Skip to content
2000
image of Phthalate Toxicity in Different Experimental Models

Abstract

Phthalates (PAEs) are the major source of concern because they are commonly used plasticizers in various plastic products and can make their way into the environment. Mostly, phthalate metabolites are released in the urine. In many research studies, it has been observed that some metabolites of phthalates are more harmful than the parental compounds and can be used as biomarkers for the study of phthalate toxicity. Despite some inconsistencies, the present review describes the exposure of phthalates to children, older people, and aquatic life. The studies carried out on the toxic effects of different types of phthalates on various experimental models have been reviewed. The review also summarises the interaction between mechanisms of action involved in the toxicity induced by various PAEs. The literature search has been carried out using PubMed, Science Direct, Scopus, and Google Scholar databases. The studies available on the toxicity of phthalates from 1982 to 2024 have been considered for the review.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501391099250926071958
2025-10-06
2025-10-29
Loading full text...

Full text loading...

References

  1. Pecht M.G. Ali I. Carlson A. Phthalates in electronics: The risks and the alternatives. IEEE Access 2017 99 1 13
    [Google Scholar]
  2. Poopal R.K. Ramesh M. Maruthappan V. Babu Rajendran R. Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicol. Res. 2017 6 4 505 520 10.1039/C7TX00084G 30090519
    [Google Scholar]
  3. Kastner J. Cooper D.G. Marić M. Dodd P. Yargeau V. Aqueous leaching of di-2-ethylhexyl phthalate and “green” plasticizers from poly(vinyl chloride). Sci. Total Environ. 2012 432 357 364 10.1016/j.scitotenv.2012.06.014 22750182
    [Google Scholar]
  4. Chatonnet P. Boutou S. Plana A. Contamination of wines and spirits by phthalates: Types of contaminants present, contamination sources and means of prevention. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014 31 9 1605 1615 10.1080/19440049.2014.941947 25099435
    [Google Scholar]
  5. Wang D.C. Chen T.J. Lin M.L. Jhong Y.C. Chen S.C. Exercise prevents the increased anxiety-like behavior in lactational di-(2-ethylhexyl) phthalate-exposed female rats in late adolescence by improving the regulation of hypothalamus-pituitary-adrenal axis. Horm. Behav. 2014 66 4 674 684 10.1016/j.yhbeh.2014.09.010 25251977
    [Google Scholar]
  6. Liang D.W. Zhang T. Fang H.H.P. He J. Phthalates biodegradation in the environment. Appl. Microbiol. Biotechnol. 2008 80 2 183 198 10.1007/s00253‑008‑1548‑5 18592233
    [Google Scholar]
  7. Serrano S.E. Braun J. Trasande L. Dills R. Sathyanarayana S. Phthalates and diet: A review of the food monitoring and epidemiology data. Environ. Health 2014 13 1 43 10.1186/1476‑069X‑13‑43 24894065
    [Google Scholar]
  8. Staples C.A. Peterson D.R. Parkerton T.F. Adams W.J. The environmental fate of phthalate esters: A literature review. Chemosphere 1997 35 4 667 749 10.1016/S0045‑6535(97)00195‑1
    [Google Scholar]
  9. Saillenfait A.M. Sabaté J.P. Gallissot F. Diisobutyl phthalate impairs the androgen-dependent reproductive development of the male rat. Reprod. Toxicol. 2008 26 2 107 115 10.1016/j.reprotox.2008.07.006 18706996
    [Google Scholar]
  10. Parks L.G. Ostby J.S. Lambright C.R. Abbott B.D. Klinefelter G.R. Barlow N.J. Gray L.E. Jr The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol. Sci. 2000 58 2 339 349 10.1093/toxsci/58.2.339 11099646
    [Google Scholar]
  11. Gray L.E. Jr Ostby J. Furr J. Price M. Veeramachaneni D.N. Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol. Sci. 2000 58 2 350 365 10.1093/toxsci/58.2.350 11099647
    [Google Scholar]
  12. Skakkebæk N.E. Jørgensen N. Main K.M. Meyts E.R-D. Leffers H. Andersson A.M. Juul A. Carlsen E. Mortensen G.K. Jensen T.K. Toppari J. Is human fecundity declining? Int. J. Androl. 2006 29 1 2 11 10.1111/j.1365‑2605.2005.00573.x 16466518
    [Google Scholar]
  13. Romani F. Tropea A. Scarinci E. Federico A. Dello Russo C. Lisi L. Catino S. Lanzone A. Apa R. Endocrine disruptors and human reproductive failure: The in vitro effect of phthalates on human luteal cells. Fertil. Steril. 2014 102 3 831 837 10.1016/j.fertnstert.2014.05.041 25016925
    [Google Scholar]
  14. Miodovnik A. Edwards A. Bellinger D.C. Hauser R. Developmental neurotoxicity of ortho-phthalate diesters: Review of human and experimental evidence. Neurotoxicology 2014 41 112 122 10.1016/j.neuro.2014.01.007 24486776
    [Google Scholar]
  15. Heudorf U. Mersch-Sundermann V. Angerer J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007 210 5 623 634 10.1016/j.ijheh.2007.07.011 17889607
    [Google Scholar]
  16. Fennell T.R. Krol W.L. Sumner S.C.J. Snyder R.W. Pharmacokinetics of dibutylphthalate in pregnant rats. Toxicol. Sci. 2004 82 2 407 418 10.1093/toxsci/kfh294 15456918
    [Google Scholar]
  17. Zhu Y. Wan Y. Zhang B. Zhou A. Huo W. Wu C. Liu H. Jiang Y. Chen Z. Jiang M. Peng Y. Xu S. Xia W. Li Y. Relationship between maternal phthalate exposure and offspring size at birth. Sci. Total Environ. 2018 612 1072 1078 10.1016/j.scitotenv.2017.08.207 28892847
    [Google Scholar]
  18. Calafat A.M. Ye X. Silva M.J. Kuklenyik Z. Needham L.L. Human exposure assessment to environmental chemicals using biomonitoring. Int. J. Androl. 2006 29 1 166 171 10.1111/j.1365‑2605.2005.00570.x 16466536
    [Google Scholar]
  19. Pan T.L. Wang P.W. Aljuffali I.A. Hung Y.Y. Lin C.F. Fang J.Y. Dermal toxicity elicited by phthalates: Evaluation of skin absorption, immunohistology, and functional proteomics. Food Chem. Toxicol. 2014 65 105 114 10.1016/j.fct.2013.12.033 24384410
    [Google Scholar]
  20. Latini G. Potential hazards of exposure to di-(2-ethylhexyl)-phthalate in babies. a review. Neonatology 2000 78 4 269 276 10.1159/000014278 11093005
    [Google Scholar]
  21. Seyoum A. Pradhan A. Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. Sci. Total Environ. 2019 654 969 977 10.1016/j.scitotenv.2018.11.158 30453266
    [Google Scholar]
  22. Gkrillas A. Dirven H. Papadopoulou E. Exposure estimates of phthalates and DINCH from foods and personal care products in comparison with biomonitoring data in 24-hour urine from the Norwegian EuroMix biomonitoring study. Environ. Int. 2021 155 106598 10.1016/j.envint.2021.106598 33957536
    [Google Scholar]
  23. Guo Y. Wu Q. Kannan K. Phthalate metabolites in urine from China, and implications for human exposures. Environ. Int. 2011 37 5 893 898 10.1016/j.envint.2011.03.005 21477864
    [Google Scholar]
  24. Toxicological profile for diethyl phthalate (DEP). 1995 Available from: http://www.atsdr.cde.gov/toxprofiles/tp73.html
  25. Toxicological profile for Di(2-Ethylhexyl) phthalate (DEHP). 2002 Available from: http://www.atsdr.cde.gov/toxprofiles/tp9. html
  26. Calafat A.M. McKee R.H. Integrating biomonitoring exposure data into the risk assessment process: Phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case study. Environ. Health Perspect. 2006 114 11 1783 1789 10.1289/ehp.9059 17107868
    [Google Scholar]
  27. Rusyn I. Peters J.M. Cunningham M.L. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit. Rev. Toxicol. 2006 36 5 459 479 10.1080/10408440600779065 16954067
    [Google Scholar]
  28. Koch H.M. Bolt H.M. Preuss R. Angerer J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch. Toxicol. 2005 79 7 367 376 10.1007/s00204‑004‑0642‑4 15700144
    [Google Scholar]
  29. Frederiksen H. Skakkebaek N.E. Andersson A.M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 2007 51 7 899 911 10.1002/mnfr.200600243 17604388
    [Google Scholar]
  30. Kumar V. Sharma N. Maitra S.S. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F. Biotechnol. Rep. 2017 15 1 10 10.1016/j.btre.2017.04.002 28580302
    [Google Scholar]
  31. Silva M.J. Reidy J.A. Preau J.L. Jr Samandar E. Needham L.L. Calafat A.M. Measurement of eight urinary metabolites of di(2-ethylhexyl) phthalate as biomarkers for human exposure assessment. Biomarkers 2006 11 1 1 13 10.1080/13547500500382868 16484133
    [Google Scholar]
  32. Koch H.M. Bolt H.M. Di Angerer J. (2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labeled DEHP. Arch. Toxicol. 2005 78 13 130
    [Google Scholar]
  33. Zhang Y.J. Guo J.L. Xue J. Bai C.L. Guo Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. Environ. Pollut. 2021 291 118106 10.1016/j.envpol.2021.118106 34520948
    [Google Scholar]
  34. Silva M.J. Samandar E. Calafat A.M. Ye X. Identification of di-2-ethylhexyl terephthalate (DEHTP) metabolites using human liver microsomes for biomonitoring applications. Toxicol. in vitro 2015 29 4 716 721 10.1016/j.tiv.2015.02.002 25687528
    [Google Scholar]
  35. McKee R.H. El-Hawari M. Stoltz M. Pallas F. Lington A.W. Absorption, disposition and metabolism of di-isononyl phthalate (DINP) in F-344 rats. J. Appl. Toxicol. 2002 22 5 293 302 10.1002/jat.861 12355558
    [Google Scholar]
  36. Gao D. Li Z. Wang H. Liang H. An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure. Sci. Total Environ. 2018 645 1400 1409 10.1016/j.scitotenv.2018.07.093 30248862
    [Google Scholar]
  37. Sun Y. Shen J. Zeng L. Yang D. Shao S. Wang J. Wei J. Xiong J. Chen J. Role of autophagy in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis in mouse Leydig cells. Environ. Pollut. 2018 243 Pt A 563 572 10.1016/j.envpol.2018.08.089 30216888
    [Google Scholar]
  38. Sun G. Liu K. Developmental toxicity and cardiac effects of butyl benzyl phthalate in zebrafish embryos. Aquat. Toxicol. 2017 192 165 170 10.1016/j.aquatox.2017.09.020 28961509
    [Google Scholar]
  39. Foster P.M.D. Mylchreest E. Gaido K.W. Sar M. Effects of phthalate esters on the developing reproductive tract of male rats. Hum. Reprod. Update 2001 7 3 231 235 10.1093/humupd/7.3.231 11392369
    [Google Scholar]
  40. Toppari J. Virtanen H.E. Main K.M. Skakkebaek N.E. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): Environmental connection. Birth Defects Res. A Clin. Mol. Teratol. 2010 88 10 910 919 10.1002/bdra.20707 20865786
    [Google Scholar]
  41. Yang W. Tan W. Zheng J. Zhang B. Li H. Li X. MEHP promotes the proliferation of cervical cancer via GPER mediated activation of Akt. Eur. J. Pharmacol. 2018 824 11 16 10.1016/j.ejphar.2018.01.040 29382535
    [Google Scholar]
  42. Wittassek M. Heger W. Koch H.M. Becker K. Angerer J. Kolossa-Gehring M. Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children – A comparison of two estimation models based on urinary DEHP metabolite levels. Int. J. Hyg. Environ. Health 2007 210 1 35 42 10.1016/j.ijheh.2006.11.009 17185035
    [Google Scholar]
  43. Yuan K. Zhao B. Li X.W. Hu G.X. Su Y. Chu Y. Akingbemi B.T. Lian Q.Q. Ge R.S. Effects of phthalates on 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase 3 activities in human and rat testes. Chem. Biol. Interact. 2012 195 3 180 188 10.1016/j.cbi.2011.12.008 22214983
    [Google Scholar]
  44. Lovekamp-Swan T. Davis B.J. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ. Health Perspect. 2003 111 2 139 145 10.1289/ehp.5658 12573895
    [Google Scholar]
  45. Sicińska P. Mokra K. Wozniak K. Michałowicz J. Bukowska B. Genotoxic risk assessment and mechanism of DNA damage induced by phthalates and their metabolites in human peripheral blood mononuclear cells. Sci. Rep. 2021 11 1 1658 10.1038/s41598‑020‑79932‑5 33462290
    [Google Scholar]
  46. Berrios C.A.R. Vélez C. Zayas B. Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6 human lymphoblasts cells. Toxicol. in vitro 2011 25 8 2010 2016 10.1016/j.tiv.2011.08.001 21864672
    [Google Scholar]
  47. Geschwind D.H. Genetics of autism spectrum disorders. Trends Cogn. Sci. 2011 15 9 409 416 10.1016/j.tics.2011.07.003 21855394
    [Google Scholar]
  48. Testa C. Nuti F. Hayek J. De Felice C. Chelli M. Rovero P. Latini G. Papini A.M. Di-(2-ethylhexyl) phthalate and autism spectrum disorders. ASN Neuro 2012 4 4 AN20120015 10.1042/AN20120015 22537663
    [Google Scholar]
  49. Stein T.P. Schluter M.D. Steer R.A. Ming X. Autism and phthalate metabolite glucuronidation. J. Autism Dev. Disord. 2013 43 11 2677 2685 10.1007/s10803‑013‑1822‑y 23575644
    [Google Scholar]
  50. Minatoya M. Kishi R. A review of Recent Studies on Bisphenol A and Phthaltes exposure and child Neurodevelopment. Environmental Exposure and Epidemiological Studies On Material and child. Health 2020 18 3585
    [Google Scholar]
  51. Drake A.J. Tang J.I. Nyirenda M.J. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease. Clin. Sci. 2007 113 5 219 232 10.1042/CS20070107 17663659
    [Google Scholar]
  52. Davis E.P. Head K. Buss C. Sandman C.A. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. Psychoneuroendocrinology 2017 75 56 63 10.1016/j.psyneuen.2016.10.005 27771566
    [Google Scholar]
  53. Nakajin S. Shinoda S. Ohno S. Nakazawa H. Makino T. Effect of phthalate esters and alkylphenols on steroidogenesis in human adrenocortical H295R cells. Environ. Toxicol. Pharmacol. 2001 10 3 103 110 10.1016/S1382‑6689(01)00089‑8 21782564
    [Google Scholar]
  54. Kleinsasser N.H. Kastenbauer E.R. Weissacher H. Muenzenrieder R.K. Harréus U.A. Phthalates demonstrate genotoxicity on human mucosa of the upper aerodigestive tract. Environ. Mol. Mutagen. 2000 35 1 9 12 10.1002/(SICI)1098‑2280(2000)35:1<9::AID‑EM2>3.0.CO;2‑1 10692222
    [Google Scholar]
  55. Buteau-Lozano H. Velasco G. Cristofari M. Balaguer P. Perrot-Applanat M. Xenoestrogens modulate vascular endothelial growth factor secretion in breast cancer cells through an estrogen receptor-dependent mechanism. J. Endocrinol. 2008 196 2 399 412 10.1677/JOE‑07‑0198 18252963
    [Google Scholar]
  56. Ling Z Lopez-Dee ZP Cottell C Regulation of mRNA translation is a novel mechanism for phthalate toxicity. PLoS ONE 2016 11 12 e0167914 10.1371/journal.pone.0167914
    [Google Scholar]
  57. Moscardi A.C. Irioda A.C. Mogharbel B.F. Milhorini S.S. Ferreira J.S. Santos S.G. Martino Andrade A.J. Guiloski I.C. Exposure to the plasticizer diisopentyl phthalate can cause Vero cell line death. Food Chem. Toxicol. 2024 186 114521 10.1016/j.fct.2024.114521 38369054
    [Google Scholar]
  58. Visser N. Silva A.V. Tarvainen I. Damdimopoulos A. Davey E. Roos K. Björvang R.D. Kallak T.K. Lager S. Lavogina D. Laws M. Piltonen T. Salumets A. Flaws J.A. Öberg M. Velthut-Meikas A. Damdimopoulou P. Olovsson M. Epidemiologically relevant phthalates affect human endometrial cells in vitro through cell specific gene expression changes related to the cytoskeleton and mitochondria. Reprod. Toxicol. 2024 128 108660 10.1016/j.reprotox.2024.108660 38992643
    [Google Scholar]
  59. Panagiotou E.M. Exposure to the phthalate metabolite MEHP impacts survival and growth of human ovarian follicles. in vitro Toxicol. 2024 505 153815 10.1016/j.tox.2024.153815
    [Google Scholar]
  60. Chen F.P. Chien M.H. Lee C.H. The no-observed-adverse-effect level of phthalates promotes proliferation and cell cycle progression in normal human breast cells. Taiwan. J. Obstet. Gynecol. 2023 62 6 874 883 10.1016/j.tjog.2023.06.001 38008508
    [Google Scholar]
  61. Hsieh T.H. Tsai C.F. Hsu C.Y. Kuo P.L. Lee J.N. Chai C.Y. Hou M.F. Chang C.C. Long C.Y. Ko Y.C. Tsai E.M. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells. Toxicol. Sci. 2012 128 2 365 376 10.1093/toxsci/kfs163 22552774
    [Google Scholar]
  62. Ge R.S. Chen G.R. Dong Q. Akingbemi B. Sottas C.M. Santos M. Sealfon S.C. Bernard D.J. Hardy M.P. Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats. J. Androl. 2007 28 4 513 520 10.2164/jandrol.106.001909 17287459
    [Google Scholar]
  63. Piché C.D. Sauvageau D. Vanlian M. Erythropel H.C. Robaire B. Leask R.L. Effects of di-(2-ethylhexyl) phthalate and four of its metabolites on steroidogenesis in MA-10 cells. Ecotoxicol. Environ. Saf. 2012 79 108 115 10.1016/j.ecoenv.2011.12.008 22236953
    [Google Scholar]
  64. Scarano W.R. Toledo F.C. Guerra M.T. Campos S.G.P. Júnior L.A.J. Felisbino S.L. Anselmo-Franci J.A. Taboga S.R. Kempinas W.D.G. Long-term effects of developmental exposure to di-n-butyl-phthalate (DBP) on rat prostate: Proliferative and inflammatory disorders and a possible role of androgens. Toxicology 2009 262 3 215 223 10.1016/j.tox.2009.06.011 19549552
    [Google Scholar]
  65. Zhu M. Wu J. Ma X. Huang C. Wu R. Zhu W. Li X. Liang Z. Deng F. Zhu J. Xie W. Yang X. Jiang Y. Wang S. Geng S. Xie C. Zhong C. Butyl benzyl phthalate promotes prostate cancer cell proliferation through miR-34a downregulation. Toxicol. in vitro 2019 54 82 88 10.1016/j.tiv.2018.09.007 30243731
    [Google Scholar]
  66. Li X. Jiang L. Cheng L. Chen H. Dibutyl phthalate-induced neurotoxicity in the brain of immature and mature rat offspring. Brain Dev. 2014 36 8 653 660 10.1016/j.braindev.2013.09.002 24075507
    [Google Scholar]
  67. Hlisníková H. Petrovičová I. Kolena B. Šidlovská M. Sirotkin A. Effects and mechanisms of phthalates’ action on reproductive processes and reproductive health: A literature review. Int. J. Environ. Res. Public Health 2020 17 18 6811 10.3390/ijerph17186811 32961939
    [Google Scholar]
  68. Baralić K. Živančević K. Javorac D. Djordjevic A.B. Multi-strain probiotic ameliorated toxic effects of phthalates and bisphenol A mixture in Wistar rats. Food Chem. Toxicol. 2020 143 111540 10.1016/j.fct.2020.111540 32645469
    [Google Scholar]
  69. Pereira C. Mapuskar K. Rao C.V. Chronic toxicity of diethyl phthalate in male Wistar rats—A dose–response study. Regul. Toxicol. Pharmacol. 2006 45 2 169 177 10.1016/j.yrtph.2006.04.006 16750591
    [Google Scholar]
  70. Araki A. Mitsui T. Miyashita C. Nakajima T. Naito H. Ito S. Sasaki S. Cho K. Ikeno T. Nonomura K. Kishi R. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: The Hokkaido study on environment and children’s health. PLoS One 2014 9 10 109039 10.1371/journal.pone.0109039 25296284
    [Google Scholar]
  71. Borch J. Metzdorff S.B. Vinggaard A.M. Brokken L. Dalgaard M. Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology 2006 223 1-2 144 155 10.1016/j.tox.2006.03.015 16690193
    [Google Scholar]
  72. Curi T.Z. Passoni M.T. Lima Tolouei S.E. de Araújo Ramos A.T. França de Almeira S.C. Scinskas A.B.A.F. Romano R.M. de Oliveira J.M. Spercoski K.M. Carvalho dos Santos A. Dalsenter P.R. Koch H.M. Martino-Andrade A.J. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol. Sci. 2024 197 1 1 15 10.1093/toxsci/kfad102 37788136
    [Google Scholar]
  73. Waterman S.J. Ambroso J.L. Keller L.H. Trimmer G.W. Nikiforov A.I. Harris S.B. Developmental toxicity of di-isodecyl and di-isononyl phthalates in rats. Reprod. Toxicol. 1999 13 2 131 136 10.1016/S0890‑6238(99)00002‑7 10213520
    [Google Scholar]
  74. Ding Y. Gao K. Liu Y. Mao G. Chen K. Qiu X. Zhao T. Yang L. Feng W. Wu X. Transcriptome analysis revealed the mechanism of the metabolic toxicity and susceptibility of di-(2-ethylhexyl)phthalate on adolescent male ICR mice with type 2 diabetes mellitus. Arch. Toxicol. 2019 93 11 3183 3206 10.1007/s00204‑019‑02590‑8 31606821
    [Google Scholar]
  75. Li L. Huang L. Lei R. Zhang P. Yang Y. Liu H. Zhang Y. DEHP and DBP, common phthalates, induce glucose metabolism disorders in rats via oxidative damage of PI3K/Akt/GLUT4 signaling. Environ. Pollut. 2024 341 122948 10.1016/j.envpol.2023.122948 37977363
    [Google Scholar]
  76. Mariana M. Lorigo M. Feiteiro J. Castelo-Branco M. Soares A.M. Cairrao E. Adverse cardiovascular effects of long-term exposure to diethyl phthalate in the rat aorta. Chemosphere 2023 340 139904 10.1016/j.chemosphere.2023.139904 37611763
    [Google Scholar]
  77. Kumar N. Sharan S. Srivastava S. Roy P. Assessment of estrogenic potential of diethyl phthalate in female reproductive system involving both genomic and non-genomic actions. Reprod. Toxicol. 2014 49 12 26 10.1016/j.reprotox.2014.06.008 24994688
    [Google Scholar]
  78. Zhao J. Ren S. Liu C. Huo L. Liu Z. Zhai L. Di-(2-Ethylhexyl) phthalate increases obesity-induced damage to the male reproductive system in mice. Oxid. Med. Cell. Longev. 2018 2018 1 1861984 10.1155/2018/1861984 29887939
    [Google Scholar]
  79. Posnack N.G. Swift L.M. Kay M.W. Lee N.H. Sarvazyan N. Phthalate exposure changes the metabolic profile of cardiac muscle cells. Environ. Health Perspect. 2012 120 9 1243 1251 10.1289/ehp.1205056 22672789
    [Google Scholar]
  80. Tamm C. Ceccatelli S. Mechanistic insight into neurotoxicity induced by developmental insults. Biochem. Biophys. Res. Commun. 2017 482 3 408 418 10.1016/j.bbrc.2016.10.087 28212724
    [Google Scholar]
  81. Kruger T Long M Jorgensen B Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor. Toxicology 2008 246 2-3 112 123 10.1016/j.tox.2007.12.028 18294747
    [Google Scholar]
  82. Barouki R Coumoul X Salguero PMF The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 2007 581 19 3608 3615 10.1016/j.febslet.2007.03.046 17412325
    [Google Scholar]
  83. DeBartolo D. Jayatilaka S. Yan Siu N. Rose M. Ramos R.L. Betz A.J. Perinatal exposure to benzyl butyl phthalate induces alterations in neuronal development/maturation protein expression, estrogen responses, and fear conditioning in rodents. Behav. Pharmacol. 2016 27 1 77 82 10.1097/FBP.0000000000000190 26376073
    [Google Scholar]
  84. Zhou J. Cai Z.H. Xing K.Z. Potential mechanisms of phthalate ester embryotoxicity in the abalone Haliotis diversicolor supertexta. Environ. Pollut. 2011 159 5 1114 1122 10.1016/j.envpol.2011.02.016 21377254
    [Google Scholar]
  85. Agus H.H. Sümer S. Erkoç F. Toxicity and molecular effects of di-n-butyl phthalate (DBP) on CYP1A, SOD, and GPx in Cyprinus carpio (common carp). Environ. Monit. Assess. 2015 187 7 423 10.1007/s10661‑015‑4622‑3 26065888
    [Google Scholar]
  86. Yang Z. Zhang X. Cai Z. Toxic effects of several phthalate esters on the embryos and larvae of abalone Haliotis diversicolor supertexta. Chin. J. Oceanol. Limnol. 2009 27 2 395 399 10.1007/s00343‑009‑9103‑5
    [Google Scholar]
  87. Yang Z. Wu B. Chen Q. Pan J. Wang Z. Wang W. Di-butyl phthalate induces apoptosis in Ctenopharyngodon idellus kidney cells through oxidative stress injury. Fish Shellfish Immunol. 2025 160 110207 10.1016/j.fsi.2025.110207 39984004
    [Google Scholar]
  88. Uren-Webster T.M. Lewis C. Filby A.L. Paull G.C. Santos E.M. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquat. Toxicol. 2010 99 3 360 369 10.1016/j.aquatox.2010.05.015 20561692
    [Google Scholar]
  89. Chen H. Chen K. Qiu X. Xu H. Mao G. Zhao T. Feng W. Okeke E.S. Wu X. Yang L. The reproductive toxicity and potential mechanisms of combined exposure to dibutyl phthalate and diisobutyl phthalate in male zebrafish (Danio rerio). Chemosphere 2020 258 127238 10.1016/j.chemosphere.2020.127238 32563064
    [Google Scholar]
  90. Chen H. Feng W. Chen K. Qiu X. Xu H. Mao G. Zhao T. Ding Y. Wu X. Transcriptomic analysis reveals potential mechanisms of toxicity in a combined exposure to dibutyl phthalate and diisobutyl phthalate in zebrafish (Danio rerio) ovary. Aquat. Toxicol. 2019 216 105290 10.1016/j.aquatox.2019.105290 31518775
    [Google Scholar]
  91. Ahmadivand S. Farahmand H. Mirvaghefi A. Eagderi S. Zargar A. Effect of anti androgenic endocrine disruptors (DEHP and Butachlor) on immunoglobin M (IgM) and leukocytes count of male rainbow trout (Onchorhynchus mykiss). Bull. Environ. Contam. Toxicol. 2015 94 6 695 700 10.1007/s00128‑015‑1503‑y 25708297
    [Google Scholar]
  92. Sruthi M. Raibeemol K.P. Chitra K.C. Involvement of dibutyl phthalate on male reproductive toxicity in the freshwater fish Pseudetroplus maculatus (Bloch, 1795). J. Appl. Aquacult. 2021 33 3 221 245 10.1080/10454438.2020.1742268
    [Google Scholar]
  93. Mu X. Huang Y. Li J. Yang K. Yang W. Shen G. Li X. Lei Y. Pang S. Wang C. Li X. Li Y. New insights into the mechanism of phthalate-induced developmental effects. Environ. Pollut. 2018 241 674 683 10.1016/j.envpol.2018.05.095 29902750
    [Google Scholar]
  94. Adeogun A.O. Ibor O.R. Imiuwa M.E. Omogbemi E.D. Chukwuka A.V. Omiwole R.A. Arukwe A. Endocrine disruptor responses in African sharptooth catfish (Clarias gariepinus) exposed to di-(2-ethylhexyl)-phthalate. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2018 213 7 18 10.1016/j.cbpc.2018.07.001 30033399
    [Google Scholar]
  95. Zhou J. Chen B. Cai Z. Metabolomics-based approach for assessing the toxicity mechanisms of dibutyl phthalate to abalone (Haliotis diversicolor supertexta). Environ. Sci. Pollut. Res. Int. 2015 22 7 5092 5099 10.1007/s11356‑014‑3859‑7 25416503
    [Google Scholar]
  96. Buerger A.N. Schmidt J. Chase A. Paixao C. Patel T.N. Brumback B.A. Kane A.S. Martyniuk C.J. Bisesi J.H. Jr Examining the responses of the zebrafish (Danio rerio) gastrointestinal system to the suspected obesogen diethylhexyl phthalate. Environ. Pollut. 2019 245 1086 1094 10.1016/j.envpol.2018.11.032 30682743
    [Google Scholar]
  97. Dong X. Qiu X. Meng S. Xu H. Wu X. Yang M. Proteomic profile and toxicity pathway analysis in zebrafish embryos exposed to bisphenol A and di-n-butyl phthalate at environmentally relevant levels. Chemosphere 2018 193 313 320 10.1016/j.chemosphere.2017.11.042 29145093
    [Google Scholar]
  98. Jee J.H. Koo J.G. Keum Y.H. Park K.H. Choi S.H. Kang J.C. Effects of dibutyl phthalate and di-ethylhexyl phthalate on acetylcholinesterase activity in bagrid catfish, Pseudobagrus fulvidraco (Richardson). J. Appl. Ichthyology 2009 25 6 771 775 10.1111/j.1439‑0426.2009.01331.x
    [Google Scholar]
  99. Ghorpade N. Mehta V. Khare M. Sinkar P. Krishnan S. Rao C.V. Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala. Ecotoxicol. Environ. Saf. 2002 53 2 255 258 10.1006/eesa.2002.2212 12568461
    [Google Scholar]
  100. Li P.C. Li X.N. Du Z.H. Wang H. Yu Z.R. Li J.L. Di (2-ethyl hexyl) phthalate (DEHP)-induced kidney injury in quail (Coturnix japonica) via inhibiting HSF1/HSF3-dependent heat shock response. Chemosphere 2018 209 981 988 10.1016/j.chemosphere.2018.06.158 30114749
    [Google Scholar]
  101. Zhao Y. Fan J.H. Luo Y. Talukder M. Li X.N. Zuo Y.Z. Li J.L. Di-(2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in quail (Coturnix japonica) via suppression of the heat shock response. Chemosphere 2019 228 685 693 10.1016/j.chemosphere.2019.04.172 31063915
    [Google Scholar]
  102. Yu L. Li H.X. Guo J.Y. Huang Y.Q. Wang H. Talukder M. Li J.L. Di (2-ethyl hexyl) phthalate (DEHP)-induced spleen toxicity in quail (Coturnix japonica) via disturbing Nrf2-mediated defense response. Environ. Pollut. 2019 251 984 989 10.1016/j.envpol.2019.05.061 31234266
    [Google Scholar]
  103. Li X.N. Li H.X. Yang T.N. Li X.W. Huang Y.Q. Zhu S.Y. Li J.L. Di-(2-ethylhexyl) phthalate induced developmental abnormalities of the ovary in quail (Coturnix japonica) via disruption of the hypothalamic-pituitary-ovarian axis. Sci. Total Environ. 2020 741 140293 10.1016/j.scitotenv.2020.140293 32610232
    [Google Scholar]
  104. Liu X. Yang J. Gan Z. Wang H. Hu Z. Liu J. Ran D. Effects of Mono-2-ethylhexyl Phthalate on the Neural Transmission of PNs in Drosophila Antennal Lobe. Neurotox. Res. 2021 39 5 1430 1439 10.1007/s12640‑021‑00386‑2 34191265
    [Google Scholar]
  105. Zhang Q. Hao L.C. Hong Y. Exposure evaluation of diisononyl phthalate in the adults of Drosophila melanogaster: Potential risks in fertility, lifespan, behavior, and modes of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020 238 108847 10.1016/j.cbpc.2020.108847 32781294
    [Google Scholar]
  106. Chen M.Y. Liu H.P. Cheng J. Chiang S.Y. Liao W.P. Lin W.Y. Transgenerational impact of DEHP on body weight of Drosophila. Chemosphere 2019 221 493 499 10.1016/j.chemosphere.2018.12.193 30660905
    [Google Scholar]
  107. Williams M.J. Wiemerslage L. Gohel P. Kheder S. Kothegala L.V. Schiöth H.B. Dibutyl phthalate exposure disrupts evolutionarily conserved insulin and glucagon-like signaling in drosophila males. Endocrinology 2016 157 6 2309 2321 10.1210/en.2015‑2006 27100621
    [Google Scholar]
  108. Cao H. Wiemerslage L. Marttila P.S.K. Williams M.J. Schiöth H.B. Bis-(2-ethylhexyl) Phthalate increases insulin expression and lipid levels in Drosophila melanogaster. Basic Clin. Pharmacol. Toxicol. 2016 119 3 309 316 10.1111/bcpt.12587 27009472
    [Google Scholar]
  109. Li S.G. Huang X. Zhang X.W. Xu S.H. Effects of diethylhexyl phthalate on lipid peroxidation and the life-span in Drosophila melanogaster. Chin. J. Prev. Med 2005 39 2 111 114 15842832
    [Google Scholar]
  110. Ran D. Cai S. Wu H. Gu H. Di (2-ethylhexyl) phthalate modulates cholinergic mini-presynaptic transmission of projection neurons in Drosophila antennal lobe. Food Chem. Toxicol. 2012 50 9 3291 3297 10.1016/j.fct.2012.03.070 22490667
    [Google Scholar]
  111. Gaur K. Varshney H. Subhan I. Fatima J. Jyoti S. Siddique Y.H. Evaluation of Bis(2-ethylhexyl) phthalate toxicity on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg. Food Chem. Toxicol. 2024 184 114425 10.1016/j.fct.2023.114425 38160779
    [Google Scholar]
  112. Liu X. Gao L. Li X. Liu Y. Lou X. Yang M. Wu W. Liu X. DEHP and DINP accelerate aging effects in male and female of Drosophila melanogaster depend on AKT/FOXO pathway. Toxicol. in vitro 2024 95 105742 10.1016/j.tiv.2023.105742 38016509
    [Google Scholar]
  113. Xu Y. Agrawal S. Cook T.J. Knipp G.T. Di-(2-ethylhexyl)-phthalate affects lipid profiling in fetal rat brain upon maternal exposure. Arch. Toxicol. 2007 81 1 57 62 10.1007/s00204‑006‑0143‑8 16951938
    [Google Scholar]
  114. Mapuskar K. Pereira C. Rao C.V. Dose-dependent sub-chronic toxicity of diethyl phthalate in female Swiss mice. Pestic. Biochem. Physiol. 2007 87 2 156 163 10.1016/j.pestbp.2006.07.005
    [Google Scholar]
  115. Saillenfait A.M. Gallissot F. Sabaté J.P. Evaluation of the developmental toxicity of diallyl phthalate administered orally to rats. Food Chem. Toxicol. 2008 46 6 2150 2156 10.1016/j.fct.2008.02.012 18375032
    [Google Scholar]
  116. Li Y. Zhuang M. Li T. Shi N. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. J. Appl. Toxicol. 2009 29 7 603 611 10.1002/jat.1447 19533667
    [Google Scholar]
  117. Eveillard A. Lasserre F. de Tayrac M. Polizzi A. Claus S. Canlet C. Mselli-Lakhal L. Gotardi G. Paris A. Guillou H. Martin P.G. Pineau T. Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach. Toxicol. Appl. Pharmacol. 2009 236 3 282 292 10.1016/j.taap.2009.02.008 19245819
    [Google Scholar]
  118. Wu S. Zhu J. Li Y. Lin T. Gan L. Yuan X. Xiong J. Liu X. Xu M. Zhao D. Ma C. Li X. Wei G. Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice. Basic Clin. Pharmacol. Toxicol. 2010 106 2 118 123 10.1111/j.1742‑7843.2009.00483.x 19912166
    [Google Scholar]
  119. Liu X. He D.W. Zhang D.Y. Lin T. Wei G.H. Di(2-ethylhexyl) phthalate (DEHP) increases transforming growth factor-β1 expression in fetal mouse genital tubercles. J. Toxicol. Environ. Health A 2008 71 19 1289 1294 10.1080/15287390802114915 18686198
    [Google Scholar]
  120. López-Carrillo L. Hernández-Ramírez R.U. Calafat A.M. Torres-Sánchez L. Galván-Portillo M. Needham L.L. Ruiz-Ramos R. Cebrián M.E. Exposure to phthalates and breast cancer risk in northern Mexico. Environ. Health Perspect. 2010 118 4 539 544 10.1289/ehp.0901091 20368132
    [Google Scholar]
  121. Saillenfait A.M. Roudot A.C. Gallissot F. Sabaté J.P. Prenatal developmental toxicity studies on di-n-heptyl and di-n-octyl phthalates in Sprague-Dawley rats. Reprod. Toxicol. 2011 32 3 268 276 10.1016/j.reprotox.2011.08.001 21907788
    [Google Scholar]
  122. Smith C.A. MacDonald A. Holahan M.R. Acute postnatal exposure to di(2-ethylhexyl) phthalate adversely impacts hippocampal development in the male rat. Neuroscience 2011 193 100 108 10.1016/j.neuroscience.2011.06.082 21782900
    [Google Scholar]
  123. Dobrzyńska M.M. Tyrkiel E.J. Pachocki K.A. Developmental toxicity in mice following paternal exposure to Di-N-butyl-phthalate (DBP). Biomed. Environ. Sci. 2011 24 5 569 578 22108425
    [Google Scholar]
  124. Zhou D. Wang H. Zhang J. Gao X. Zhao W. Zheng Y. Di-n-butyl phthalate (DBP) exposure induces oxidative damage in testes of adult rats. Syst Biol Reprod Med 2010 56 6 413 419 10.3109/19396368.2010.509902 20883123
    [Google Scholar]
  125. Inada H. Chihara K. Yamashita A. Miyawaki I. Fukuda C. Tateishi Y. Kunimatsu T. Kimura J. Funabashi H. Miyano T. Evaluation of ovarian toxicity of mono-(2-ethylhexyl) phthalate (MEHP) using cultured rat ovarian follicles. J. Toxicol. Sci. 2012 37 3 483 490 10.2131/jts.37.483 22687988
    [Google Scholar]
  126. Krüger T. Cao Y. Kjærgaard S.K. Knudsen L.E. Bonefeld-Jørgensen E.C. Effects of phthalates on the human corneal endothelial cell line B4G12. Int. J. Toxicol. 2012 31 4 364 371 10.1177/1091581812449660 22723514
    [Google Scholar]
  127. Mankidy R. Wiseman S. Ma H. Giesy J.P. Biological impact of phthalates. Toxicol. Lett. 2013 217 1 50 58 10.1016/j.toxlet.2012.11.025 23220035
    [Google Scholar]
  128. Saillenfait A.M. Gallissot F. Sabaté J.P. Remy A. Prenatal developmental toxicity studies on diundecyl and ditridecyl phthalates in Sprague-Dawley rats. Reprod. Toxicol. 2013 37 49 55 10.1016/j.reprotox.2013.01.004 23376823
    [Google Scholar]
  129. Chen X. Xu S. Tan T. Lee S. Cheng S. Lee F. Xu S. Ho K. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. Public Health 2014 11 3 3156 3168 10.3390/ijerph110303156 24637910
    [Google Scholar]
  130. Zhao X. Gao Y. Qi M. Toxicity of phthalate esters exposure to carp (Cyprinus carpio) and antioxidant response by biomarker. Ecotoxicology 2014 23 4 626 632 10.1007/s10646‑014‑1194‑x 24468924
    [Google Scholar]
  131. Li X. Fang E.F. Scheibye-Knudsen M. Cui H. Qiu L. Li J. He Y. Huang J. Bohr V.A. Ng T.B. Guo H. Di-(2-ethylhexyl) phthalate inhibits DNA replication leading to hyperPARylation, SIRT1 attenuation and mitochondrial dysfunction in the testis. Sci. Rep. 2014 4 1 6434 10.1038/srep06434 25242624
    [Google Scholar]
  132. Oblezue N Naduka R Bright C Oblalo MB Okoye CI Attamah NG Uchendu N Toxicity of diethyl phthalate on Clarias gariepinus fingerlings. Afr. J. Biotechnol. 2014 13 7 884 896
    [Google Scholar]
  133. Chen F.P. Chien M.H. Lower concentrations of phthalates induce proliferation in human breast cancer cells. Climacteric 2014 17 4 377 384 10.3109/13697137.2013.865720 24228746
    [Google Scholar]
  134. Kim S.M. Yoo J.A. Baek J.M. Cho K.H. Diethyl phthalate exposure is associated with embryonic toxicity, fatty liver changes, and hypolipidemia via impairment of lipoprotein functions. Toxicol. in vitro 2015 30 1 383 393 10.1016/j.tiv.2015.09.026 26423653
    [Google Scholar]
  135. Aly H.A. Hassan M.H. Beshbishy H.A.E. Alahdal A.M. Osman A.M.M. Dibutyl phthalate induces oxidative stress and impairs spermatogenesis in adult rat. Toxicol. Ind. Health 2015 1 11 10.1177/0748233714566877 25614580
    [Google Scholar]
  136. Farzanehfar V. Naderi N. Kobarfard F. Faizi M. Determination of dibutyl phthalate neurobehavioral toxicity in mice. Food Chem. Toxicol. 2016 94 221 226 10.1016/j.fct.2016.05.006 27311797
    [Google Scholar]
  137. Wang R. Xu X. Zhu Q. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice. Chemosphere 2016 144 1771 1779 10.1016/j.chemosphere.2015.10.062 26524146
    [Google Scholar]
  138. Komada M. Gendai Y. Kagawa N. Nagao T. Prenatal exposure to di(2-ethylhexyl) phthalate impairs development of the mouse neocortex. Toxicol. Lett. 2016 259 69 79 10.1016/j.toxlet.2016.07.019 27472966
    [Google Scholar]
  139. Herrero Ó. Planelló R. Morcillo G. The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae. Chemosphere 2016 144 1874 1884 10.1016/j.chemosphere.2015.10.051 26539713
    [Google Scholar]
  140. Ahbab M.A. Güven C. Koçkaya E.A. Barlas N. Comparative developmental toxicity evaluation of di- n -hexyl phthalate and dicyclohexyl phthalate in rats. Toxicol. Ind. Health 2017 33 9 696 716 10.1177/0748233717711868 28854868
    [Google Scholar]
  141. Ma T. Zhou W. Chen L. Wu L. Christie P. Zhang H. Luo Y. Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels. PLoS One 2017 12 3 0173957 10.1371/journal.pone.0173957 28319143
    [Google Scholar]
  142. Ma Y. Guo Y. Wu S. Lv Z. Zhang Q. Xie X. Ke Y. Analysis of toxicity effects of Di-(2-ethylhexyl) phthalate exposure on human bronchial epithelial 16HBE cells. Cytotechnology 2018 70 1 119 128 10.1007/s10616‑017‑0111‑6 28689280
    [Google Scholar]
  143. Kismali G. Yurdakok-Dikmen B. Kuzukiran O. Arslan P. Filazi A. Phthalate induced toxicity in prostate cancer cell lines and effects of alpha lipoic acid. Bratisl. Med. J. 2017 118 8 460 466 10.4149/BLL_2017_089 29050483
    [Google Scholar]
  144. Gardner ST Wood AT Lester R Onkst PE Assessing differences in toxicity and teratogenicity of three phthalates, diethyl phthalate, di-n-propyl phthalate, and di-n-butyl phthalate, using Xenopus laevis embryos. J. Toxicol. Environ. Health A 2016 79 2 71 82 10.1080/15287394.2015.1106994 26730679
    [Google Scholar]
  145. Valenzuela-Leon P. Dobrinski I. Exposure to phthalate esters induces an autophagic response in male germ cells. Environ. Epigenet. 2017 3 3 dvx010 10.1093/eep/dvx010 29492312
    [Google Scholar]
  146. Gaitantzi H. Hakenberg P. Theobald J. Heinlein H. Cai C. Loff S. Wölfl S. Ebert M.P. Breitkopf-Heinlein K. Subotic U. Di (2-Ethylhexyl) phthalate and its role in developing cholestasis. J. Pediatr. Gastroenterol. Nutr. 2018 66 2 e28 e35 10.1097/MPG.0000000000001813 29095348
    [Google Scholar]
  147. Tang X. Wu S. Shen L. Wei Y. Cao X. Wang Y. Long C. Zhou Y. Li D. Huang F. Liu B. Wei G. Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity through Nrf2-mediated Notch1 signaling pathway in Sprague–Dawley rats. Environ. Toxicol. 2018 33 7 720 728 10.1002/tox.22559 29663635
    [Google Scholar]
  148. Yin J. Liu R. Jian Z. Yang D. Pu Y. Yin L. Wang D. Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018 163 298 306 10.1016/j.ecoenv.2018.07.066 30056344
    [Google Scholar]
  149. Li J. Qian X. Zhao H. Zhou Y. Xu S. Li Y. Xiang L. Shi J. Xia W. Cai Z. Determinants of exposure levels, metabolism, and health risks of phthalates among pregnant women in Wuhan, China. Ecotoxicol. Environ. Saf. 2019 184 109657 10.1016/j.ecoenv.2019.109657 31526923
    [Google Scholar]
  150. Choi J.S. Analysis of toxicity in endoetrial cells exposed phthalate. Korean J. Clin. Lab. Sci. 2019 51 1 86 92 10.15324/kjcls.2019.51.1.86
    [Google Scholar]
  151. Cunha C. Paulo J. Faria M. Kaufmann M. Cordeiro N. Ecotoxicological and biochemical effects of environmental concentrations of the plastic-bond pollutant dibutyl phthalate on Scenedesmus sp. Aquat. Toxicol. 2019 215 105281 10.1016/j.aquatox.2019.105281 31446302
    [Google Scholar]
  152. Li S. Chi Z. Li W. in vitro toxicity of dimethyl phthalate to human erythrocytes: From the aspects of antioxidant and immune functions. Environ. Pollut. 2019 253 239 245 10.1016/j.envpol.2019.07.014 31319240
    [Google Scholar]
  153. Atia T. Abdel-Gawad S. Pulmonary toxicity induced by exposure to phthalates, an experimental study. Inhal. Toxicol. 2019 31 9-10 376 383 10.1080/08958378.2019.1695025 31777295
    [Google Scholar]
  154. Li R. Xing Q. Wu X. Zhang L. Tang M. Tang J. Wang J. Han P. Wang S. Wang W. Zhang W. Zhou G. Qin Z. Di-n-butyl phthalate epigenetically induces reproductive toxicity via the PTEN/AKT pathway. Cell Death Dis. 2019 10 4 307 10.1038/s41419‑019‑1547‑8 30952838
    [Google Scholar]
  155. Shi Y.Q. Fu G.Q. Zhao J. Cheng S.Z. Li Y. Yi L.N. Li Z. Zhang L. Zhang Z.B. Dai J. Zhang D.Y. Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats. Toxicol. Ind. Health 2019 35 3 228 238 10.1177/0748233718824911 30755103
    [Google Scholar]
  156. Song P. Gao J. Li X. Zhang C. Zhu L. Wang J. Wang J. Phthalate induced oxidative stress and DNA damage in earthworms (Eisenia fetida). Environ. Int. 2019 129 10 17 10.1016/j.envint.2019.04.074 31102950
    [Google Scholar]
  157. Jergensen T. Cusmano D. Roy N.M. Di-butyl phthalate (DBP) induces craniofacial defects during embryonic development in zebrafish. Ecotoxicology 2019 28 8 995 1002 10.1007/s10646‑019‑02100‑7 31463621
    [Google Scholar]
  158. Park C.G. Sung B. Ryu C.S. Kim Y.J. Mono-(2-ethylhexyl) phthalate induces oxidative stress and lipid accumulation in zebrafish liver cells. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020 230 108704 10.1016/j.cbpc.2020.108704 31927120
    [Google Scholar]
  159. Yang L. Yang B. Lu D. Peng Z. Ren Z. Fang K. Liu S. Wang L. Zhou J. Dong Q. The dynamic assessment of toxicity and pathological process of DEHP in germ cells of male Sprague Dawley rats. Reprod. Biol. 2020 20 4 465 473 10.1016/j.repbio.2020.07.005 32792216
    [Google Scholar]
  160. Park J.D. Habeebu S.S.M. Klaassen C.D. Testicular toxicity of di-(2-ethylhexyl)phthalate in young Sprague–Dawley rats. Toxicology 2002 171 2-3 105 115 10.1016/S0300‑483X(01)00567‑4 11836017
    [Google Scholar]
  161. Yen P.L. How C.M. Hsiu-Chuan Liao V. Early-life and chronic exposure to di(2-ethylhexyl) phthalate enhances amyloid-β toxicity associated with an autophagy-related gene in Caenorhabditis elegans Alzheimer’s disease models. Chemosphere 2021 273 128594 10.1016/j.chemosphere.2020.128594 33066971
    [Google Scholar]
  162. Hu J. Jiang K. Tang X. Liu H. Zhang H. Yang X. Nie X. Luo H. Chronic exposure to di-n-butyl phthalate causes reproductive toxicity in zebrafish. J. Appl. Toxicol. 2020 40 12 1694 1703 10.1002/jat.4030 32627227
    [Google Scholar]
  163. Ganguly S. Das B.K. Adhikari A. Nag S.K. Insights into the toxic impact of long-term exposure to diethyl phthalate on commercially important species Catla (Labeo catla). Environ. Sci. Eur. 2025 37 1 12 10.1186/s12302‑024‑01048‑8
    [Google Scholar]
  164. Chi Z. Liu J. Tan S. Lin H. Wu W. Li W. Revealing the toxicity of dimethyl phthalate (DMP) to the oxygen-carrying function of red blood cells (RBCs): The iron release mechanism. Chemosphere 2021 263 128017 10.1016/j.chemosphere.2020.128017 32841881
    [Google Scholar]
  165. Li J. Qu M. Wang M. Yue Y. Chen Z. Liu R. Bu Y. Li Y. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans. J. Environ. Sci. 2021 105 1 10 10.1016/j.jes.2020.12.016 34130826
    [Google Scholar]
  166. Faheem M. Zahid Z. Ferreira N.G.C. Toxicity assessment of dibutyl phthalate in grass carp: An integrated biomarker approach. Pak. Vet. J. 2021 41 3 365 371 10.29261/pakvetj/2021.031
    [Google Scholar]
  167. Fu X. Han H. Li Y. Xu B. Dai W. Zhang Y. Zhou F. Ma H. Pei X. Di-(2-ethylhexyl) phthalate exposure induces female reproductive toxicity and alters the intestinal microbiota community structure and fecal metabolite profile in mice. Environ. Toxicol. 2021 36 6 1226 1242 10.1002/tox.23121 33665894
    [Google Scholar]
  168. Wu C. Mao G. Ji X. Chen Y. Geng X. Okeke E.S. Ding Y. Yang L. Wu X. Feng W. Neurodevelopmental toxicity and mechanism of action of monoethylhexyl phthalate (MEHP) in the developing zebrafish (Danio rerio). Aquat. Toxicol. 2025 279 107230 10.1016/j.aquatox.2024.107230 39752782
    [Google Scholar]
  169. Ducroq S. Grange-Messent V. Mhaouty-Kodja S. Exposure to low doses of phthalates in male rodents: Effects on reproductive and cognitive behaviors. Neuroendocrinology 2023 113 12 1215 1231 10.1159/000534836 37903467
    [Google Scholar]
  170. Su H.Y. Lai C.S. Lee K.H. Chiang Y.W. Chen C.C. Hsu P.C. Prenatal exposure to low-dose di-(2-ethylhexyl) phthalate (DEHP) induces potentially hepatic lipid accumulation and fibrotic changes in rat offspring. Ecotoxicol. Environ. Saf. 2024 269 115776 10.1016/j.ecoenv.2023.115776 38056127
    [Google Scholar]
  171. Lee J. Chang S.H. Cho Y.H. Kim J.S. Kim H. Zaheer J. Lee G. Choi K. Yoon Y.S. Kim Y.A. Prenatal to peripubertal exposure to Di(2-ethylhexyl) phthalate induced endometrial atrophy and fibrosis in female mice. Ecotoxicol. Environ. Saf. 2024 269 115798 10.1016/j.ecoenv.2023.115798 38086261
    [Google Scholar]
  172. Poopal R.K. Zhang J. Zhao R. Ramesh M. Ren Z. Biochemical and behavior effects induced by diheptyl phthalate (DHpP) and Diisodecyl phthalate (DIDP) exposed to zebrafish. Chemosphere 2020 252 126498 10.1016/j.chemosphere.2020.126498 32197170
    [Google Scholar]
  173. Ambe K. Sakakibara Y. Sakabe A. Makino H. Ochibe T. Tohkin M. Comparison of the developmental/reproductive toxicity and hepatotoxicity of phthalate esters in rats using an open toxicity data source. J. Toxicol. Sci. 2019 44 4 245 255 10.2131/jts.44.245 30944278
    [Google Scholar]
  174. Boll M. Geiger R. Junghare M. Schink B. Microbial degradation of phthalates: Biochemistry and environmental implications. Environ. Microbiol. Rep. 2020 12 1 3 15 10.1111/1758‑2229.12787 31364812
    [Google Scholar]
  175. Cartwright C.D. Thompson I.P. Burns R.G. Degradation and impact of phthalate plasticizers on soil microbial communities. Environ. Toxicol. Chem. 2000 19 5 1253 1261 10.1002/etc.5620190506
    [Google Scholar]
  176. Roslev P. Madsen P.L. Thyme J.B. Henriksen K. Degradation of phthalate and Di-(2-Ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil. Appl. Environ. Microbiol. 1998 64 12 4711 4719 10.1128/AEM.64.12.4711‑4719.1998 9835553
    [Google Scholar]
  177. Yuan S.Y. Liu C. Liao C.S. Chang B.V. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 2002 49 10 1295 1299 10.1016/S0045‑6535(02)00495‑2 12489726
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501391099250926071958
Loading
/content/journals/cbiot/10.2174/0122115501391099250926071958
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Phthalates ; oxidative stress ; toxicity ; exposure ; experimental models ; metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test