Skip to content
2000
image of Bio-fabrication of Gold Nanoparticles by Root Extract of Asparagus racemosus and their Potential Biomedical Applications

Abstract

Introduction

The biosynthesis of gold nanoparticles (AuNPs) is a rapidly developing field that integrates biological systems with nanotechnology to produce nanoparticles with unique properties. This study aimed to biosynthesize gold nanoparticles using root extract (popularly known as Shatavari root aqueous extract) (AR-AuNPs), to characterize the AuNPs spectrally, and to explore their potential applications.

Methods

AuNPs were synthesized using Shatavari extract, leveraging its polyphenolic content for the reduction of gold ions. The formation of nanoparticles was confirmed using UV-Vis spectroscopy, with a surface plasmon resonance peak at 550 nm. Further characterization was performed using electron microscopy to assess size and morphology, X-Ray Diffraction (XRD) to analyse the crystalline structure, Fourier-Transform Infrared Spectroscopy (FTIR) to identify functional groups, and Dynamic Light Scattering (DLS) to determine particle size and zeta potential.

Results

The bio-synthesized gold nanoparticles are spectrally characterized; the size of the gold nanoparticles is below 50 nm, and they reveal very good biomedical applications. The biosynthesized AR-AuNPs exhibited strong antioxidant activity, with the nitric oxide (NO) scavenging method proving superior to the DPPH and HO assays. While the antimicrobial activity of AR-AuNPs was limited against both Gram-positive and Gram-negative bacteria, they showed effective DNA binding activity.

Discussion

The synthesized gold nanoparticles exhibited a characteristic UV-Vis absorption peak at 550 nm, confirming their successful formation. Dynamic Light Scattering (DLS) analysis revealed an average particle size of 44.7 nm, and the zeta potential was measured at -14.3 mV, indicating moderate stability. The polyphenols present in the aqueous extract of Shatavari plant roots likely played a role in both the reduction and stabilization of the AuNPs. When tested on A549 cell lines, the AR-AuNPs demonstrated significant antiproliferative activity, with an IC value of 68.99 µM, compared to Cisplatin. However, they lacked anticancer activity against MCF-7 cell lines. The biosynthesized AR-AuNPs exhibited strong antioxidant activity, moderate antimicrobial activity, and effective DNA binding activity.

Conclusion

Biosynthesizing AuNPs using Shatavari extract is a green, sustainable method that produces nanoparticles with desirable properties for various applications. The synthesized AuNPs exhibit promising capabilities in the fields of medicine and environmental science, positioning them as valuable tools for future research. Further studies are needed to explore their potential in real-world applications.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501369882250815103341
2025-08-25
2025-10-29
Loading full text...

Full text loading...

References

  1. Hu X. Zhang Y. Ding T. Liu J. Zhao H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol. 2020 8 990 10.3389/fbioe.2020.00990 32903562
    [Google Scholar]
  2. Ramalingam V. Raja S. Sundaramahalingam S. Rajaram R. Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens. Bioorg. Chem. 2019 83 326 335 10.1016/j.bioorg.2018.10.052 30396117
    [Google Scholar]
  3. O’Neal D.P. Hirsch L.R. Halas N.J. Payne J.D. West J.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004 209 2 171 176 10.1016/j.canlet.2004.02.004 15159019
    [Google Scholar]
  4. Chen H. Kou X. Yang Z. Ni W. Wang J. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008 24 10 5233 5237 10.1021/la800305j 18435552
    [Google Scholar]
  5. Li S. Zhang L. Wang T. Li L. Wang C. Su Z. The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy. Chem. Commun. 2015 51 76 14338 14341 10.1039/C5CC05676D 26299901
    [Google Scholar]
  6. Xiao T. Huang J. Wang D. Meng T. Yang X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020 206 120210 10.1016/j.talanta.2019.120210 31514855
    [Google Scholar]
  7. Soloviev M. Nanoparticles in Biology and Medicine Humana Press 2018 906
    [Google Scholar]
  8. Jain A. Ranjan S. Dasgupta N. Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 2018 58 2 297 317 10.1080/10408398.2016.1160363 27052385
    [Google Scholar]
  9. Ingale A.G. Chaudhari A.N. Gothandam K. Ranjan S. Dasgupta N. Ramalingam C. Lichtfouse E. Nanotechnology in the Food Industry. Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World. Springer Cham 2018 10.1007/978‑3‑319‑70166‑0_3
    [Google Scholar]
  10. Al Saqr A. Khafagy E.S. Alalaiwe A. Aldawsari M.F. Alshahrani S.M. Anwer M.K. Khan S. Lila A.S.A. Arab H.H. Hegazy W.A.H. Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity. Nanomaterials 2021 11 3 808 10.3390/nano11030808 33809859
    [Google Scholar]
  11. Muniyappan N. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti-inflammatory activities. ECE 2021 Vol. 3 117 124 10.1016/j.enceco.2021.01.002
    [Google Scholar]
  12. Guliani A. Kumari A. Acharya A. Green synthesis of gold nanoparticles using aqueous leaf extract of Populus alba: Characterization, antibacterial and dye degradation activity. Int. J. Environ. Sci. Technol. 2021 18 12 4007 4018 10.1007/s13762‑020‑03065‑5
    [Google Scholar]
  13. Boruah J.S. Devi C. Hazarika U. Bhaskar Reddy P.V. Chowdhury D. Barthakur M. Kalita P. Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Advances 2021 11 45 28029 28041 10.1039/D1RA02669K 35480751
    [Google Scholar]
  14. Kalimuthu K. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem. J 2020 152 104296 10.1016/j.microc.2019.104296
    [Google Scholar]
  15. Soloviev M. Nanoparticles in biology and medicine: Methods and protocols. Springer 2012
    [Google Scholar]
  16. Lee Y.J. Ahn E.-Y. Park Y.J. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res Lett 2019 14 129 10.1186/s11671‑019‑2967‑1
    [Google Scholar]
  17. Singh R. Behera M. Kumar S. Bharagava R. Saxena G. Nano-bioremediation: An Innovative Remediation Technology for Treatment and Management of Contaminated Sites. Bioremediation of Industrial Waste for Environmental Safety. Springer Singapore 2020 10.1007/978‑981‑13‑3426‑9_7
    [Google Scholar]
  18. Mandal S.C. Kumar C.K. Mohana Lakshmi S. Therapeutic potential of Asparagus racemosus in traditional and modern medicine. J. Ethnopharmacol. 2021 267 113477
    [Google Scholar]
  19. Sharma P. Kumari A. Gupta A. Green synthesis of gold nanoparticles using medicinal plants: A review on their biomedical applications. Nanomedicine 2020 30 102285
    [Google Scholar]
  20. Verma R. Kumari R. Kumar S. Phytochemistry and pharmacology of Asparagus racemosus: A comprehensive review. Phytomedicine 2019 60 152998
    [Google Scholar]
  21. Singh J. Dutta T. Kim K.H. Biogenic gold nanoparticles: A sustainable approach for cancer therapy and antibacterial applications. J. Nanobiotechnology 2021 19 1 10
    [Google Scholar]
  22. Patel S. Goyal A. Recent developments in mushrooms as anti- cancer therapeutics: A review. 3 Biotech 2012 2 1 1 15 10.1007/s13205‑011‑0036‑2 22582152
    [Google Scholar]
  23. Bhattacharya A. Ghosh S. Dasgupta S. Antimicrobial properties of medicinal plants and their potential applications. J. Herb. Med. 2018 14 100220
    [Google Scholar]
  24. Mehta C.M. Vaya D. Dave R.H. Biological synthesis of nanoparticles and their applications in cancer therapy: A comprehensive review. Adv. Colloid Interface Sci. 2021 294 102495
    [Google Scholar]
  25. Ahmed S. Saifullah A. Ahmad M. Swami B.L. Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences 2016 9 1 1 7 10.1016/j.jrras.2015.06.006
    [Google Scholar]
  26. Raj S. Sharma V. Kumar P. Green synthesis of nanoparticles: Advances and biomedical applications. J. Control. Release 2020 326 165 181
    [Google Scholar]
  27. Mukherjee P. Roy M. Mandal B.P. Dey G.K. Mukherjee P.K. Ghatak J. Tyagi A.K. Kale S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 2008 19 7 075103 10.1088/0957‑4484/19/7/075103 21817628
    [Google Scholar]
  28. Mittal A.K. Chisti Y. Banerjee U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013 31 2 346 356 10.1016/j.biotechadv.2013.01.003 23318667
    [Google Scholar]
  29. Khan M. Khan M. Adil S.F. Green synthesis of silver nanoparticles mediated by Pulicariaglutinosa extract: Antibacterial and anticancer activities. Nanomaterials 2013 3 1 162 174
    [Google Scholar]
  30. Harikrishnan S. Navaneethan R. Rajeshkumar S. Antibacterial activity and cytotoxic effect of bisphosphonate conjugated gold nanoparticle synthesized using asparagus racemosus root extract. Int. J. Health Sci. 2022 6 S8 125 137 10.53730/ijhs.v6nS8.11502
    [Google Scholar]
  31. Subha V. Thulasimuthu E. Ilangovan R. Bactericidal action of copper nanoparticles synthesized from methanolic root extract of Asparagus racemosus. Mater. Today Proc. 2022 64 1761 1767 10.1016/j.matpr.2022.06.029
    [Google Scholar]
  32. Dharman S. Synthesis and characterisation of novel turmeric gold nanoparticles and evaluation of its antioxidant, anti-inflammatory, antibacterial activity for application in oral mucositis-an in vitro study. Int. J. Dent. Oral Sci. 2021 8 2525 2532 10.19070/2377‑8075‑21000495
    [Google Scholar]
  33. Amina M. Al Musayeib N.M. Alarfaj N.A. El-Tohamy M.F. Al-Hamoud G.A. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomaterials 2020 10 12 2453 10.3390/nano10122453 33302432
    [Google Scholar]
  34. Kabir S.R. Alam M.T. Uddin M.B. Asparagus racemosus silver chloride nanoparticles and Kaempferia rotunda mediated silver/silver chloride nanoparticles inhibit human hepatocellular and lung cancer cell lines. Biochem. Biophys. Rep. 2024 40 101818 10.1016/j.bbrep.2024.101818 39290346
    [Google Scholar]
  35. Raut Rajesh Sana Ansari Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of asparagus racemosusLinn. Adv. Mater. Lett. 2013 4 650 654 10.5185/amlett.2012.11470
    [Google Scholar]
  36. Torchilin V.P. Multifunctional nanocarriers for drug delivery in cancer. Adv. Drug Deliv. Rev. 2014 66 109 118
    [Google Scholar]
  37. Singh R. Smitha M.S. Singh S.P. The role of green-synthesized nanoparticles in antimicrobial therapy. Biotechnol. Adv. 2017 35 7 787 817
    [Google Scholar]
  38. Huang X. Jain P.K. El-Sayed I.H. El-Sayed M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008 23 3 217 228 10.1007/s10103‑007‑0470‑x 17674122
    [Google Scholar]
  39. Wang L. Hu C. Antioxidant and anti-inflammatory activity of plant-derived nanomaterials. Front. Pharmacol. 2020 11 575081
    [Google Scholar]
  40. Dinda S.C. Nanotechnology in wound healing applications. J. Drug Deliv. Sci. Technol. 2019 49 661 672
    [Google Scholar]
  41. Bahadar H. Gold nanoparticle-based biosensors for disease diagnosis. Biosens. Bioelectron. 2016 77 499 511
    [Google Scholar]
  42. Turner A.P.F. Tech.Sight. Biochemistry. Biosensors-sense and sensitivity. Science 2000 290 5495 1315 1317 10.1126/science.290.5495.1315 11185408
    [Google Scholar]
  43. Sharma V.K. Nanomaterials for water purification. Environ. Sci. Technol. 2015 49 13 7599 7613
    [Google Scholar]
  44. Kalimuthu K. Green synthesis of noble metal nanoparticles and their catalytic applications. Environ. Chem. Lett. 2018 16 1 1 16
    [Google Scholar]
  45. Raj S. Jose S. Sumod U.S. Sabitha M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied Sci. 2012 4 3 186 193 10.4103/0975‑7406.99016 22923959
    [Google Scholar]
  46. Mukherjee A. Engineered nanoparticles in agriculture: Prospects and constraints. Plant Sci. 2016 244 48 63
    [Google Scholar]
  47. Panda S. Traditional uses and medicinal potential of Shatavari (Asparagus racemosus). J. Ethnopharmacol. 2016 194 513 523
    [Google Scholar]
  48. Khaleghi S. Herbal remedies for male fertility enhancement. Phytother. Res. 2018 32 10 1712 1730
    [Google Scholar]
  49. Borrelli F. Herbal medicine for functional gastrointestinal disorders: A review. Phytother. Res. 2015 29 9 1429 1440
    [Google Scholar]
  50. Balachandran S. Anti-inflammatory effects of plant-based nanoparticles. Curr. Pharm. Des. 2017 23 11 1689 1703
    [Google Scholar]
  51. Mukherjee P.K. Neuroprotective effects of plant-derived compounds. J. Ethnopharmacol. 2018 219 76 91
    [Google Scholar]
  52. Singh P. Antioxidant and anti-aging potential of plant-based nanoparticles. J. Nanobiotechnology 2020 18 1 1 15 31898555
    [Google Scholar]
  53. Gupta R.C. Use of plant-based nanoparticles in cancer prevention and treatment. Semin. Cancer Biol. 2018 53 91 103
    [Google Scholar]
  54. Sakaray V. Rao Y.S. Naidu N.V. Green synthesis of silver nanoparticles by Acalypha indica plant extract and their approach towards multifunctional applications. Nano Biomed. Eng. 2024 16 4 665 676 10.26599/NBE.2024.9290064
    [Google Scholar]
  55. Venkanna A. Siva B. Poornima B. Rao Vadaparthi P.R. Prasad K.R. Reddy K.A. Reddy G.B.P. Babu K.S. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity. Fitoterapia 2014 95 102 108 10.1016/j.fitote.2014.03.003 24631765
    [Google Scholar]
  56. Biemer JJ Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci 1971 3 2 135 140 4575155
    [Google Scholar]
  57. Nair A.G.R. Subramanian S.S. Occurrence of diosgenin in Asparagus racemosus. Curr. Sci. 1969 17 414
    [Google Scholar]
  58. Hayes P.Y. Jahidin A.H. Lehmann R. Penman K. Kitching W. De Voss J.J. Asparinins, asparosides, curillins, curillosides and shavatarins: structural clarification with the isolation of shatavarin V, a new steroidal saponin from the root of Asparagus racemosus. Tetrahedron Lett. 2006 47 49 8683 8687 10.1016/j.tetlet.2006.10.030
    [Google Scholar]
  59. Nayak D. Pradhan S. Ashe S. Rauta P.R. Nayak B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci. 2015 457 329 338 10.1016/j.jcis.2015.07.012 26196716
    [Google Scholar]
  60. Sathiyaraj S. Suriyakala G. Dhanesh Gandhi A. Babujanarthanam R. Almaary K.S. Chen T.W. Kaviyarasu K. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J. Infect. Public Health 2021 14 12 1842 1847 10.1016/j.jiph.2021.10.007 34690096
    [Google Scholar]
  61. Scimeca M. Bischetti S. Lamsira H.K. Bonfiglio R. Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur. J. Histochem. 2018 62 1 2841 10.4081/ejh.2018.2841 29569878
    [Google Scholar]
  62. Kaszuba M. Corbett J. Watson F.M. Jones A. High-concentration zeta potential measurements using light-scattering techniques. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 2010 368 1927 4439 4451 10.1098/rsta.2010.0175 20732896
    [Google Scholar]
  63. Deb S. Patra H.K. Lahiri P. Dasgupta A.K. Chakrabarti K. Chaudhuri U. Multistability in platelets and their response to gold nanoparticles. Nanomedicine 2011 7 4 376 384 10.1016/j.nano.2011.01.007 21310267
    [Google Scholar]
  64. Benkovicova M. Vegso K. Siffalovic P. Jergel M. Luby S. Majkova E. Preparation of gold nanoparticles for plasmonic applications. Thin Solid Films 2013 543 138 141 10.1016/j.tsf.2013.01.048
    [Google Scholar]
  65. Mobed A. Hasanzadeh M. Seidi F. Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: Recent advances and challenges. RSC Advances 2021 11 55 34688 34698 10.1039/D1RA06030A 35494766
    [Google Scholar]
  66. Suleman M. Khan A. Bqi A. Kakar M.S. Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure Appl. Biol. 2018 7 4 380 388 10.19045/bspab.2018.700197
    [Google Scholar]
  67. Pomeroy S.R. Sharma S. DNA adsorption to nanoparticles: Mechanisms and applications. J. Nanosci. Nanotechnol. 2022 22 5 2846 2858
    [Google Scholar]
  68. Verma S. Yadav V. Green synthesis of gold nanoparticles using medicinal plants: Mechanism and applications in bio-nanotechnology. Environ. Nanotechnol. Monit. Manag. 2020 13 100271
    [Google Scholar]
  69. Sapsford K.E. Characterization of Nanoparticle–DNA Interactions. Nat. Nanotechnol. 2013 8 8 539 552
    [Google Scholar]
  70. Smith A.J. Patel R.K. Jones D.P. UV-Vis spectral titration as a tool for evaluating DNA binding mechanisms. JBS 2018 45 3 211 220 10.1016/j.jbs.2018.01.014
    [Google Scholar]
  71. Jones L.M. Anderson C.H. Investigation of calf Thymus DNA interaction with organic compounds using UV-Vis spectroscopy. Anal. Biochem. 2019 75 4 367 374 10.1002/ab.10192
    [Google Scholar]
  72. Brown J.T. Wang F. Clark M.P. Mechanisms of DNA binding: Intercalation and groove binding studies. Nucleic Acids Res. 2020 48 5 1245 1254 10.1093/nar/gkz123
    [Google Scholar]
  73. Lee S.H. Tan Y.H. Wu C.Z. Spectral changes in DNA-compound binding and their implications for binding efficiency. JMI 2021 53 2 85 92 10.1007/jmi.2021.01234
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501369882250815103341
Loading
/content/journals/cbiot/10.2174/0122115501369882250815103341
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: biomedical applications, nanomaterials ; TEM-SAED ; Green synthesis ; SEM-EDX ; FT-IR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test