Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Introduction

The biosynthesis of gold nanoparticles (AuNPs) is a rapidly developing field that integrates biological systems with nanotechnology to produce nanoparticles with unique properties. This study aimed to biosynthesize gold nanoparticles using root extract (popularly known as Shatavari root aqueous extract) (AR-AuNPs), to characterize the AuNPs spectrally, and to explore their potential applications.

Methods

AuNPs were synthesized using Shatavari extract, leveraging its polyphenolic content for the reduction of gold ions. The formation of nanoparticles was confirmed using UV-Vis spectroscopy, with a surface plasmon resonance peak at 550 nm. Further characterization was performed using electron microscopy to assess size and morphology, X-Ray Diffraction (XRD) to analyse the crystalline structure, Fourier-Transform Infrared Spectroscopy (FTIR) to identify functional groups, and Dynamic Light Scattering (DLS) to determine particle size and zeta potential.

Results

The bio-synthesized gold nanoparticles are spectrally characterized; the size of the gold nanoparticles is below 50 nm, and they reveal very good biomedical applications. The biosynthesized AR-AuNPs exhibited strong antioxidant activity, with the nitric oxide (NO) scavenging method proving superior to the DPPH and HO assays. While the antimicrobial activity of AR-AuNPs was limited against both Gram-positive and Gram-negative bacteria, they showed effective DNA binding activity.

Discussion

The synthesized gold nanoparticles exhibited a characteristic UV-Vis absorption peak at 550 nm, confirming their successful formation. Dynamic Light Scattering (DLS) analysis revealed an average particle size of 44.7 nm, and the zeta potential was measured at -14.3 mV, indicating moderate stability. The polyphenols present in the aqueous extract of Shatavari plant roots likely played a role in both the reduction and stabilization of the AuNPs. When tested on A549 cell lines, the AR-AuNPs demonstrated significant antiproliferative activity, with an IC value of 68.99 µM, compared to Cisplatin. However, they lacked anticancer activity against MCF-7 cell lines. The biosynthesized AR-AuNPs exhibited strong antioxidant activity, moderate antimicrobial activity, and effective DNA binding activity.

Conclusion

Biosynthesizing AuNPs using Shatavari extract is a green, sustainable method that produces nanoparticles with desirable properties for various applications. The synthesized AuNPs exhibit promising capabilities in the fields of medicine and environmental science, positioning them as valuable tools for future research. Further studies are needed to explore their potential in real-world applications.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501369882250815103341
2025-08-25
2025-12-19
Loading full text...

Full text loading...

References

  1. HuX. ZhangY. DingT. LiuJ. ZhaoH. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities.Front. Bioeng. Biotechnol.2020899010.3389/fbioe.2020.0099032903562
    [Google Scholar]
  2. RamalingamV. RajaS. SundaramahalingamS. RajaramR. Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens.Bioorg. Chem.20198332633510.1016/j.bioorg.2018.10.05230396117
    [Google Scholar]
  3. O’NealD.P. HirschL.R. HalasN.J. PayneJ.D. WestJ.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles.Cancer Lett.2004209217117610.1016/j.canlet.2004.02.00415159019
    [Google Scholar]
  4. ChenH. KouX. YangZ. NiW. WangJ. Shape- and size-dependent refractive index sensitivity of gold nanoparticles.Langmuir200824105233523710.1021/la800305j18435552
    [Google Scholar]
  5. LiS. ZhangL. WangT. LiL. WangC. SuZ. The facile synthesis of hollow Au nanoflowers for synergistic chemo-photothermal cancer therapy.Chem. Commun.20155176143381434110.1039/C5CC05676D26299901
    [Google Scholar]
  6. XiaoT. HuangJ. WangD. MengT. YangX. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications.Talanta202020612021010.1016/j.talanta.2019.12021031514855
    [Google Scholar]
  7. SolovievM. Nanoparticles in Biology and MedicineHumana Press2018906
    [Google Scholar]
  8. JainA. RanjanS. DasguptaN. RamalingamC. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues.Crit. Rev. Food Sci. Nutr.201858229731710.1080/10408398.2016.116036327052385
    [Google Scholar]
  9. IngaleA.G. ChaudhariA.N. GothandamK. RanjanS. DasguptaN. RamalingamC. LichtfouseE. Nanotechnology in the Food Industry.Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World.SpringerCham201810.1007/978‑3‑319‑70166‑0_3
    [Google Scholar]
  10. Al SaqrA. KhafagyE.S. AlalaiweA. AldawsariM.F. AlshahraniS.M. AnwerM.K. KhanS. LilaA.S.A. ArabH.H. HegazyW.A.H. Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity.Nanomaterials202111380810.3390/nano1103080833809859
    [Google Scholar]
  11. MuniyappanN. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti-inflammatory activities.ECE2021Vol. 311712410.1016/j.enceco.2021.01.002
    [Google Scholar]
  12. GulianiA. KumariA. AcharyaA. Green synthesis of gold nanoparticles using aqueous leaf extract of Populus alba: Characterization, antibacterial and dye degradation activity.Int. J. Environ. Sci. Technol.202118124007401810.1007/s13762‑020‑03065‑5
    [Google Scholar]
  13. BoruahJ.S. DeviC. HazarikaU. Bhaskar ReddyP.V. ChowdhuryD. BarthakurM. KalitaP. Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities.RSC Advances20211145280292804110.1039/D1RA02669K35480751
    [Google Scholar]
  14. Kalimuthu K. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review.Microchem. J202015210429610.1016/j.microc.2019.104296
    [Google Scholar]
  15. SolovievM. Nanoparticles in biology and medicine: Methods and protocols.Springer2012
    [Google Scholar]
  16. LeeY.J. AhnE.-Y. ParkY.J. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract.Nanoscale Res Lett20191412910.1186/s11671‑019‑2967‑1
    [Google Scholar]
  17. SinghR. BeheraM. KumarS. BharagavaR. SaxenaG. Nano-bioremediation: An Innovative Remediation Technology for Treatment and Management of Contaminated Sites.Bioremediation of Industrial Waste for Environmental Safety.SpringerSingapore202010.1007/978‑981‑13‑3426‑9_7
    [Google Scholar]
  18. MandalS.C. KumarC.K. Mohana LakshmiS. Therapeutic potential of Asparagus racemosus in traditional and modern medicine.J. Ethnopharmacol.2021267113477
    [Google Scholar]
  19. SharmaP. KumariA. GuptaA. Green synthesis of gold nanoparticles using medicinal plants: A review on their biomedical applications.Nanomedicine202030102285
    [Google Scholar]
  20. VermaR. KumariR. KumarS. Phytochemistry and pharmacology of Asparagus racemosus: A comprehensive review.Phytomedicine201960152998
    [Google Scholar]
  21. SinghJ. DuttaT. KimK.H. Biogenic gold nanoparticles: A sustainable approach for cancer therapy and antibacterial applications.J. Nanobiotechnology202119110
    [Google Scholar]
  22. PatelS. GoyalA. Recent developments in mushrooms as anti- cancer therapeutics: A review.3 Biotech20122111510.1007/s13205‑011‑0036‑222582152
    [Google Scholar]
  23. BhattacharyaA. GhoshS. DasguptaS. Antimicrobial properties of medicinal plants and their potential applications.J. Herb. Med.201814100220
    [Google Scholar]
  24. MehtaC.M. VayaD. DaveR.H. Biological synthesis of nanoparticles and their applications in cancer therapy: A comprehensive review.Adv. Colloid Interface Sci.2021294102495
    [Google Scholar]
  25. AhmedS. SaifullahA. AhmadM. SwamiB.L. IkramS. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract.J Radiation Res Appl Sci2016911710.1016/j.jrras.2015.06.006
    [Google Scholar]
  26. RajS. SharmaV. KumarP. Green synthesis of nanoparticles: Advances and biomedical applications.J. Control. Release2020326165181
    [Google Scholar]
  27. MukherjeeP. RoyM. MandalB.P. DeyG.K. MukherjeeP.K. GhatakJ. TyagiA.K. KaleS.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum.Nanotechnology200819707510310.1088/0957‑4484/19/7/07510321817628
    [Google Scholar]
  28. MittalA.K. ChistiY. BanerjeeU.C. Synthesis of metallic nanoparticles using plant extracts.Biotechnol. Adv.201331234635610.1016/j.biotechadv.2013.01.00323318667
    [Google Scholar]
  29. KhanM. KhanM. AdilS.F. Green synthesis of silver nanoparticles mediated by Pulicariaglutinosa extract: Antibacterial and anticancer activities.Nanomaterials201331162174
    [Google Scholar]
  30. HarikrishnanS. NavaneethanR. RajeshkumarS. Antibacterial activity and cytotoxic effect of bisphosphonate conjugated gold nanoparticle synthesized using asparagus racemosus root extract.Int. J. Health Sci.20226S812513710.53730/ijhs.v6nS8.11502
    [Google Scholar]
  31. SubhaV. ThulasimuthuE. IlangovanR. Bactericidal action of copper nanoparticles synthesized from methanolic root extract of Asparagus racemosus.Mater. Today Proc.2022641761176710.1016/j.matpr.2022.06.029
    [Google Scholar]
  32. DharmanS. Synthesis and characterisation of novel turmeric gold nanoparticles and evaluation of its antioxidant, anti-inflammatory, antibacterial activity for application in oral mucositis-an in vitro study.Int. J. Dent. Oral Sci.202182525253210.19070/2377‑8075‑21000495
    [Google Scholar]
  33. AminaM. Al MusayeibN.M. AlarfajN.A. El-TohamyM.F. Al-HamoudG.A. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract.Nanomaterials20201012245310.3390/nano1012245333302432
    [Google Scholar]
  34. KabirS.R. AlamM.T. UddinM.B. Asparagus racemosus silver chloride nanoparticles and Kaempferia rotunda mediated silver/silver chloride nanoparticles inhibit human hepatocellular and lung cancer cell lines.Biochem. Biophys. Rep.20244010181810.1016/j.bbrep.2024.10181839290346
    [Google Scholar]
  35. RautRajesh SanaAnsari Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of asparagus racemosusLinn.Adv. Mater. Lett.2013465065410.5185/amlett.2012.11470
    [Google Scholar]
  36. TorchilinV.P. Multifunctional nanocarriers for drug delivery in cancer.Adv. Drug Deliv. Rev.201466109118
    [Google Scholar]
  37. SinghR. SmithaM.S. SinghS.P. The role of green-synthesized nanoparticles in antimicrobial therapy.Biotechnol. Adv.2017357787817
    [Google Scholar]
  38. HuangX. JainP.K. El-SayedI.H. El-SayedM.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles.Lasers Med. Sci.200823321722810.1007/s10103‑007‑0470‑x17674122
    [Google Scholar]
  39. WangL. HuC. Antioxidant and anti-inflammatory activity of plant-derived nanomaterials.Front. Pharmacol.202011575081
    [Google Scholar]
  40. DindaS.C. Nanotechnology in wound healing applications.J. Drug Deliv. Sci. Technol.201949661672
    [Google Scholar]
  41. BahadarH. Gold nanoparticle-based biosensors for disease diagnosis.Biosens. Bioelectron.201677499511
    [Google Scholar]
  42. TurnerA.P.F. Tech.Sight. Biochemistry. Biosensors-sense and sensitivity.Science200029054951315131710.1126/science.290.5495.131511185408
    [Google Scholar]
  43. SharmaV.K. Nanomaterials for water purification.Environ. Sci. Technol.2015491375997613
    [Google Scholar]
  44. KalimuthuK. Green synthesis of noble metal nanoparticles and their catalytic applications.Environ. Chem. Lett.2018161116
    [Google Scholar]
  45. RajS. JoseS. SumodU.S. SabithaM. Nanotechnology in cosmetics: Opportunities and challenges.J. Pharm. Bioallied Sci.20124318619310.4103/0975‑7406.9901622923959
    [Google Scholar]
  46. MukherjeeA. Engineered nanoparticles in agriculture: Prospects and constraints.Plant Sci.20162444863
    [Google Scholar]
  47. PandaS. Traditional uses and medicinal potential of Shatavari (Asparagus racemosus).J. Ethnopharmacol.2016194513523
    [Google Scholar]
  48. KhaleghiS. Herbal remedies for male fertility enhancement.Phytother. Res.2018321017121730
    [Google Scholar]
  49. BorrelliF. Herbal medicine for functional gastrointestinal disorders: A review.Phytother. Res.201529914291440
    [Google Scholar]
  50. BalachandranS. Anti-inflammatory effects of plant-based nanoparticles.Curr. Pharm. Des.2017231116891703
    [Google Scholar]
  51. MukherjeeP.K. Neuroprotective effects of plant-derived compounds.J. Ethnopharmacol.20182197691
    [Google Scholar]
  52. SinghP. Antioxidant and anti-aging potential of plant-based nanoparticles.J. Nanobiotechnology202018111531898555
    [Google Scholar]
  53. GuptaR.C. Use of plant-based nanoparticles in cancer prevention and treatment.Semin. Cancer Biol.20185391103
    [Google Scholar]
  54. SakarayV. RaoY.S. NaiduN.V. Green synthesis of silver nanoparticles by Acalypha indica plant extract and their approach towards multifunctional applications.Nano Biomed. Eng.202416466567610.26599/NBE.2024.9290064
    [Google Scholar]
  55. VenkannaA. SivaB. PoornimaB. Rao VadaparthiP.R. PrasadK.R. ReddyK.A. ReddyG.B.P. BabuK.S. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity.Fitoterapia20149510210810.1016/j.fitote.2014.03.00324631765
    [Google Scholar]
  56. BiemerJJ Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method.Ann Clin Lab Sci1971321351404575155
    [Google Scholar]
  57. NairA.G.R. SubramanianS.S. Occurrence of diosgenin in Asparagus racemosus.Curr. Sci.196917414
    [Google Scholar]
  58. HayesP.Y. JahidinA.H. LehmannR. PenmanK. KitchingW. De VossJ.J. Asparinins, asparosides, curillins, curillosides and shavatarins: structural clarification with the isolation of shatavarin V, a new steroidal saponin from the root of Asparagus racemosus.Tetrahedron Lett.200647498683868710.1016/j.tetlet.2006.10.030
    [Google Scholar]
  59. NayakD. PradhanS. AsheS. RautaP.R. NayakB. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma.J. Colloid Interface Sci.201545732933810.1016/j.jcis.2015.07.01226196716
    [Google Scholar]
  60. SathiyarajS. SuriyakalaG. Dhanesh GandhiA. BabujanarthanamR. AlmaaryK.S. ChenT.W. KaviyarasuK. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles.J. Infect. Public Health202114121842184710.1016/j.jiph.2021.10.00734690096
    [Google Scholar]
  61. ScimecaM. BischettiS. LamsiraH.K. BonfiglioR. BonannoE. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis.Eur. J. Histochem.2018621284110.4081/ejh.2018.284129569878
    [Google Scholar]
  62. KaszubaM. CorbettJ. WatsonF.M. JonesA. High-concentration zeta potential measurements using light-scattering techniques.Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci.201036819274439445110.1098/rsta.2010.017520732896
    [Google Scholar]
  63. DebS. PatraH.K. LahiriP. DasguptaA.K. ChakrabartiK. ChaudhuriU. Multistability in platelets and their response to gold nanoparticles.Nanomedicine20117437638410.1016/j.nano.2011.01.00721310267
    [Google Scholar]
  64. BenkovicovaM. VegsoK. SiffalovicP. JergelM. LubyS. MajkovaE. Preparation of gold nanoparticles for plasmonic applications.Thin Solid Films201354313814110.1016/j.tsf.2013.01.048
    [Google Scholar]
  65. MobedA. HasanzadehM. SeidiF. Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: Recent advances and challenges.RSC Advances20211155346883469810.1039/D1RA06030A35494766
    [Google Scholar]
  66. SulemanM. KhanA. BqiA. KakarM.S. Antioxidants, its role in preventing free radicals and infectious diseases in human body.Pure Appl. Biol.20187438038810.19045/bspab.2018.700197
    [Google Scholar]
  67. PomeroyS.R. SharmaS. DNA adsorption to nanoparticles: Mechanisms and applications.J. Nanosci. Nanotechnol.202222528462858
    [Google Scholar]
  68. VermaS. YadavV. Green synthesis of gold nanoparticles using medicinal plants: Mechanism and applications in bio-nanotechnology.Environ. Nanotechnol. Monit. Manag.202013100271
    [Google Scholar]
  69. SapsfordK.E. Characterization of Nanoparticle–DNA Interactions.Nat. Nanotechnol.201388539552
    [Google Scholar]
  70. SmithA.J. PatelR.K. JonesD.P. UV-Vis spectral titration as a tool for evaluating DNA binding mechanisms.JBS201845321122010.1016/j.jbs.2018.01.014
    [Google Scholar]
  71. JonesL.M. AndersonC.H. Investigation of calf Thymus DNA interaction with organic compounds using UV-Vis spectroscopy.Anal. Biochem.201975436737410.1002/ab.10192
    [Google Scholar]
  72. BrownJ.T. WangF. ClarkM.P. Mechanisms of DNA binding: Intercalation and groove binding studies.Nucleic Acids Res.20204851245125410.1093/nar/gkz123
    [Google Scholar]
  73. LeeS.H. TanY.H. WuC.Z. Spectral changes in DNA-compound binding and their implications for binding efficiency.JMI2021532859210.1007/jmi.2021.01234
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501369882250815103341
Loading
/content/journals/cbiot/10.2174/0122115501369882250815103341
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomedical applications, nanomaterials; FT-IR; Green synthesis; SEM-EDX; TEM-SAED
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test