Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Phthalates (PAEs) are the major source of concern because they are commonly used plasticizers in various plastic products and can make their way into the environment. Mostly, phthalate metabolites are released in the urine. In many research studies, it has been observed that some metabolites of phthalates are more harmful than the parental compounds and can be used as biomarkers for the study of phthalate toxicity. Despite some inconsistencies, the present review describes the exposure of phthalates to children, older people, and aquatic life. The studies carried out on the toxic effects of different types of phthalates on various experimental models have been reviewed. The review also summarises the interaction between mechanisms of action involved in the toxicity induced by various PAEs. The literature search has been carried out using PubMed, Science Direct, Scopus, and Google Scholar databases. The studies available on the toxicity of phthalates from 1982 to 2024 have been considered for the review.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501391099250926071958
2025-10-06
2025-12-20
Loading full text...

Full text loading...

References

  1. PechtM.G. AliI. CarlsonA. Phthalates in electronics: The risks and the alternatives.IEEE Access201799113
    [Google Scholar]
  2. PoopalR.K. RameshM. MaruthappanV. Babu RajendranR. Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio.Toxicol. Res.20176450552010.1039/C7TX00084G30090519
    [Google Scholar]
  3. KastnerJ. CooperD.G. MarićM. DoddP. YargeauV. Aqueous leaching of di-2-ethylhexyl phthalate and “green” plasticizers from poly(vinyl chloride).Sci. Total Environ.201243235736410.1016/j.scitotenv.2012.06.01422750182
    [Google Scholar]
  4. ChatonnetP. BoutouS. PlanaA. Contamination of wines and spirits by phthalates: Types of contaminants present, contamination sources and means of prevention.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.20143191605161510.1080/19440049.2014.94194725099435
    [Google Scholar]
  5. WangD.C. ChenT.J. LinM.L. JhongY.C. ChenS.C. Exercise prevents the increased anxiety-like behavior in lactational di-(2-ethylhexyl) phthalate-exposed female rats in late adolescence by improving the regulation of hypothalamus-pituitary-adrenal axis.Horm. Behav.201466467468410.1016/j.yhbeh.2014.09.01025251977
    [Google Scholar]
  6. LiangD.W. ZhangT. FangH.H.P. HeJ. Phthalates biodegradation in the environment.Appl. Microbiol. Biotechnol.200880218319810.1007/s00253‑008‑1548‑518592233
    [Google Scholar]
  7. SerranoS.E. BraunJ. TrasandeL. DillsR. SathyanarayanaS. Phthalates and diet: A review of the food monitoring and epidemiology data.Environ. Health20141314310.1186/1476‑069X‑13‑4324894065
    [Google Scholar]
  8. StaplesC.A. PetersonD.R. ParkertonT.F. AdamsW.J. The environmental fate of phthalate esters: A literature review.Chemosphere199735466774910.1016/S0045‑6535(97)00195‑1
    [Google Scholar]
  9. SaillenfaitA.M. SabatéJ.P. GallissotF. Diisobutyl phthalate impairs the androgen-dependent reproductive development of the male rat.Reprod. Toxicol.200826210711510.1016/j.reprotox.2008.07.00618706996
    [Google Scholar]
  10. ParksL.G. OstbyJ.S. LambrightC.R. AbbottB.D. KlinefelterG.R. BarlowN.J. GrayL.E.Jr The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat.Toxicol. Sci.200058233934910.1093/toxsci/58.2.33911099646
    [Google Scholar]
  11. GrayL.E.Jr OstbyJ. FurrJ. PriceM. VeeramachaneniD.N. ParksL. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat.Toxicol. Sci.200058235036510.1093/toxsci/58.2.35011099647
    [Google Scholar]
  12. SkakkebækN.E. JørgensenN. MainK.M. MeytsE.R-D. LeffersH. AnderssonA.M. JuulA. CarlsenE. MortensenG.K. JensenT.K. ToppariJ. Is human fecundity declining?Int. J. Androl.200629121110.1111/j.1365‑2605.2005.00573.x16466518
    [Google Scholar]
  13. RomaniF. TropeaA. ScarinciE. FedericoA. Dello RussoC. LisiL. CatinoS. LanzoneA. ApaR. Endocrine disruptors and human reproductive failure: The in vitro effect of phthalates on human luteal cells.Fertil. Steril.2014102383183710.1016/j.fertnstert.2014.05.04125016925
    [Google Scholar]
  14. MiodovnikA. EdwardsA. BellingerD.C. HauserR. Developmental neurotoxicity of ortho-phthalate diesters: Review of human and experimental evidence.Neurotoxicology20144111212210.1016/j.neuro.2014.01.00724486776
    [Google Scholar]
  15. HeudorfU. Mersch-SundermannV. AngererJ. Phthalates: Toxicology and exposure.Int. J. Hyg. Environ. Health2007210562363410.1016/j.ijheh.2007.07.01117889607
    [Google Scholar]
  16. FennellT.R. KrolW.L. SumnerS.C.J. SnyderR.W. Pharmacokinetics of dibutylphthalate in pregnant rats.Toxicol. Sci.200482240741810.1093/toxsci/kfh29415456918
    [Google Scholar]
  17. ZhuY. WanY. ZhangB. ZhouA. HuoW. WuC. LiuH. JiangY. ChenZ. JiangM. PengY. XuS. XiaW. LiY. Relationship between maternal phthalate exposure and offspring size at birth.Sci. Total Environ.20186121072107810.1016/j.scitotenv.2017.08.20728892847
    [Google Scholar]
  18. CalafatA.M. YeX. SilvaM.J. KuklenyikZ. NeedhamL.L. Human exposure assessment to environmental chemicals using biomonitoring.Int. J. Androl.200629116617110.1111/j.1365‑2605.2005.00570.x16466536
    [Google Scholar]
  19. PanT.L. WangP.W. AljuffaliI.A. HungY.Y. LinC.F. FangJ.Y. Dermal toxicity elicited by phthalates: Evaluation of skin absorption, immunohistology, and functional proteomics.Food Chem. Toxicol.20146510511410.1016/j.fct.2013.12.03324384410
    [Google Scholar]
  20. LatiniG. Potential hazards of exposure to di-(2-ethylhexyl)-phthalate in babies. a review.Neonatology200078426927610.1159/00001427811093005
    [Google Scholar]
  21. SeyoumA. PradhanA. Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna.Sci. Total Environ.201965496997710.1016/j.scitotenv.2018.11.15830453266
    [Google Scholar]
  22. GkrillasA. DirvenH. PapadopoulouE. Exposure estimates of phthalates and DINCH from foods and personal care products in comparison with biomonitoring data in 24-hour urine from the Norwegian EuroMix biomonitoring study.Environ. Int.202115510659810.1016/j.envint.2021.10659833957536
    [Google Scholar]
  23. GuoY. WuQ. KannanK. Phthalate metabolites in urine from China, and implications for human exposures.Environ. Int.201137589389810.1016/j.envint.2011.03.00521477864
    [Google Scholar]
  24. Toxicological profile for diethyl phthalate (DEP).1995Available from: http://www.atsdr.cde.gov/toxprofiles/tp73.html
  25. Toxicological profile for Di(2-Ethylhexyl) phthalate (DEHP).2002Available from: http://www.atsdr.cde.gov/toxprofiles/tp9. html
  26. CalafatA.M. McKeeR.H. Integrating biomonitoring exposure data into the risk assessment process: Phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case study.Environ. Health Perspect.2006114111783178910.1289/ehp.905917107868
    [Google Scholar]
  27. RusynI. PetersJ.M. CunninghamM.L. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver.Crit. Rev. Toxicol.200636545947910.1080/1040844060077906516954067
    [Google Scholar]
  28. KochH.M. BoltH.M. PreussR. AngererJ. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP.Arch. Toxicol.200579736737610.1007/s00204‑004‑0642‑415700144
    [Google Scholar]
  29. FrederiksenH. SkakkebaekN.E. AnderssonA.M. Metabolism of phthalates in humans.Mol. Nutr. Food Res.200751789991110.1002/mnfr.20060024317604388
    [Google Scholar]
  30. KumarV. SharmaN. MaitraS.S. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F.Biotechnol. Rep.20171511010.1016/j.btre.2017.04.00228580302
    [Google Scholar]
  31. SilvaM.J. ReidyJ.A. PreauJ.L.Jr SamandarE. NeedhamL.L. CalafatA.M. Measurement of eight urinary metabolites of di(2-ethylhexyl) phthalate as biomarkers for human exposure assessment.Biomarkers200611111310.1080/1354750050038286816484133
    [Google Scholar]
  32. KochH.M. BoltH.M. Di AngererJ. (2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labeled DEHP.Arch. Toxicol.20057813130
    [Google Scholar]
  33. ZhangY.J. GuoJ.L. XueJ. BaiC.L. GuoY. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment.Environ. Pollut.202129111810610.1016/j.envpol.2021.11810634520948
    [Google Scholar]
  34. SilvaM.J. SamandarE. CalafatA.M. YeX. Identification of di-2-ethylhexyl terephthalate (DEHTP) metabolites using human liver microsomes for biomonitoring applications.Toxicol. in vitro 201529471672110.1016/j.tiv.2015.02.00225687528
    [Google Scholar]
  35. McKeeR.H. El-HawariM. StoltzM. PallasF. LingtonA.W. Absorption, disposition and metabolism of di-isononyl phthalate (DINP) in F-344 rats.J. Appl. Toxicol.200222529330210.1002/jat.86112355558
    [Google Scholar]
  36. GaoD. LiZ. WangH. LiangH. An overview of phthalate acid ester pollution in China over the last decade: Environmental occurrence and human exposure.Sci. Total Environ.20186451400140910.1016/j.scitotenv.2018.07.09330248862
    [Google Scholar]
  37. SunY. ShenJ. ZengL. YangD. ShaoS. WangJ. WeiJ. XiongJ. ChenJ. Role of autophagy in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis in mouse Leydig cells.Environ. Pollut.2018243Pt A56357210.1016/j.envpol.2018.08.08930216888
    [Google Scholar]
  38. SunG. LiuK. Developmental toxicity and cardiac effects of butyl benzyl phthalate in zebrafish embryos.Aquat. Toxicol.201719216517010.1016/j.aquatox.2017.09.02028961509
    [Google Scholar]
  39. FosterP.M.D. MylchreestE. GaidoK.W. SarM. Effects of phthalate esters on the developing reproductive tract of male rats.Hum. Reprod. Update20017323123510.1093/humupd/7.3.23111392369
    [Google Scholar]
  40. ToppariJ. VirtanenH.E. MainK.M. SkakkebaekN.E. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): Environmental connection.Birth Defects Res. A Clin. Mol. Teratol.2010881091091910.1002/bdra.2070720865786
    [Google Scholar]
  41. YangW. TanW. ZhengJ. ZhangB. LiH. LiX. MEHP promotes the proliferation of cervical cancer via GPER mediated activation of Akt.Eur. J. Pharmacol.2018824111610.1016/j.ejphar.2018.01.04029382535
    [Google Scholar]
  42. WittassekM. HegerW. KochH.M. BeckerK. AngererJ. Kolossa-GehringM. Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children – A comparison of two estimation models based on urinary DEHP metabolite levels.Int. J. Hyg. Environ. Health20072101354210.1016/j.ijheh.2006.11.00917185035
    [Google Scholar]
  43. YuanK. ZhaoB. LiX.W. HuG.X. SuY. ChuY. AkingbemiB.T. LianQ.Q. GeR.S. Effects of phthalates on 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase 3 activities in human and rat testes.Chem. Biol. Interact.2012195318018810.1016/j.cbi.2011.12.00822214983
    [Google Scholar]
  44. Lovekamp-SwanT. DavisB.J. Mechanisms of phthalate ester toxicity in the female reproductive system.Environ. Health Perspect.2003111213914510.1289/ehp.565812573895
    [Google Scholar]
  45. SicińskaP. MokraK. WozniakK. MichałowiczJ. BukowskaB. Genotoxic risk assessment and mechanism of DNA damage induced by phthalates and their metabolites in human peripheral blood mononuclear cells.Sci. Rep.2021111165810.1038/s41598‑020‑79932‑533462290
    [Google Scholar]
  46. BerriosC.A.R. VélezC. ZayasB. Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6 human lymphoblasts cells.Toxicol. in vitro 20112582010201610.1016/j.tiv.2011.08.00121864672
    [Google Scholar]
  47. GeschwindD.H. Genetics of autism spectrum disorders.Trends Cogn. Sci.201115940941610.1016/j.tics.2011.07.00321855394
    [Google Scholar]
  48. TestaC. NutiF. HayekJ. De FeliceC. ChelliM. RoveroP. LatiniG. PapiniA.M. Di-(2-ethylhexyl) phthalate and autism spectrum disorders.ASN Neuro201244AN2012001510.1042/AN2012001522537663
    [Google Scholar]
  49. SteinT.P. SchluterM.D. SteerR.A. MingX. Autism and phthalate metabolite glucuronidation.J. Autism Dev. Disord.201343112677268510.1007/s10803‑013‑1822‑y23575644
    [Google Scholar]
  50. MinatoyaM. KishiR. A review of Recent Studies on Bisphenol A and Phthaltes exposure and child Neurodevelopment. Environmental Exposure and Epidemiological Studies On Material and child.Health2020183585
    [Google Scholar]
  51. DrakeA.J. TangJ.I. NyirendaM.J. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease.Clin. Sci.2007113521923210.1042/CS2007010717663659
    [Google Scholar]
  52. DavisE.P. HeadK. BussC. SandmanC.A. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood.Psychoneuroendocrinology201775566310.1016/j.psyneuen.2016.10.00527771566
    [Google Scholar]
  53. NakajinS. ShinodaS. OhnoS. NakazawaH. MakinoT. Effect of phthalate esters and alkylphenols on steroidogenesis in human adrenocortical H295R cells.Environ. Toxicol. Pharmacol.200110310311010.1016/S1382‑6689(01)00089‑821782564
    [Google Scholar]
  54. KleinsasserN.H. KastenbauerE.R. WeissacherH. MuenzenriederR.K. HarréusU.A. Phthalates demonstrate genotoxicity on human mucosa of the upper aerodigestive tract.Environ. Mol. Mutagen.200035191210.1002/(SICI)1098‑2280(2000)35:1<9::AID‑EM2>3.0.CO;2‑110692222
    [Google Scholar]
  55. Buteau-LozanoH. VelascoG. CristofariM. BalaguerP. Perrot-ApplanatM. Xenoestrogens modulate vascular endothelial growth factor secretion in breast cancer cells through an estrogen receptor-dependent mechanism.J. Endocrinol.2008196239941210.1677/JOE‑07‑019818252963
    [Google Scholar]
  56. LingZ Lopez-DeeZP CottellC Regulation of mRNA translation is a novel mechanism for phthalate toxicity.PLoS ONE20161112e016791410.1371/journal.pone.0167914
    [Google Scholar]
  57. MoscardiA.C. IriodaA.C. MogharbelB.F. MilhoriniS.S. FerreiraJ.S. SantosS.G. Martino AndradeA.J. GuiloskiI.C. Exposure to the plasticizer diisopentyl phthalate can cause Vero cell line death.Food Chem. Toxicol.202418611452110.1016/j.fct.2024.11452138369054
    [Google Scholar]
  58. VisserN. SilvaA.V. TarvainenI. DamdimopoulosA. DaveyE. RoosK. BjörvangR.D. KallakT.K. LagerS. LavoginaD. LawsM. PiltonenT. SalumetsA. FlawsJ.A. ÖbergM. Velthut-MeikasA. DamdimopoulouP. OlovssonM. Epidemiologically relevant phthalates affect human endometrial cells in vitro through cell specific gene expression changes related to the cytoskeleton and mitochondria.Reprod. Toxicol.202412810866010.1016/j.reprotox.2024.10866038992643
    [Google Scholar]
  59. PanagiotouE.M. Exposure to the phthalate metabolite MEHP impacts survival and growth of human ovarian follicles. in vitro Toxicol.202450515381510.1016/j.tox.2024.153815
    [Google Scholar]
  60. ChenF.P. ChienM.H. LeeC.H. The no-observed-adverse-effect level of phthalates promotes proliferation and cell cycle progression in normal human breast cells.Taiwan. J. Obstet. Gynecol.202362687488310.1016/j.tjog.2023.06.00138008508
    [Google Scholar]
  61. HsiehT.H. TsaiC.F. HsuC.Y. KuoP.L. LeeJ.N. ChaiC.Y. HouM.F. ChangC.C. LongC.Y. KoY.C. TsaiE.M. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells.Toxicol. Sci.2012128236537610.1093/toxsci/kfs16322552774
    [Google Scholar]
  62. GeR.S. ChenG.R. DongQ. AkingbemiB. SottasC.M. SantosM. SealfonS.C. BernardD.J. HardyM.P. Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats.J. Androl.200728451352010.2164/jandrol.106.00190917287459
    [Google Scholar]
  63. PichéC.D. SauvageauD. VanlianM. ErythropelH.C. RobaireB. LeaskR.L. Effects of di-(2-ethylhexyl) phthalate and four of its metabolites on steroidogenesis in MA-10 cells.Ecotoxicol. Environ. Saf.20127910811510.1016/j.ecoenv.2011.12.00822236953
    [Google Scholar]
  64. ScaranoW.R. ToledoF.C. GuerraM.T. CamposS.G.P. JúniorL.A.J. FelisbinoS.L. Anselmo-FranciJ.A. TabogaS.R. KempinasW.D.G. Long-term effects of developmental exposure to di-n-butyl-phthalate (DBP) on rat prostate: Proliferative and inflammatory disorders and a possible role of androgens.Toxicology2009262321522310.1016/j.tox.2009.06.01119549552
    [Google Scholar]
  65. ZhuM. WuJ. MaX. HuangC. WuR. ZhuW. LiX. LiangZ. DengF. ZhuJ. XieW. YangX. JiangY. WangS. GengS. XieC. ZhongC. Butyl benzyl phthalate promotes prostate cancer cell proliferation through miR-34a downregulation.Toxicol. in vitro 201954828810.1016/j.tiv.2018.09.00730243731
    [Google Scholar]
  66. LiX. JiangL. ChengL. ChenH. Dibutyl phthalate-induced neurotoxicity in the brain of immature and mature rat offspring.Brain Dev.201436865366010.1016/j.braindev.2013.09.00224075507
    [Google Scholar]
  67. HlisníkováH. PetrovičováI. KolenaB. ŠidlovskáM. SirotkinA. Effects and mechanisms of phthalates’ action on reproductive processes and reproductive health: A literature review.Int. J. Environ. Res. Public Health20201718681110.3390/ijerph1718681132961939
    [Google Scholar]
  68. BaralićK. ŽivančevićK. JavoracD. DjordjevicA.B. Multi-strain probiotic ameliorated toxic effects of phthalates and bisphenol A mixture in Wistar rats.Food Chem. Toxicol.202014311154010.1016/j.fct.2020.11154032645469
    [Google Scholar]
  69. PereiraC. MapuskarK. RaoC.V. Chronic toxicity of diethyl phthalate in male Wistar rats—A dose–response study.Regul. Toxicol. Pharmacol.200645216917710.1016/j.yrtph.2006.04.00616750591
    [Google Scholar]
  70. ArakiA. MitsuiT. MiyashitaC. NakajimaT. NaitoH. ItoS. SasakiS. ChoK. IkenoT. NonomuraK. KishiR. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: The Hokkaido study on environment and children’s health.PLoS One201491010903910.1371/journal.pone.010903925296284
    [Google Scholar]
  71. BorchJ. MetzdorffS.B. VinggaardA.M. BrokkenL. DalgaardM. Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis.Toxicology20062231-214415510.1016/j.tox.2006.03.01516690193
    [Google Scholar]
  72. CuriT.Z. PassoniM.T. Lima ToloueiS.E. de Araújo RamosA.T. França de AlmeiraS.C. ScinskasA.B.A.F. RomanoR.M. de OliveiraJ.M. SpercoskiK.M. Carvalho dos SantosA. DalsenterP.R. KochH.M. Martino-AndradeA.J. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats.Toxicol. Sci.2024197111510.1093/toxsci/kfad10237788136
    [Google Scholar]
  73. WatermanS.J. AmbrosoJ.L. KellerL.H. TrimmerG.W. NikiforovA.I. HarrisS.B. Developmental toxicity of di-isodecyl and di-isononyl phthalates in rats.Reprod. Toxicol.199913213113610.1016/S0890‑6238(99)00002‑710213520
    [Google Scholar]
  74. DingY. GaoK. LiuY. MaoG. ChenK. QiuX. ZhaoT. YangL. FengW. WuX. Transcriptome analysis revealed the mechanism of the metabolic toxicity and susceptibility of di-(2-ethylhexyl)phthalate on adolescent male ICR mice with type 2 diabetes mellitus.Arch. Toxicol.201993113183320610.1007/s00204‑019‑02590‑831606821
    [Google Scholar]
  75. LiL. HuangL. LeiR. ZhangP. YangY. LiuH. ZhangY. DEHP and DBP, common phthalates, induce glucose metabolism disorders in rats via oxidative damage of PI3K/Akt/GLUT4 signaling.Environ. Pollut.202434112294810.1016/j.envpol.2023.12294837977363
    [Google Scholar]
  76. MarianaM. LorigoM. FeiteiroJ. Castelo-BrancoM. SoaresA.M. CairraoE. Adverse cardiovascular effects of long-term exposure to diethyl phthalate in the rat aorta.Chemosphere202334013990410.1016/j.chemosphere.2023.13990437611763
    [Google Scholar]
  77. KumarN. SharanS. SrivastavaS. RoyP. Assessment of estrogenic potential of diethyl phthalate in female reproductive system involving both genomic and non-genomic actions.Reprod. Toxicol.201449122610.1016/j.reprotox.2014.06.00824994688
    [Google Scholar]
  78. ZhaoJ. RenS. LiuC. HuoL. LiuZ. ZhaiL. Di-(2-Ethylhexyl) phthalate increases obesity-induced damage to the male reproductive system in mice.Oxid. Med. Cell. Longev.201820181186198410.1155/2018/186198429887939
    [Google Scholar]
  79. PosnackN.G. SwiftL.M. KayM.W. LeeN.H. SarvazyanN. Phthalate exposure changes the metabolic profile of cardiac muscle cells.Environ. Health Perspect.201212091243125110.1289/ehp.120505622672789
    [Google Scholar]
  80. TammC. CeccatelliS. Mechanistic insight into neurotoxicity induced by developmental insults.Biochem. Biophys. Res. Commun.2017482340841810.1016/j.bbrc.2016.10.08728212724
    [Google Scholar]
  81. KrugerT LongM JorgensenB Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor.Toxicology20082462-311212310.1016/j.tox.2007.12.02818294747
    [Google Scholar]
  82. BaroukiR CoumoulX SalgueroPMF The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein.FEBS Lett.2007581193608361510.1016/j.febslet.2007.03.04617412325
    [Google Scholar]
  83. DeBartoloD. JayatilakaS. Yan SiuN. RoseM. RamosR.L. BetzA.J. Perinatal exposure to benzyl butyl phthalate induces alterations in neuronal development/maturation protein expression, estrogen responses, and fear conditioning in rodents.Behav. Pharmacol.2016271778210.1097/FBP.000000000000019026376073
    [Google Scholar]
  84. ZhouJ. CaiZ.H. XingK.Z. Potential mechanisms of phthalate ester embryotoxicity in the abalone Haliotis diversicolor supertexta.Environ. Pollut.201115951114112210.1016/j.envpol.2011.02.01621377254
    [Google Scholar]
  85. AgusH.H. SümerS. ErkoçF. Toxicity and molecular effects of di-n-butyl phthalate (DBP) on CYP1A, SOD, and GPx in Cyprinus carpio (common carp).Environ. Monit. Assess.2015187742310.1007/s10661‑015‑4622‑326065888
    [Google Scholar]
  86. YangZ. ZhangX. CaiZ. Toxic effects of several phthalate esters on the embryos and larvae of abalone Haliotis diversicolor supertexta.Chin. J. Oceanol. Limnol.200927239539910.1007/s00343‑009‑9103‑5
    [Google Scholar]
  87. YangZ. WuB. ChenQ. PanJ. WangZ. WangW. Di-butyl phthalate induces apoptosis in Ctenopharyngodon idellus kidney cells through oxidative stress injury.Fish Shellfish Immunol.202516011020710.1016/j.fsi.2025.11020739984004
    [Google Scholar]
  88. Uren-WebsterT.M. LewisC. FilbyA.L. PaullG.C. SantosE.M. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish.Aquat. Toxicol.201099336036910.1016/j.aquatox.2010.05.01520561692
    [Google Scholar]
  89. ChenH. ChenK. QiuX. XuH. MaoG. ZhaoT. FengW. OkekeE.S. WuX. YangL. The reproductive toxicity and potential mechanisms of combined exposure to dibutyl phthalate and diisobutyl phthalate in male zebrafish (Danio rerio).Chemosphere202025812723810.1016/j.chemosphere.2020.12723832563064
    [Google Scholar]
  90. ChenH. FengW. ChenK. QiuX. XuH. MaoG. ZhaoT. DingY. WuX. Transcriptomic analysis reveals potential mechanisms of toxicity in a combined exposure to dibutyl phthalate and diisobutyl phthalate in zebrafish (Danio rerio) ovary.Aquat. Toxicol.201921610529010.1016/j.aquatox.2019.10529031518775
    [Google Scholar]
  91. AhmadivandS. FarahmandH. MirvaghefiA. EagderiS. ZargarA. Effect of anti androgenic endocrine disruptors (DEHP and Butachlor) on immunoglobin M (IgM) and leukocytes count of male rainbow trout (Onchorhynchus mykiss).Bull. Environ. Contam. Toxicol.201594669570010.1007/s00128‑015‑1503‑y25708297
    [Google Scholar]
  92. SruthiM. RaibeemolK.P. ChitraK.C. Involvement of dibutyl phthalate on male reproductive toxicity in the freshwater fish Pseudetroplus maculatus (Bloch, 1795).J. Appl. Aquacult.202133322124510.1080/10454438.2020.1742268
    [Google Scholar]
  93. MuX. HuangY. LiJ. YangK. YangW. ShenG. LiX. LeiY. PangS. WangC. LiX. LiY. New insights into the mechanism of phthalate-induced developmental effects.Environ. Pollut.201824167468310.1016/j.envpol.2018.05.09529902750
    [Google Scholar]
  94. AdeogunA.O. IborO.R. ImiuwaM.E. OmogbemiE.D. ChukwukaA.V. OmiwoleR.A. ArukweA. Endocrine disruptor responses in African sharptooth catfish (Clarias gariepinus) exposed to di-(2-ethylhexyl)-phthalate.Comp. Biochem. Physiol. C Toxicol. Pharmacol.201821371810.1016/j.cbpc.2018.07.00130033399
    [Google Scholar]
  95. ZhouJ. ChenB. CaiZ. Metabolomics-based approach for assessing the toxicity mechanisms of dibutyl phthalate to abalone (Haliotis diversicolor supertexta).Environ. Sci. Pollut. Res. Int.20152275092509910.1007/s11356‑014‑3859‑725416503
    [Google Scholar]
  96. BuergerA.N. SchmidtJ. ChaseA. PaixaoC. PatelT.N. BrumbackB.A. KaneA.S. MartyniukC.J. BisesiJ.H.Jr Examining the responses of the zebrafish (Danio rerio) gastrointestinal system to the suspected obesogen diethylhexyl phthalate.Environ. Pollut.20192451086109410.1016/j.envpol.2018.11.03230682743
    [Google Scholar]
  97. DongX. QiuX. MengS. XuH. WuX. YangM. Proteomic profile and toxicity pathway analysis in zebrafish embryos exposed to bisphenol A and di-n-butyl phthalate at environmentally relevant levels.Chemosphere201819331332010.1016/j.chemosphere.2017.11.04229145093
    [Google Scholar]
  98. JeeJ.H. KooJ.G. KeumY.H. ParkK.H. ChoiS.H. KangJ.C. Effects of dibutyl phthalate and di-ethylhexyl phthalate on acetylcholinesterase activity in bagrid catfish, Pseudobagrus fulvidraco (Richardson).J. Appl. Ichthyology200925677177510.1111/j.1439‑0426.2009.01331.x
    [Google Scholar]
  99. GhorpadeN. MehtaV. KhareM. SinkarP. KrishnanS. RaoC.V. Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala.Ecotoxicol. Environ. Saf.200253225525810.1006/eesa.2002.221212568461
    [Google Scholar]
  100. LiP.C. LiX.N. DuZ.H. WangH. YuZ.R. LiJ.L. Di (2-ethyl hexyl) phthalate (DEHP)-induced kidney injury in quail (Coturnix japonica) via inhibiting HSF1/HSF3-dependent heat shock response.Chemosphere201820998198810.1016/j.chemosphere.2018.06.15830114749
    [Google Scholar]
  101. ZhaoY. FanJ.H. LuoY. TalukderM. LiX.N. ZuoY.Z. LiJ.L. Di-(2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in quail (Coturnix japonica) via suppression of the heat shock response.Chemosphere201922868569310.1016/j.chemosphere.2019.04.17231063915
    [Google Scholar]
  102. YuL. LiH.X. GuoJ.Y. HuangY.Q. WangH. TalukderM. LiJ.L. Di (2-ethyl hexyl) phthalate (DEHP)-induced spleen toxicity in quail (Coturnix japonica) via disturbing Nrf2-mediated defense response.Environ. Pollut.201925198498910.1016/j.envpol.2019.05.06131234266
    [Google Scholar]
  103. LiX.N. LiH.X. YangT.N. LiX.W. HuangY.Q. ZhuS.Y. LiJ.L. Di-(2-ethylhexyl) phthalate induced developmental abnormalities of the ovary in quail (Coturnix japonica) via disruption of the hypothalamic-pituitary-ovarian axis.Sci. Total Environ.202074114029310.1016/j.scitotenv.2020.14029332610232
    [Google Scholar]
  104. LiuX. YangJ. GanZ. WangH. HuZ. LiuJ. RanD. Effects of Mono-2-ethylhexyl Phthalate on the Neural Transmission of PNs in Drosophila Antennal Lobe.Neurotox. Res.20213951430143910.1007/s12640‑021‑00386‑234191265
    [Google Scholar]
  105. ZhangQ. HaoL.C. HongY. Exposure evaluation of diisononyl phthalate in the adults of Drosophila melanogaster: Potential risks in fertility, lifespan, behavior, and modes of action.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202023810884710.1016/j.cbpc.2020.10884732781294
    [Google Scholar]
  106. ChenM.Y. LiuH.P. ChengJ. ChiangS.Y. LiaoW.P. LinW.Y. Transgenerational impact of DEHP on body weight of Drosophila.Chemosphere201922149349910.1016/j.chemosphere.2018.12.19330660905
    [Google Scholar]
  107. WilliamsM.J. WiemerslageL. GohelP. KhederS. KothegalaL.V. SchiöthH.B. Dibutyl phthalate exposure disrupts evolutionarily conserved insulin and glucagon-like signaling in drosophila males.Endocrinology201615762309232110.1210/en.2015‑200627100621
    [Google Scholar]
  108. CaoH. WiemerslageL. MarttilaP.S.K. WilliamsM.J. SchiöthH.B. Bis-(2-ethylhexyl) Phthalate increases insulin expression and lipid levels in Drosophila melanogaster.Basic Clin. Pharmacol. Toxicol.2016119330931610.1111/bcpt.1258727009472
    [Google Scholar]
  109. LiS.G. HuangX. ZhangX.W. XuS.H. Effects of diethylhexyl phthalate on lipid peroxidation and the life-span in Drosophila melanogaster.Chin. J. Prev. Med200539211111415842832
    [Google Scholar]
  110. RanD. CaiS. WuH. GuH. Di (2-ethylhexyl) phthalate modulates cholinergic mini-presynaptic transmission of projection neurons in Drosophila antennal lobe.Food Chem. Toxicol.20125093291329710.1016/j.fct.2012.03.07022490667
    [Google Scholar]
  111. GaurK. VarshneyH. SubhanI. FatimaJ. JyotiS. SiddiqueY.H. Evaluation of Bis(2-ethylhexyl) phthalate toxicity on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg.Food Chem. Toxicol.202418411442510.1016/j.fct.2023.11442538160779
    [Google Scholar]
  112. LiuX. GaoL. LiX. LiuY. LouX. YangM. WuW. LiuX. DEHP and DINP accelerate aging effects in male and female of Drosophila melanogaster depend on AKT/FOXO pathway.Toxicol. in vitro 20249510574210.1016/j.tiv.2023.10574238016509
    [Google Scholar]
  113. XuY. AgrawalS. CookT.J. KnippG.T. Di-(2-ethylhexyl)-phthalate affects lipid profiling in fetal rat brain upon maternal exposure.Arch. Toxicol.2007811576210.1007/s00204‑006‑0143‑816951938
    [Google Scholar]
  114. MapuskarK. PereiraC. RaoC.V. Dose-dependent sub-chronic toxicity of diethyl phthalate in female Swiss mice.Pestic. Biochem. Physiol.200787215616310.1016/j.pestbp.2006.07.005
    [Google Scholar]
  115. SaillenfaitA.M. GallissotF. SabatéJ.P. Evaluation of the developmental toxicity of diallyl phthalate administered orally to rats.Food Chem. Toxicol.20084662150215610.1016/j.fct.2008.02.01218375032
    [Google Scholar]
  116. LiY. ZhuangM. LiT. ShiN. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure.J. Appl. Toxicol.200929760361110.1002/jat.144719533667
    [Google Scholar]
  117. EveillardA. LasserreF. de TayracM. PolizziA. ClausS. CanletC. Mselli-LakhalL. GotardiG. ParisA. GuillouH. MartinP.G. PineauT. Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach.Toxicol. Appl. Pharmacol.2009236328229210.1016/j.taap.2009.02.00819245819
    [Google Scholar]
  118. WuS. ZhuJ. LiY. LinT. GanL. YuanX. XiongJ. LiuX. XuM. ZhaoD. MaC. LiX. WeiG. Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice.Basic Clin. Pharmacol. Toxicol.2010106211812310.1111/j.1742‑7843.2009.00483.x19912166
    [Google Scholar]
  119. LiuX. HeD.W. ZhangD.Y. LinT. WeiG.H. Di(2-ethylhexyl) phthalate (DEHP) increases transforming growth factor-β1 expression in fetal mouse genital tubercles.J. Toxicol. Environ. Health A200871191289129410.1080/1528739080211491518686198
    [Google Scholar]
  120. López-CarrilloL. Hernández-RamírezR.U. CalafatA.M. Torres-SánchezL. Galván-PortilloM. NeedhamL.L. Ruiz-RamosR. CebriánM.E. Exposure to phthalates and breast cancer risk in northern Mexico.Environ. Health Perspect.2010118453954410.1289/ehp.090109120368132
    [Google Scholar]
  121. SaillenfaitA.M. RoudotA.C. GallissotF. SabatéJ.P. Prenatal developmental toxicity studies on di-n-heptyl and di-n-octyl phthalates in Sprague-Dawley rats.Reprod. Toxicol.201132326827610.1016/j.reprotox.2011.08.00121907788
    [Google Scholar]
  122. SmithC.A. MacDonaldA. HolahanM.R. Acute postnatal exposure to di(2-ethylhexyl) phthalate adversely impacts hippocampal development in the male rat.Neuroscience201119310010810.1016/j.neuroscience.2011.06.08221782900
    [Google Scholar]
  123. DobrzyńskaM.M. TyrkielE.J. PachockiK.A. Developmental toxicity in mice following paternal exposure to Di-N-butyl-phthalate (DBP).Biomed. Environ. Sci.201124556957822108425
    [Google Scholar]
  124. ZhouD. WangH. ZhangJ. GaoX. ZhaoW. ZhengY. Di-n-butyl phthalate (DBP) exposure induces oxidative damage in testes of adult rats.Syst Biol Reprod Med201056641341910.3109/19396368.2010.50990220883123
    [Google Scholar]
  125. InadaH. ChiharaK. YamashitaA. MiyawakiI. FukudaC. TateishiY. KunimatsuT. KimuraJ. FunabashiH. MiyanoT. Evaluation of ovarian toxicity of mono-(2-ethylhexyl) phthalate (MEHP) using cultured rat ovarian follicles.J. Toxicol. Sci.201237348349010.2131/jts.37.48322687988
    [Google Scholar]
  126. KrügerT. CaoY. KjærgaardS.K. KnudsenL.E. Bonefeld-JørgensenE.C. Effects of phthalates on the human corneal endothelial cell line B4G12.Int. J. Toxicol.201231436437110.1177/109158181244966022723514
    [Google Scholar]
  127. MankidyR. WisemanS. MaH. GiesyJ.P. Biological impact of phthalates.Toxicol. Lett.20132171505810.1016/j.toxlet.2012.11.02523220035
    [Google Scholar]
  128. SaillenfaitA.M. GallissotF. SabatéJ.P. RemyA. Prenatal developmental toxicity studies on diundecyl and ditridecyl phthalates in Sprague-Dawley rats.Reprod. Toxicol.201337495510.1016/j.reprotox.2013.01.00423376823
    [Google Scholar]
  129. ChenX. XuS. TanT. LeeS. ChengS. LeeF. XuS. HoK. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures.Int. J. Environ. Res. Public Health20141133156316810.3390/ijerph11030315624637910
    [Google Scholar]
  130. ZhaoX. GaoY. QiM. Toxicity of phthalate esters exposure to carp (Cyprinus carpio) and antioxidant response by biomarker.Ecotoxicology201423462663210.1007/s10646‑014‑1194‑x24468924
    [Google Scholar]
  131. LiX. FangE.F. Scheibye-KnudsenM. CuiH. QiuL. LiJ. HeY. HuangJ. BohrV.A. NgT.B. GuoH. Di-(2-ethylhexyl) phthalate inhibits DNA replication leading to hyperPARylation, SIRT1 attenuation and mitochondrial dysfunction in the testis.Sci. Rep.201441643410.1038/srep0643425242624
    [Google Scholar]
  132. OblezueN NadukaR BrightC OblaloMB OkoyeCI AttamahNG UchenduN Toxicity of diethyl phthalate on Clarias gariepinus fingerlings.Afr. J. Biotechnol.2014137884896
    [Google Scholar]
  133. ChenF.P. ChienM.H. Lower concentrations of phthalates induce proliferation in human breast cancer cells.Climacteric201417437738410.3109/13697137.2013.86572024228746
    [Google Scholar]
  134. KimS.M. YooJ.A. BaekJ.M. ChoK.H. Diethyl phthalate exposure is associated with embryonic toxicity, fatty liver changes, and hypolipidemia via impairment of lipoprotein functions.Toxicol. in vitro 201530138339310.1016/j.tiv.2015.09.02626423653
    [Google Scholar]
  135. AlyH.A. HassanM.H. BeshbishyH.A.E. AlahdalA.M. OsmanA.M.M. Dibutyl phthalate induces oxidative stress and impairs spermatogenesis in adult rat.Toxicol. Ind. Health201511110.1177/074823371456687725614580
    [Google Scholar]
  136. FarzanehfarV. NaderiN. KobarfardF. FaiziM. Determination of dibutyl phthalate neurobehavioral toxicity in mice.Food Chem. Toxicol.20169422122610.1016/j.fct.2016.05.00627311797
    [Google Scholar]
  137. WangR. XuX. ZhuQ. Pubertal exposure to di-(2-ethylhexyl) phthalate influences social behavior and dopamine receptor D2 of adult female mice.Chemosphere20161441771177910.1016/j.chemosphere.2015.10.06226524146
    [Google Scholar]
  138. KomadaM. GendaiY. KagawaN. NagaoT. Prenatal exposure to di(2-ethylhexyl) phthalate impairs development of the mouse neocortex.Toxicol. Lett.2016259697910.1016/j.toxlet.2016.07.01927472966
    [Google Scholar]
  139. HerreroÓ. PlanellóR. MorcilloG. The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae.Chemosphere20161441874188410.1016/j.chemosphere.2015.10.05126539713
    [Google Scholar]
  140. AhbabM.A. GüvenC. KoçkayaE.A. BarlasN. Comparative developmental toxicity evaluation of di- n -hexyl phthalate and dicyclohexyl phthalate in rats.Toxicol. Ind. Health201733969671610.1177/074823371771186828854868
    [Google Scholar]
  141. MaT. ZhouW. ChenL. WuL. ChristieP. ZhangH. LuoY. Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels.PLoS One2017123017395710.1371/journal.pone.017395728319143
    [Google Scholar]
  142. MaY. GuoY. WuS. LvZ. ZhangQ. XieX. KeY. Analysis of toxicity effects of Di-(2-ethylhexyl) phthalate exposure on human bronchial epithelial 16HBE cells.Cytotechnology201870111912810.1007/s10616‑017‑0111‑628689280
    [Google Scholar]
  143. KismaliG. Yurdakok-DikmenB. KuzukiranO. ArslanP. FilaziA. Phthalate induced toxicity in prostate cancer cell lines and effects of alpha lipoic acid.Bratisl. Med. J.2017118846046610.4149/BLL_2017_08929050483
    [Google Scholar]
  144. GardnerST WoodAT LesterR OnkstPE Assessing differences in toxicity and teratogenicity of three phthalates, diethyl phthalate, di-n-propyl phthalate, and di-n-butyl phthalate, using Xenopus laevis embryos.J. Toxicol. Environ. Health A2016792718210.1080/15287394.2015.110699426730679
    [Google Scholar]
  145. Valenzuela-LeonP. DobrinskiI. Exposure to phthalate esters induces an autophagic response in male germ cells.Environ. Epigenet.201733dvx01010.1093/eep/dvx01029492312
    [Google Scholar]
  146. GaitantziH. HakenbergP. TheobaldJ. HeinleinH. CaiC. LoffS. WölflS. EbertM.P. Breitkopf-HeinleinK. SuboticU. Di (2-Ethylhexyl) phthalate and its role in developing cholestasis.J. Pediatr. Gastroenterol. Nutr.2018662e28e3510.1097/MPG.000000000000181329095348
    [Google Scholar]
  147. TangX. WuS. ShenL. WeiY. CaoX. WangY. LongC. ZhouY. LiD. HuangF. LiuB. WeiG. Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity through Nrf2-mediated Notch1 signaling pathway in Sprague–Dawley rats.Environ. Toxicol.201833772072810.1002/tox.2255929663635
    [Google Scholar]
  148. YinJ. LiuR. JianZ. YangD. PuY. YinL. WangD. Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans.Ecotoxicol. Environ. Saf.201816329830610.1016/j.ecoenv.2018.07.06630056344
    [Google Scholar]
  149. LiJ. QianX. ZhaoH. ZhouY. XuS. LiY. XiangL. ShiJ. XiaW. CaiZ. Determinants of exposure levels, metabolism, and health risks of phthalates among pregnant women in Wuhan, China.Ecotoxicol. Environ. Saf.201918410965710.1016/j.ecoenv.2019.10965731526923
    [Google Scholar]
  150. ChoiJ.S. Analysis of toxicity in endoetrial cells exposed phthalate.Korean J. Clin. Lab. Sci.2019511869210.15324/kjcls.2019.51.1.86
    [Google Scholar]
  151. CunhaC. PauloJ. FariaM. KaufmannM. CordeiroN. Ecotoxicological and biochemical effects of environmental concentrations of the plastic-bond pollutant dibutyl phthalate on Scenedesmus sp.Aquat. Toxicol.201921510528110.1016/j.aquatox.2019.10528131446302
    [Google Scholar]
  152. LiS. ChiZ. LiW. in vitro toxicity of dimethyl phthalate to human erythrocytes: From the aspects of antioxidant and immune functions.Environ. Pollut.201925323924510.1016/j.envpol.2019.07.01431319240
    [Google Scholar]
  153. AtiaT. Abdel-GawadS. Pulmonary toxicity induced by exposure to phthalates, an experimental study.Inhal. Toxicol.2019319-1037638310.1080/08958378.2019.169502531777295
    [Google Scholar]
  154. LiR. XingQ. WuX. ZhangL. TangM. TangJ. WangJ. HanP. WangS. WangW. ZhangW. ZhouG. QinZ. Di-n-butyl phthalate epigenetically induces reproductive toxicity via the PTEN/AKT pathway.Cell Death Dis.201910430710.1038/s41419‑019‑1547‑830952838
    [Google Scholar]
  155. ShiY.Q. FuG.Q. ZhaoJ. ChengS.Z. LiY. YiL.N. LiZ. ZhangL. ZhangZ.B. DaiJ. ZhangD.Y. Di(2-ethylhexyl)phthalate induces reproductive toxicity via JAZF1/TR4 pathway and oxidative stress in pubertal male rats.Toxicol. Ind. Health201935322823810.1177/074823371882491130755103
    [Google Scholar]
  156. SongP. GaoJ. LiX. ZhangC. ZhuL. WangJ. WangJ. Phthalate induced oxidative stress and DNA damage in earthworms (Eisenia fetida).Environ. Int.2019129101710.1016/j.envint.2019.04.07431102950
    [Google Scholar]
  157. JergensenT. CusmanoD. RoyN.M. Di-butyl phthalate (DBP) induces craniofacial defects during embryonic development in zebrafish.Ecotoxicology2019288995100210.1007/s10646‑019‑02100‑731463621
    [Google Scholar]
  158. ParkC.G. SungB. RyuC.S. KimY.J. Mono-(2-ethylhexyl) phthalate induces oxidative stress and lipid accumulation in zebrafish liver cells.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202023010870410.1016/j.cbpc.2020.10870431927120
    [Google Scholar]
  159. YangL. YangB. LuD. PengZ. RenZ. FangK. LiuS. WangL. ZhouJ. DongQ. The dynamic assessment of toxicity and pathological process of DEHP in germ cells of male Sprague Dawley rats.Reprod. Biol.202020446547310.1016/j.repbio.2020.07.00532792216
    [Google Scholar]
  160. ParkJ.D. HabeebuS.S.M. KlaassenC.D. Testicular toxicity of di-(2-ethylhexyl)phthalate in young Sprague–Dawley rats.Toxicology20021712-310511510.1016/S0300‑483X(01)00567‑411836017
    [Google Scholar]
  161. YenP.L. HowC.M. Hsiu-Chuan LiaoV. Early-life and chronic exposure to di(2-ethylhexyl) phthalate enhances amyloid-β toxicity associated with an autophagy-related gene in Caenorhabditis elegans Alzheimer’s disease models.Chemosphere202127312859410.1016/j.chemosphere.2020.12859433066971
    [Google Scholar]
  162. HuJ. JiangK. TangX. LiuH. ZhangH. YangX. NieX. LuoH. Chronic exposure to di-n-butyl phthalate causes reproductive toxicity in zebrafish.J. Appl. Toxicol.202040121694170310.1002/jat.403032627227
    [Google Scholar]
  163. GangulyS. DasB.K. AdhikariA. NagS.K. Insights into the toxic impact of long-term exposure to diethyl phthalate on commercially important species Catla (Labeo catla).Environ. Sci. Eur.20253711210.1186/s12302‑024‑01048‑8
    [Google Scholar]
  164. ChiZ. LiuJ. TanS. LinH. WuW. LiW. Revealing the toxicity of dimethyl phthalate (DMP) to the oxygen-carrying function of red blood cells (RBCs): The iron release mechanism.Chemosphere202126312801710.1016/j.chemosphere.2020.12801732841881
    [Google Scholar]
  165. LiJ. QuM. WangM. YueY. ChenZ. LiuR. BuY. LiY. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans.J. Environ. Sci.202110511010.1016/j.jes.2020.12.01634130826
    [Google Scholar]
  166. FaheemM. ZahidZ. FerreiraN.G.C. Toxicity assessment of dibutyl phthalate in grass carp: An integrated biomarker approach.Pak. Vet. J.202141336537110.29261/pakvetj/2021.031
    [Google Scholar]
  167. FuX. HanH. LiY. XuB. DaiW. ZhangY. ZhouF. MaH. PeiX. Di-(2-ethylhexyl) phthalate exposure induces female reproductive toxicity and alters the intestinal microbiota community structure and fecal metabolite profile in mice.Environ. Toxicol.20213661226124210.1002/tox.2312133665894
    [Google Scholar]
  168. WuC. MaoG. JiX. ChenY. GengX. OkekeE.S. DingY. YangL. WuX. FengW. Neurodevelopmental toxicity and mechanism of action of monoethylhexyl phthalate (MEHP) in the developing zebrafish (Danio rerio).Aquat. Toxicol.202527910723010.1016/j.aquatox.2024.10723039752782
    [Google Scholar]
  169. DucroqS. Grange-MessentV. Mhaouty-KodjaS. Exposure to low doses of phthalates in male rodents: Effects on reproductive and cognitive behaviors.Neuroendocrinology2023113121215123110.1159/00053483637903467
    [Google Scholar]
  170. SuH.Y. LaiC.S. LeeK.H. ChiangY.W. ChenC.C. HsuP.C. Prenatal exposure to low-dose di-(2-ethylhexyl) phthalate (DEHP) induces potentially hepatic lipid accumulation and fibrotic changes in rat offspring.Ecotoxicol. Environ. Saf.202426911577610.1016/j.ecoenv.2023.11577638056127
    [Google Scholar]
  171. LeeJ. ChangS.H. ChoY.H. KimJ.S. KimH. ZaheerJ. LeeG. ChoiK. YoonY.S. KimY.A. Prenatal to peripubertal exposure to Di(2-ethylhexyl) phthalate induced endometrial atrophy and fibrosis in female mice.Ecotoxicol. Environ. Saf.202426911579810.1016/j.ecoenv.2023.11579838086261
    [Google Scholar]
  172. PoopalR.K. ZhangJ. ZhaoR. RameshM. RenZ. Biochemical and behavior effects induced by diheptyl phthalate (DHpP) and Diisodecyl phthalate (DIDP) exposed to zebrafish.Chemosphere202025212649810.1016/j.chemosphere.2020.12649832197170
    [Google Scholar]
  173. AmbeK. SakakibaraY. SakabeA. MakinoH. OchibeT. TohkinM. Comparison of the developmental/reproductive toxicity and hepatotoxicity of phthalate esters in rats using an open toxicity data source.J. Toxicol. Sci.201944424525510.2131/jts.44.24530944278
    [Google Scholar]
  174. BollM. GeigerR. JunghareM. SchinkB. Microbial degradation of phthalates: Biochemistry and environmental implications.Environ. Microbiol. Rep.202012131510.1111/1758‑2229.1278731364812
    [Google Scholar]
  175. CartwrightC.D. ThompsonI.P. BurnsR.G. Degradation and impact of phthalate plasticizers on soil microbial communities.Environ. Toxicol. Chem.20001951253126110.1002/etc.5620190506
    [Google Scholar]
  176. RoslevP. MadsenP.L. ThymeJ.B. HenriksenK. Degradation of phthalate and Di-(2-Ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil.Appl. Environ. Microbiol.199864124711471910.1128/AEM.64.12.4711‑4719.19989835553
    [Google Scholar]
  177. YuanS.Y. LiuC. LiaoC.S. ChangB.V. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments.Chemosphere200249101295129910.1016/S0045‑6535(02)00495‑212489726
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501391099250926071958
Loading
/content/journals/cbiot/10.2174/0122115501391099250926071958
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test