Skip to content
2000
image of MicroRNA miR-155 and miR-21 as Biomarkers in Active Pulmonary Tuberculosis and the Healing Process: A Mini Review

Abstract

Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is still a great challenge in the public health domain to this day. Sputum collection from TB patients followed by an examination of acid-fast bacilli (AFB) is a common diagnostic tool routinely done; however, it could lead to false negative results when the patient excretes saliva instead of sputum. Meanwhile, bacterial culture, which is the gold standard, is time- and labor-consuming. MicroRNAs (miRNAs) are a type of RNA that is small (18-25 nucleotides) and controls the function of messenger RNA (mRNA). MicroRNA is the 6th and most recent cell communication pathway discovered, as the secreted miRNAs are encased in exosomes and can circulate throughout the body and can be found in any body fluids including sputum. MiRNAs in TB patients associated with TB infection can be expressed as increased or decreased according to the severity of the infection. MiRNA-155 and 21 are miRNAs with increased expression in active pulmonary TB and decrease in the healing process, so both miRNAs hold the potency to be used as biomarkers to monitor the level of disease activity and the healing process.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501395403250908114647
2025-09-15
2025-10-29
Loading full text...

Full text loading...

References

  1. Loddenkemper R. Murray J.F. History of tuberculosis. Essential Tuberculosis. Springer 2021 3 9 10.1007/978‑3‑030‑66703‑0_1
    [Google Scholar]
  2. Tripathy S Srivastava K Kant S Sarin R. History of Tuberculosis. National Medicos Organisation Journal. 2018 12 01 14 8
    [Google Scholar]
  3. Chakaya J. Khan M. Ntoumi F. Aklillu E. Fatima R. Mwaba P. Kapata N. Mfinanga S. Hasnain S.E. Katoto P.D.M.C. Bulabula A.N.H. Sam-Agudu N.A. Nachega J.B. Tiberi S. McHugh T.D. Abubakar I. Zumla A. Global Tuberculosis Report 2020 – Reflections on the Global TB burden, treatment and prevention efforts. Int. J. Infect. Dis. 2021 113 Suppl 1 Suppl. 1 S7 S12 10.1016/j.ijid.2021.02.107 33716195
    [Google Scholar]
  4. Menzies N.A. Quaife M. Allwood B.W. Byrne A.L. Coussens A.K. Harries A.D. Marx F.M. Meghji J. Pedrazzoli D. Salomon J.A. Sweeney S. van Kampen S.C. Wallis R.S. Houben R.M.G.J. Cohen T. Lifetime burden of disease due to incident tuberculosis: a global reappraisal including post-tuberculosis sequelae. Lancet Glob. Health 2021 9 12 e1679 e1687 10.1016/S2214‑109X(21)00367‑3 34798027
    [Google Scholar]
  5. Xue Y. Zhou J. Wang P. Lan J. Lian W. Fan Y.Y. Xu B.N. Yin J.P. Feng Z. Zhou J. Jia C.Y. Burden of tuberculosis and its association with socio-economic development status in 204 countries and territories, 1990–2019. Front. Med. (Lausanne) 2022 9 905245 10.3389/fmed.2022.905245 35935764
    [Google Scholar]
  6. Fukunaga R. Glaziou P. Harris J.B. Date A. Floyd K. Kasaeva T. Epidemiology of tuberculosis and progress toward meeting global targets—worldwide, 2019. MMWR Morb. Mortal. Wkly. Rep. 2021 70 12 427 430 10.15585/mmwr.mm7012a4 33764960
    [Google Scholar]
  7. Petersen E. Al-Abri S. Chakaya J. Goletti D. Parolina L. Wejse C. Mucheleng’anga L.A. Khalili S.A. Yeboah-Manu D. Chanda-Kapata P. Nasiri M.J. Lungu P.S. Maeurer M. Tiberi S. Ntoumi F. Battista-Migliori G. Zumla A. World TB Day 2022: Revamping and reshaping global TB control programs by advancing lessons learnt from the COVID-19 pandemic. Int. J. Infect. Dis. 2022 124 Suppl. 1 S1 S3 10.1016/j.ijid.2022.02.057 35248715
    [Google Scholar]
  8. Klinton J.S. Heitkamp P. Rashid A. Faleye B.O. Win Htat H. Hussain H. Syed I. Farough K. Mortera L. Moh Lwin M. Jha N. Ananthakrishnan R. Mahfuza R. Chadha S.S. Banu S. Mannan S. Vijayan S. Ahmed S. Ali T. Oga-Omenka C. Kaur M. Singh U. Wells W.A. Stallworthy G. Dias H.M.Y. Pai M. One year of COVID-19 and its impact on private provider engagement for TB: A rapid assessment of intermediary NGOs in seven high TB burden countries. J. Clin. Tuberc. Other Mycobact. Dis. 2021 25 100277 10.1016/j.jctube.2021.100277 34545343
    [Google Scholar]
  9. Poudyal B.S. Paudel B. Bista B. Shrestha G.S. Pudasaini P. Clinical, Laboratory and Radiological Features of Paragonimiasis Misdiagnosed as Pulmonary Tuberculosis. Iran. J. Parasitol. 2022 17 3 410 414 10.18502/ijpa.v17i3.10632 36466025
    [Google Scholar]
  10. Kong L. Hua L. Liu Q. Bao C. Hu J. Xu S. One delayed diagnosis of paragonimiasis case and literature review. Respirol. Case Rep. 2021 9 5 e00750 10.1002/rcr2.750 33959297
    [Google Scholar]
  11. Alene K.A. Wangdi K. Clements A.C.A. Impact of the COVID-19 Pandemic on Tuberculosis Control: An Overview. Trop. Med. Infect. Dis. 2020 5 3 123 10.3390/tropicalmed5030123 32722014
    [Google Scholar]
  12. Zimmer A.J. Klinton J.S. Oga-Omenka C. Heitkamp P. Nawina Nyirenda C. Furin J. Pai M. Tuberculosis in times of COVID-19. J. Epidemiol. Community Health 2022 76 3 310 316 10.1136/jech‑2021‑217529 34535539
    [Google Scholar]
  13. Li C. Ni Y.Q. Xu H. Xiang Q.Y. Zhao Y. Zhan J.K. He J.Y. Li S. Liu Y.S. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct. Target. Ther. 2021 6 1 383 10.1038/s41392‑021‑00779‑x 34753929
    [Google Scholar]
  14. Lee R.C. Feinbaum R.L. Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993 75 5 843 854 10.1016/0092‑8674(93)90529‑Y 8252621
    [Google Scholar]
  15. Saliminejad K. Khorram Khorshid H.R. Soleymani Fard S. Ghaffari S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019 234 5 5451 5465 10.1002/jcp.27486 30471116
    [Google Scholar]
  16. Rajesh N. Gupta M.K. Donde R. Sabarinathan S. Gouda G. Dash G.K. Expression Profiling and Discovery of microRNA. Bioinformatics in Rice Research. Springer Singapor 2021 459 486 10.1007/978‑981‑16‑3993‑7_20
    [Google Scholar]
  17. Almeida M.I. Reis R.M. Calin G.A. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat. Res. 2011 717 1-2 1 8 10.1016/j.mrfmmm.2011.03.009 21458467
    [Google Scholar]
  18. Dash K.C. Mahapatra N. Bhuyan L. Behura S. Mishra P. Panda A. Biogenesis of microRNAs and its implication in head and neck pathologies: A narrative review. J. Int. Oral Health 2021 13 2 101 107 10.4103/jioh.jioh_226_20
    [Google Scholar]
  19. Hammond S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015 87 3 14 10.1016/j.addr.2015.05.001 25979468
    [Google Scholar]
  20. O’Brien J. Hayder H. Zayed Y. Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 2018 9 402 10.3389/fendo.2018.00402 30123182
    [Google Scholar]
  21. Lu Y. Deng M. Wang K. Peng Y. Ouyang M. The regulatory effects of micrornas on tumor immunity. BioMed Res. Int. 2022 2022 1 2121993 10.1155/2022/2121993 35909469
    [Google Scholar]
  22. Gebert L.F.R. MacRae I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019 20 1 21 37 10.1038/s41580‑018‑0045‑7 30108335
    [Google Scholar]
  23. Hashemi A. Gorji-bahri G. MicroRNA: Promising roles in cancer therapy. Curr. Pharm. Biotechnol. 2020 21 12 1186 1203 10.2174/1389201021666200420101613 32310047
    [Google Scholar]
  24. Ma Y. Shen N. Wicha M.S. Luo M. The roles of the Let-7 family of MicroRNAs in the regulation of cancer stemness. Cells 2021 10 9 2415 10.3390/cells10092415 34572067
    [Google Scholar]
  25. Dexheimer P.J. Cochella L. MicroRNAs: From mechanism to organism. Front. Cell Dev. Biol. 2020 8 409 10.3389/fcell.2020.00409 32582699
    [Google Scholar]
  26. Ergin K. Çetinkaya R. Regulation of microRNAs. Methods Mol Biol. Springer 2022 1 32 10.1007/978‑1‑0716‑1170‑8_1 34432271
    [Google Scholar]
  27. Pozniak T. Shcharbin D. Bryszewska M. Circulating microRNAs in medicine. Int. J. Mol. Sci. 2022 23 7 3996 10.3390/ijms23073996 35409354
    [Google Scholar]
  28. Rojas-Pirela M. Andrade-Alviárez D. Medina L. Castillo C. Liempi A. Guerrero-Muñoz J. Ortega Y. Maya J.D. Rojas V. Quiñones W. Michels P.A. Kemmerling U. MicroRNAs: Master regulators in host–parasitic protist interactions. Open Biol. 2022 12 6 210395 10.1098/rsob.210395 35702995
    [Google Scholar]
  29. Starega-Roslan J. Koscianska E. Kozlowski P. Krzyzosiak W.J. The role of the precursor structure in the biogenesis of microRNA. Cell. Mol. Life Sci. 2011 68 17 2859 2871 10.1007/s00018‑011‑0726‑2 21607569
    [Google Scholar]
  30. Bartel D.P. Metazoan MicroRNAs. Cell 2018 173 1 20 51 10.1016/j.cell.2018.03.006 29570994
    [Google Scholar]
  31. Stavast C. Erkeland S. The non-canonical aspects of microRNAs: Many roads to gene regulation. Cells 2019 8 11 1465 10.3390/cells8111465 31752361
    [Google Scholar]
  32. Abdelfattah A.M. Park C. Choi M.Y. Update on non-canonical microRNAs. Biomol. Concepts 2014 5 4 275 287 10.1515/bmc‑2014‑0012 25372759
    [Google Scholar]
  33. Miyoshi K. Miyoshi T. Siomi H. Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol. Genet. Genomics 2010 284 2 95 103 10.1007/s00438‑010‑0556‑1 20596726
    [Google Scholar]
  34. Michlewski G. Cáceres J.F. Post-transcriptional control of miRNA biogenesis. RNA 2019 25 1 1 16 10.1261/rna.068692.118 30333195
    [Google Scholar]
  35. Dragomir M. Mafra A.C.P. Dias S.M.G. Vasilescu C. Calin G.A. Using microRNA networks to understand cancer. Int. J. Mol. Sci. 2018 19 7 1871 10.3390/ijms19071871 29949872
    [Google Scholar]
  36. Davey M.G. Davies M. Lowery A.J. Miller N. Kerin M.J. The role of MicroRNA as clinical biomarkers for breast cancer surgery and treatment. Int. J. Mol. Sci. 2021 22 15 8290 10.3390/ijms22158290 34361056
    [Google Scholar]
  37. Jia Y. Wei Y. Modulators of MicroRNA function in the immune system. Int. J. Mol. Sci. 2020 21 7 2357 10.3390/ijms21072357 32235299
    [Google Scholar]
  38. Duchaine T.F. Fabian M.R. Mechanistic insights into microRNA- mediated gene silencing. Cold Spring Harb. Perspect. Biol. 2019 11 3 a032771 10.1101/cshperspect.a032771 29959194
    [Google Scholar]
  39. Gierlikowski W. Gierlikowska B. MicroRNAs as regulators of phagocytosis. Cells 2022 11 9 1380 10.3390/cells11091380 35563685
    [Google Scholar]
  40. Behr M.A. Edelstein P.H. Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ 2018 362 k2738 10.1136/bmj.k2738 30139910
    [Google Scholar]
  41. MacNeil A. Glaziou P. Sismanidis C. Maloney S. Floyd K. Global epidemiology of tuberculosis and progress toward achieving global targets — 2017. MMWR Morb. Mortal. Wkly. Rep. 2019 68 11 263 266 10.15585/mmwr.mm6811a3 30897077
    [Google Scholar]
  42. Huang L. Russell D.G. Protective immunity against tuberculosis: what does it look like and how do we find it? Curr. Opin. Immunol. 2017 48 44 50 10.1016/j.coi.2017.08.001 28826036
    [Google Scholar]
  43. Curtale G. Rubino M. Locati M. Micrornas as molecular switches in macrophage activation. Front. Immunol. 2019 10 799 10.3389/fimmu.2019.00799 31057539
    [Google Scholar]
  44. Tsolaki A.G. Varghese P.M. Kishore U. Innate immune pattern recognition receptors of mycobacterium tuberculosis: Nature and consequences for pathogenesis of tuberculosis. Adv Exp Med Biol. 2021 1313 179 215 10.1007/978‑3‑030‑67452‑6_9 34661896
    [Google Scholar]
  45. Kiazyk S Ball TB Latent tuberculosis infection: An overview. Can Commun Dis Rep. 2017 43 3-4 62 66 10.14745/ccdr.v43i34a01 29770066 PMC5764738
    [Google Scholar]
  46. Kundu M. Basu J. The role of microRNAs and long non-coding RNAs in the regulation of the immune response to mycobacterium tuberculosis infection. Front. Immunol. 2021 12 687962 10.3389/fimmu.2021.687962 34248974
    [Google Scholar]
  47. Behrouzi A. Alimohammadi M. Nafari A.H. Yousefi M.H. Riazi Rad F. Vaziri F. Siadat S.D. The role of host miRNAs on mycobacterium tuberculosis. ExRNA 2019 1 1 40 10.1186/s41544‑019‑0040‑y
    [Google Scholar]
  48. Looney M. Lorenc R. Halushka M.K. Karakousis P.C. Key macrophage responses to infection with mycobacterium tuberculosis are co-regulated by microRNAs and DNA methylation. Front. Immunol. 2021 12 685237 10.3389/fimmu.2021.685237 34140955
    [Google Scholar]
  49. Sampath P. Periyasamy K.M. Ranganathan U.D. Bethunaickan R. Monocyte and macrophage miRNA: Potent biomarker and target for host-directed therapy for tuberculosis. Front. Immunol. 2021 12 667206 10.3389/fimmu.2021.667206 34248945
    [Google Scholar]
  50. Naqvi R.A. Datta M. Khan S.H. Naqvi A.R. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Seminars in cell & developmental biology. Semin Cell Dev Biol. 2022 124 34 47 10.1016/j.semcdb.2021.08.003 34446356 PMC11661912
    [Google Scholar]
  51. Sinigaglia A. Peta E. Riccetti S. Venkateswaran S. Manganelli R. Barzon L. Tuberculosis-associated MicroRNAs: From pathogenesis to disease biomarkers. Cells 2020 9 10 2160 10.3390/cells9102160 32987746
    [Google Scholar]
  52. Latorre I. Leidinger P. Backes C. Domínguez J. de Souza-Galvão M.L. Maldonado J. Prat C. Ruiz-Manzano J. Sánchez F. Casas I. Keller A. von Briesen H. Knobel H. Meese E. Meyerhans A. A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis. Eur. Respir. J. 2015 45 4 1173 1176 10.1183/09031936.00221514 25657026
    [Google Scholar]
  53. Li X. He J. Wang G. Sun J. Diagnostic value of microRNA-155 in active tuberculosis. Medicine (Baltimore) 2021 100 46 e27869 10.1097/MD.0000000000027869 34797326
    [Google Scholar]
  54. Witten L. Slack F.J. miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis 2020 41 1 2 7 10.1093/carcin/bgz183 31711135
    [Google Scholar]
  55. Mashima R. Physiological roles of miR-155. Immunology 2015 145 3 323 333 10.1111/imm.12468 25829072
    [Google Scholar]
  56. Hu J. Huang S. Liu X. Zhang Y. Wei S. Hu X. miR-155: An important role in inflammation response. J. Immunol. Res. 2022 2022 1 13 10.1155/2022/7437281 35434143
    [Google Scholar]
  57. Iwai H. Funatogawa K. Matsumura K. Kato-Miyazawa M. Kirikae F. Kiga K. Sasakawa C. Miyoshi-Akiyama T. Kirikae T. MicroRNA-155 knockout mice are susceptible to mycobacterium tuberculosis infection. Tuberculosis (Edinb.) 2015 95 3 246 250 10.1016/j.tube.2015.03.006 25846955
    [Google Scholar]
  58. Zingale V.D. Gugliandolo A. Mazzon E. MiR-155: An important regulator of neuroinflammation. Int. J. Mol. Sci. 2021 23 1 90 10.3390/ijms23010090 35008513
    [Google Scholar]
  59. Vigorito E. Kohlhaas S. Lu D. Leyland R. miR-155: An ancient regulator of the immune system. Immunol. Rev. 2013 253 1 146 157 10.1111/imr.12057 23550644
    [Google Scholar]
  60. He P. Gelissen I.C. Ammit A.J. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: Cholesterol-dependent and – independent signaling pathways with relevance to inflammatory lung disease. Respir. Res. 2020 21 1 250 10.1186/s12931‑020‑01515‑9 32977800
    [Google Scholar]
  61. Paik S. Kim J.K. Chung C. Jo E.K. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence 2019 10 1 448 459 10.1080/21505594.2018.1536598 30322337
    [Google Scholar]
  62. Etna M.P. Sinigaglia A. Grassi A. Giacomini E. Romagnoli A. Pardini M. Severa M. Cruciani M. Rizzo F. Anastasiadou E. Di Camillo B. Barzon L. Fimia G.M. Manganelli R. Coccia E.M. Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathog. 2018 14 1 e1006790 10.1371/journal.ppat.1006790 29300789
    [Google Scholar]
  63. Fasano C. Disciglio V. Bertora S. Lepore Signorile M. Simone C. FOXO3a from the nucleus to the mitochondria: A round trip in cellular stress response. Cells 2019 8 9 1110 10.3390/cells8091110 31546924
    [Google Scholar]
  64. Qin Y. Wang Q. Zhou Y. Duan Y. Gao Q. Inhibition of IFN-γ-induced nitric oxide dependent antimycobacterial activity by miR-155 and C/EBPβ. Int. J. Mol. Sci. 2016 17 4 535 10.3390/ijms17040535 27070591
    [Google Scholar]
  65. Jafarzadeh A. Naseri A. Shojaie L. Nemati M. Jafarzadeh S. Bannazadeh Baghi H. Hamblin M.R. Akhlagh S.A. Mirzaei H. MicroRNA-155 and antiviral immune responses. Int. Immunopharmacol. 2021 101 Pt A 108188 10.1016/j.intimp.2021.108188 34626873
    [Google Scholar]
  66. Ying H. FengYing S. YanHong W. YouMing H. FaYou Z. HongXiang Z. XiaoLei T. MicroRNA-155 from sputum as noninvasive biomarker for diagnosis of active pulmonary tuberculosis. Iran. J. Basic Med. Sci. 2020 23 11 1419 1425 33235699
    [Google Scholar]
  67. Wu J. Lu C. Diao N. Zhang S. Wang S. Wang F. Gao Y. Chen J. Shao L. Lu J. Zhang X. Weng X. Wang H. Zhang W. Huang Y. Analysis of microRNA expression profiling identifies miR-155 and miR-155* as potential diagnostic markers for active tuberculosis: A preliminary study. Hum. Immunol. 2012 73 1 31 37 10.1016/j.humimm.2011.10.003 22037148
    [Google Scholar]
  68. Huang J. Jiao J. Xu W. Zhao H. Zhang C. Shi Y. Xiao Z. miR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. Mol. Med. Rep. 2015 12 5 7102 7108 10.3892/mmr.2015.4250 26324048
    [Google Scholar]
  69. Ruiz-Tagle C. Naves R. Balcells M.E. Unraveling the role of microRNAs in Mycobacterium tuberculosis infection and disease: Advances and pitfalls. Infect. Immun. 2020 88 3 e00649-19 10.1128/IAI.00649‑19 31871103
    [Google Scholar]
  70. Wagh V. Urhekar A. Modi D. Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis (Edinb.) 2017 102 24 30 10.1016/j.tube.2016.10.007 28061948
    [Google Scholar]
  71. Zhang C. Xi X. Wang Q. Jiao J. Zhang L. Zhao H. Lai Z. The association between serum miR-155 and natural killer cells from tuberculosis patients. Int. J. Clin. Exp. Med. 2015 8 6 9168 9172 26309574
    [Google Scholar]
  72. Sabir N. Hussain T. Shah S.Z.A. Peramo A. Zhao D. Zhou X. miRNAs in tuberculosis: New avenues for diagnosis and host-directed therapy. Front. Microbiol. 2018 9 602 10.3389/fmicb.2018.00602 29651283
    [Google Scholar]
  73. Buscaglia L.E.B. Li Y. Apoptosis and the target genes of microRNA-21. Chin. J. Cancer 2011 30 6 371 380 10.5732/cjc.30.0371 21627859
    [Google Scholar]
  74. Huang Y. Yang Y.B. Zhang X.H. Yu X.L. Wang Z.B. Cheng X.C. MicroRNA-21 gene and cancer. Med. Oncol. 2013 30 1 376 10.1007/s12032‑012‑0376‑8 23277281
    [Google Scholar]
  75. Wang S. Wan X. Ruan Q. The MicroRNA-21 in autoimmune diseases. Int. J. Mol. Sci. 2016 17 6 864 10.3390/ijms17060864 27271606
    [Google Scholar]
  76. Li X. Wei Y. Wang Z. microRNA-21 and hypertension. Hypertens. Res. 2018 41 9 649 661 10.1038/s41440‑018‑0071‑z 29973661
    [Google Scholar]
  77. Wu Z. Lu H. Sheng J. Li L. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett. 2012 586 16 2459 2467 10.1016/j.febslet.2012.06.004 22710123
    [Google Scholar]
  78. Pattnaik B. Patnaik N. Mittal S. Mohan A. Agrawal A. Guleria R. Madan K. Micro RNAs as potential biomarkers in tuberculosis: A systematic review. Noncoding RNA Res. 2022 7 1 16 26 10.1016/j.ncrna.2021.12.005 35128217
    [Google Scholar]
  79. Abd-El-Fattah A.A. Sadik N.A.H. Shaker O.G. Aboulftouh M.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem. Biophys. 2013 67 3 875 884 10.1007/s12013‑013‑9575‑y 23559272
    [Google Scholar]
  80. Harapan H. Fitra F. Ichsan I. Mulyadi M. Miotto P. Hasan N.A. Calado M. Cirillo D.M. The roles of microRNAs on tuberculosis infection: Meaning or myth? Tuberculosis (Edinb.) 2013 93 6 596 605 10.1016/j.tube.2013.08.004 24025365
    [Google Scholar]
  81. Kumar R. Halder P. Sahu S.K. Kumar M. Kumari M. Jana K. Ghosh Z. Sharma P. Kundu M. Basu J. Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with mycobacterium tuberculosis. Cell. Microbiol. 2012 14 10 1620 1631 10.1111/j.1462‑5822.2012.01827.x 22712528
    [Google Scholar]
  82. Zhao Z. Hao J. Li X. Chen Y. Qi X. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis -infected macrophages. FEBS Lett. 2019 593 12 1326 1335 10.1002/1873‑3468.13438 31090056
    [Google Scholar]
  83. Duffy F.J. Thompson E. Downing K. Suliman S. Mayanja-Kizza H. Boom W.H. Thiel B. Weiner J. III Kaufmann S.H.E. Dover D. Tabb D.L. Dockrell H.M. Ottenhoff T.H.M. Tromp G. Scriba T.J. Zak D.E. Walzl G. GC6-74 Consortium A serum circulating miRNA signature for short-term risk of progression to active tuberculosis among household contacts. Front. Immunol. 2018 9 661 10.3389/fimmu.2018.00661 29706954
    [Google Scholar]
  84. Kleinsteuber K. Heesch K. Schattling S. Kohns M. Sander-Jülch C. Walzl G. Hesseling A. Mayatepek E. Fleischer B. Marx F.M. Jacobsen M. Decreased expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4+ T cells and peripheral blood from tuberculosis patients. PLoS One 2013 8 4 e61609 10.1371/journal.pone.0061609 23613882
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501395403250908114647
Loading
/content/journals/cbiot/10.2174/0122115501395403250908114647
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: sputum ; Biomarker ; pulmonary Tuberculosis ; Mycobacterium tuberculosis ; miRNA-21 ; miRNA-155
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test