y. Update on non-canonical microRNAs.Biomol. Concepts20145427528710.1515/bmc‑2014‑001225372759
    [Google Scholar]
  33. MiyoshiK. MiyoshiT. SiomiH. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production.Mol. Genet. Genomics201028429510310.1007/s00438‑010‑0556‑120596726
    [Google Scholar]
  34. MichlewskiG. CáceresJ.F. Post-transcriptional control of miRNA biogenesis.RNA201925111610.1261/rna.068692.11830333195
    [Google Scholar]
  35. DragomirM. MafraA.C.P. DiasS.M.G. VasilescuC. CalinG.A. Using microRNA networks to understand cancer.Int. J. Mol. Sci.2018197187110.3390/ijms1907187129949872
    [Google Scholar]
  36. DaveyM.G. DaviesM. LoweryA.J. MillerN. KerinM.J. The role of MicroRNA as clinical biomarkers for breast cancer surgery and treatment.Int. J. Mol. Sci.20212215829010.3390/ijms2215829034361056
    [Google Scholar]
  37. JiaY. WeiY. Modulators of MicroRNA function in the immune system.Int. J. Mol. Sci.2020217235710.3390/ijms2107235732235299
    [Google Scholar]
  38. DuchaineT.F. FabianM.R. Mechanistic insights into microRNA- mediated gene silencing.Cold Spring Harb. Perspect. Biol.2019113a03277110.1101/cshperspect.a03277129959194
    [Google Scholar]
  39. GierlikowskiW. GierlikowskaB. MicroRNAs as regulators of phagocytosis.Cells2022119138010.3390/cells1109138035563685
    [Google Scholar]
  40. BehrM.A. EdelsteinP.H. RamakrishnanL. Revisiting the timetable of tuberculosis.BMJ2018362k273810.1136/bmj.k273830139910
    [Google Scholar]
  41. MacNeilA. GlaziouP. SismanidisC. MaloneyS. FloydK. Global epidemiology of tuberculosis and progress toward achieving global targets — 2017.MMWR Morb. Mortal. Wkly. Rep.2019681126326610.15585/mmwr.mm6811a330897077
    [Google Scholar]
  42. HuangL. RussellD.G. Protective immunity against tuberculosis: what does it look like and how do we find it?Curr. Opin. Immunol.201748445010.1016/j.coi.2017.08.00128826036
    [Google Scholar]
  43. CurtaleG. RubinoM. LocatiM. Micrornas as molecular switches in macrophage activation.Front. Immunol.20191079910.3389/fimmu.2019.0079931057539
    [Google Scholar]
  44. TsolakiA.G. VargheseP.M. KishoreU. Innate immune pattern recognition receptors of mycobacterium tuberculosis: Nature and consequences for pathogenesis of tuberculosis.Adv Exp Med Biol.2021131317921510.1007/978‑3‑030‑67452‑6_934661896
    [Google Scholar]
  45. KiazykS BallTB Latent tuberculosis infection: An overview.Can Commun Dis Rep.2017433-4626610.14745/ccdr.v43i34a0129770066PMC5764738
    [Google Scholar]
  46. KunduM. BasuJ. The role of microRNAs and long non-coding RNAs in the regulation of the immune response to mycobacterium tuberculosis infection.Front. Immunol.20211268796210.3389/fimmu.2021.68796234248974
    [Google Scholar]
  47. BehrouziA. AlimohammadiM. NafariA.H. YousefiM.H. Riazi RadF. VaziriF. SiadatS.D. The role of host miRNAs on mycobacterium tuberculosis.ExRNA2019114010.1186/s41544‑019‑0040‑y
    [Google Scholar]
  48. LooneyM. LorencR. HalushkaM.K. KarakousisP.C. Key macrophage responses to infection with mycobacterium tuberculosis are co-regulated by microRNAs and DNA methylation.Front. Immunol.20211268523710.3389/fimmu.2021.68523734140955
    [Google Scholar]
  49. SampathP. PeriyasamyK.M. RanganathanU.D. BethunaickanR. Monocyte and macrophage miRNA: Potent biomarker and target for host-directed therapy for tuberculosis.Front. Immunol.20211266720610.3389/fimmu.2021.66720634248945
    [Google Scholar]
  50. NaqviR.A. DattaM. KhanS.H. NaqviA.R. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Seminars in cell & developmental biology.Semin Cell Dev Biol.2022124344710.1016/j.semcdb.2021.08.00334446356PMC11661912
    [Google Scholar]
  51. SinigagliaA. PetaE. RiccettiS. VenkateswaranS. ManganelliR. BarzonL. Tuberculosis-associated MicroRNAs: From pathogenesis to disease biomarkers.Cells2020910216010.3390/cells910216032987746
    [Google Scholar]
  52. LatorreI. LeidingerP. BackesC. DomínguezJ. de Souza-GalvãoM.L. MaldonadoJ. PratC. Ruiz-ManzanoJ. SánchezF. CasasI. KellerA. von BriesenH. KnobelH. MeeseE. MeyerhansA. A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis.Eur. Respir. J.20154541173117610.1183/09031936.0022151425657026
    [Google Scholar]
  53. LiX. HeJ. WangG. SunJ. Diagnostic value of microRNA-155 in active tuberculosis.Medicine (Baltimore)202110046e2786910.1097/MD.000000000002786934797326
    [Google Scholar]
  54. WittenL. SlackF.J. miR-155 as a novel clinical target for hematological malignancies.Carcinogenesis20204112710.1093/carcin/bgz18331711135
    [Google Scholar]
  55. MashimaR. Physiological roles of miR-155.Immunology2015145332333310.1111/imm.1246825829072
    [Google Scholar]
  56. HuJ. HuangS. LiuX. ZhangY. WeiS. HuX. miR-155: An important role in inflammation response.J. Immunol. Res.2022202211310.1155/2022/743728135434143
    [Google Scholar]
  57. IwaiH. FunatogawaK. MatsumuraK. Kato-MiyazawaM. KirikaeF. KigaK. SasakawaC. Miyoshi-AkiyamaT. KirikaeT. MicroRNA-155 knockout mice are susceptible to mycobacterium tuberculosis infection.Tuberculosis (Edinb.)201595324625010.1016/j.tube.2015.03.00625846955
    [Google Scholar]
  58. ZingaleV.D. GugliandoloA. MazzonE. MiR-155: An important regulator of neuroinflammation.Int. J. Mol. Sci.20212319010.3390/ijms2301009035008513
    [Google Scholar]
  59. VigoritoE. KohlhaasS. LuD. LeylandR. miR-155: An ancient regulator of the immune system.Immunol. Rev.2013253114615710.1111/imr.1205723550644
    [Google Scholar]
  60. HeP. GelissenI.C. AmmitA.J. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: Cholesterol-dependent and – independent signaling pathways with relevance to inflammatory lung disease.Respir. Res.202021125010.1186/s12931‑020‑01515‑932977800
    [Google Scholar]
  61. PaikS. KimJ.K. ChungC. JoE.K. Autophagy: A new strategy for host-directed therapy of tuberculosis.Virulence201910144845910.1080/21505594.2018.153659830322337
    [Google Scholar]
  62. EtnaM.P. SinigagliaA. GrassiA. GiacominiE. RomagnoliA. PardiniM. SeveraM. CrucianiM. RizzoF. AnastasiadouE. Di CamilloB. BarzonL. FimiaG.M. ManganelliR. CocciaE.M. Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells.PLoS Pathog.2018141e100679010.1371/journal.ppat.100679029300789
    [Google Scholar]
  63. FasanoC. DisciglioV. BertoraS. Lepore SignorileM. SimoneC. FOXO3a from the nucleus to the mitochondria: A round trip in cellular stress response.Cells201989111010.3390/cells809111031546924
    [Google Scholar]
  64. QinY. WangQ. ZhouY. DuanY. GaoQ. Inhibition of IFN-γ-induced nitric oxide dependent antimycobacterial activity by miR-155 and C/EBPβ.Int. J. Mol. Sci.201617453510.3390/ijms1704053527070591
    [Google Scholar]
  65. JafarzadehA. NaseriA. ShojaieL. NematiM. JafarzadehS. Bannazadeh BaghiH. HamblinM.R. AkhlaghS.A. MirzaeiH. MicroRNA-155 and antiviral immune responses.Int. Immunopharmacol.2021101Pt A10818810.1016/j.intimp.2021.10818834626873
    [Google Scholar]
  66. YingH. FengYingS. YanHongW. YouMingH. FaYouZ. HongXiangZ. XiaoLeiT. MicroRNA-155 from sputum as noninvasive biomarker for diagnosis of active pulmonary tuberculosis.Iran. J. Basic Med. Sci.202023111419142533235699
    [Google Scholar]
  67. WuJ. LuC. DiaoN. ZhangS. WangS. WangF. GaoY. ChenJ. ShaoL. LuJ. ZhangX. WengX. WangH. ZhangW. HuangY. Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: A preliminary study.Hum. Immunol.2012731313710.1016/j.humimm.2011.10.00322037148
    [Google Scholar]
  68. HuangJ. JiaoJ. XuW. ZhaoH. ZhangC. ShiY. XiaoZ. miR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3.Mol. Med. Rep.20151257102710810.3892/mmr.2015.425026324048
    [Google Scholar]
  69. Ruiz-TagleC. NavesR. BalcellsM.E. Unraveling the role of microRNAs in Mycobacterium tuberculosis infection and disease: Advances and pitfalls.Infect. Immun.2020883e00649-1910.1128/IAI.00649‑1931871103
    [Google Scholar]
  70. WaghV. UrhekarA. ModiD. Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy.Tuberculosis (Edinb.)2017102243010.1016/j.tube.2016.10.00728061948
    [Google Scholar]
  71. ZhangC. XiX. WangQ. JiaoJ. ZhangL. ZhaoH. LaiZ. The association between serum miR-155 and natural killer cells from tuberculosis patients.Int. J. Clin. Exp. Med.2015869168917226309574
    [Google Scholar]
  72. SabirN. HussainT. ShahS.Z.A. PeramoA. ZhaoD. ZhouX. miRNAs in tuberculosis: New avenues for diagnosis and host-directed therapy.Front. Microbiol.2018960210.3389/fmicb.2018.0060229651283
    [Google Scholar]
  73. BuscagliaL.E.B. LiY. Apoptosis and the target genes of microRNA-21.Chin. J. Cancer201130637138010.5732/cjc.30.037121627859
    [Google Scholar]
  74. HuangY. YangY.B. ZhangX.H. YuX.L. WangZ.B. ChengX.C. MicroRNA-21 gene and cancer.Med. Oncol.201330137610.1007/s12032‑012‑0376‑823277281
    [Google Scholar]
  75. WangS. WanX. RuanQ. The MicroRNA-21 in autoimmune diseases.Int. J. Mol. Sci.201617686410.3390/ijms1706086427271606
    [Google Scholar]
  76. LiX. WeiY. WangZ. microRNA-21 and hypertension.Hypertens. Res.201841964966110.1038/s41440‑018‑0071‑z29973661
    [Google Scholar]
  77. WuZ. LuH. ShengJ. LiL. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2.FEBS Lett.2012586162459246710.1016/j.febslet.2012.06.00422710123
    [Google Scholar]
  78. PattnaikB. PatnaikN. MittalS. MohanA. AgrawalA. GuleriaR. MadanK. Micro RNAs as potential biomarkers in tuberculosis: A systematic review.Noncoding RNA Res.202271162610.1016/j.ncrna.2021.12.00535128217
    [Google Scholar]
  79. Abd-El-FattahA.A. SadikN.A.H. ShakerO.G. AboulftouhM.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia.Cell Biochem. Biophys.201367387588410.1007/s12013‑013‑9575‑y23559272
    [Google Scholar]
  80. HarapanH. FitraF. IchsanI. MulyadiM. MiottoP. HasanN.A. CaladoM. CirilloD.M. The roles of microRNAs on tuberculosis infection: Meaning or myth?Tuberculosis (Edinb.)201393659660510.1016/j.tube.2013.08.00424025365
    [Google Scholar]
  81. KumarR. HalderP. SahuS.K. KumarM. KumariM. JanaK. GhoshZ. SharmaP. KunduM. BasuJ. Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with mycobacterium tuberculosis.Cell. Microbiol.201214101620163110.1111/j.1462‑5822.2012.01827.x22712528
    [Google Scholar]
  82. ZhaoZ. HaoJ. LiX. ChenY. QiX. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis -infected macrophages.FEBS Lett.2019593121326133510.1002/1873‑3468.1343831090056
    [Google Scholar]
  83. DuffyF.J. ThompsonE. DowningK. SulimanS. Mayanja-KizzaH. BoomW.H. ThielB. WeinerJ.III KaufmannS.H.E. DoverD. TabbD.L. DockrellH.M. OttenhoffT.H.M. TrompG. ScribaT.J. ZakD.E. WalzlG. GC6-74 Consortium A serum circulating miRNA signature for short-term risk of progression to active tuberculosis among household contacts.Front. Immunol.2018966110.3389/fimmu.2018.0066129706954
    [Google Scholar]
  84. KleinsteuberK. HeeschK. SchattlingS. KohnsM. Sander-JülchC. WalzlG. HesselingA. MayatepekE. FleischerB. MarxF.M. JacobsenM. Decreased expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T cells and peripheral blood from tuberculosis patients.PLoS One201384e6160910.1371/journal.pone.006160923613882
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501395403250908114647
Loading
/content/journals/cbiot/10.2174/0122115501395403250908114647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test