Skip to content
2000
image of Antibody-Dependent Enhancement in Flavivirus Pathogenesis: Implications for Immunity, Treatment, and Vaccine Development

Abstract

The flavivirus family belongs to antigenically closely related viruses that have been a public health concern across the globe. It is well observed that infection by specific flavivirus serotypes can confer lifelong immunity. However, there is an alarming situation of cross-reactivity between antibodies of other flaviviruses or other serotypes without cross-protection. Cross-reaction without cross-neutralising from heterologous flavivirus infection leads to antibody-dependent enhancement (ADE) of disease severity. Antibody-dependent enhancement occurs when sub-neutralising or non-neutralising antibodies generated during a primary flavivirus infection or after vaccination facilitate enhanced viral entry and replication in the host cells. The underlying mechanisms of ADE involve interactions between the antigen-antibody complexes towards the Fc receptors and the complement system. This review provides an overview of the current knowledge on ADE in flavivirus pathogenesis, emphasising the importance of understanding its implications for immune responses, therapeutics and vaccine development.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501364702250707105742
2025-07-11
2025-10-30
Loading full text...

Full text loading...

References

  1. Logan R.A.E. Quek S. Muthoni J.N. von Eicken A. Brettell L.E. Anderson E.R. Villena M.E.N. Hegde S. Patterson G.T. Heinz E. Hughes G.L. Patterson E.I. Vertical and horizontal transmission of cell fusing agent virus in Aedes aegypti. Appl. Environ. Microbiol. 2022 88 18 e01062-22 10.1128/aem.01062‑22 36036577
    [Google Scholar]
  2. Wilder-Smith A. Gubler D.J. Weaver S.C. Monath T.P. Heymann D.L. Scott T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2017 17 3 e101 e106 10.1016/S1473‑3099(16)30518‑7 28011234
    [Google Scholar]
  3. Mansfield K.L. Hernández-Triana L.M. Banyard A.C. Fooks A.R. Johnson N. Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet. Microbiol. 2017 201 85 92 10.1016/j.vetmic.2017.01.014 28284628
    [Google Scholar]
  4. Maclachlan N.J. Dubovi E.J. Fenner’s veterinary virology. Academic press 2010
    [Google Scholar]
  5. Acklin J.A. Cattle J.D. Moss A.S. Brown J.A. Foster G.A. Krysztof D. Stramer S.L. Lim J.K. Evaluating the safety of West Nile virus immunity during congenital Zika virus infection in mice. Front. Immunol. 2021 12 686411 10.3389/fimmu.2021.686411 34220838
    [Google Scholar]
  6. Garg H. Yeh R. Watts D.M. Mehmetoglu-Gurbuz T. Resendes R. Parsons B. Gonzales F. Joshi A. Enhancement of Zika virus infection by antibodies from West Nile virus seropositive individuals with no history of clinical infection. BMC Immunol. 2021 22 1 5 10.1186/s12865‑020‑00389‑2 33421988
    [Google Scholar]
  7. Santos-Peral A. Luppa F. Goresch S. Nikolova E. Zaucha M. Lehmann L. Dahlstroem F. Karimzadeh H. Thorn-Seshold J. Winheim E. Schuster E.M. Dobler G. Hoelscher M. Kümmerer B.M. Endres S. Schober K. Krug A.B. Pritsch M. Barba-Spaeth G. Rothenfusser S. Prior flavivirus immunity skews the yellow fever vaccine response to cross-reactive antibodies with potential to enhance dengue virus infection. Nat. Commun. 2024 15 1 1696 10.1038/s41467‑024‑45806‑x 38402207
    [Google Scholar]
  8. Kotaki T. Nagai Y. Yamanaka A. Konishi E. Kameoka M. Japanese encephalitis DNA vaccines with epitope modification reduce the induction of cross-reactive antibodies against dengue virus and antibody-dependent enhancement of dengue virus infection. Vaccines 2022 10 9 1411 10.3390/vaccines10091411 36146489
    [Google Scholar]
  9. Kubinski M. Beicht J. Gerlach T. Volz A. Sutter G. Rimmelzwaan G.F. Tick-borne encephalitis virus: A quest for better vaccines against a virus on the rise. Vaccines 2020 8 3 451 10.3390/vaccines8030451 32806696
    [Google Scholar]
  10. Sinha S. Singh K. Ravi Kumar Y.S. Roy R. Phadnis S. Meena V. Bhattacharyya S. Verma B. Dengue virus pathogenesis and host molecular machineries. J. Biomed. Sci. 2024 31 1 43 10.1186/s12929‑024‑01030‑9 38649998
    [Google Scholar]
  11. Kok W.M. New developments in flavivirus drug discovery. Expert Opin. Drug Discov. 2016 11 5 433 445 10.1517/17460441.2016.1160887 26966889
    [Google Scholar]
  12. Dengue and severe dengue. 2024 Available from: https://www. who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  13. Dutta S.K. Langenburg T. A perspective on current flavivirus vaccine development: A brief review. Viruses 2023 15 4 860 10.3390/v15040860 37112840
    [Google Scholar]
  14. Elong Ngono A. Chen H.W. Tang W.W. Joo Y. King K. Weiskopf D. Sidney J. Sette A. Shresta S. Protective role of cross-reactive CD8 T cells against dengue virus infection. EBioMedicine 2016 13 284 293 10.1016/j.ebiom.2016.10.006 27746192
    [Google Scholar]
  15. de A Camargo F. Adimy M. Esteva L. Métayer C. Ferreira C.P. Modeling the relationship between antibody-dependent enhancement and disease severity in secondary dengue infection. Bull. Math. Biol. 2021 83 8 85 10.1007/s11538‑021‑00919‑y 34142264
    [Google Scholar]
  16. Halstead SB Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 2003 60 421 467 10.1016/s0065‑3527(03)60011‑4 14689700
    [Google Scholar]
  17. Guo Z. Jing W. Liu J. Liu M. The global trends and regional differences in incidence of Zika virus infection and implications for Zika virus infection prevention. PLoS Negl. Trop. Dis. 2022 16 10 e0010812 10.1371/journal.pntd.0010812 36269778
    [Google Scholar]
  18. Bhagat R. Kaur G. Seth P. Molecular mechanisms of zika virus pathogenesis. Indian J. Med. Res. 2021 154 3 433 445 10.4103/ijmr.IJMR_169_20 35345069
    [Google Scholar]
  19. Sirohi D. Kuhn R.J. Zika virus structure, maturation, and receptors. J. Infect. Dis. 2017 216 Suppl. 10 S935 S944 10.1093/infdis/jix515 29267925
    [Google Scholar]
  20. Cox B.D. Stanton R.A. Schinazi R.F. Predicting Zika virus structural biology: Challenges and opportunities for intervention. Antivir. Chem. Chemother. 2015 24 3-4 118 126 10.1177/2040206616653873 27296393
    [Google Scholar]
  21. Labib B.A. Chigbu D.I. Pathogenesis and manifestations of Zika virus-associated ocular diseases. Trop. Med. Infect. Dis. 2022 7 6 106 10.3390/tropicalmed7060106 35736984
    [Google Scholar]
  22. Zhao H. Fernandez E. Dowd K.A. Speer S.D. Platt D.J. Gorman M.J. Govero J. Nelson C.A. Pierson T.C. Diamond M.S. Fremont D.H. Structural basis of Zika virus-specific antibody protection. Cell 2016 166 4 1016 1027 10.1016/j.cell.2016.07.020 27475895
    [Google Scholar]
  23. Cruz-Oliveira C. Freire J.M. Conceição T.M. Higa L.M. Castanho M.A.R.B. Da Poian A.T. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev. 2015 39 2 155 170 10.1093/femsre/fuu004 25725010
    [Google Scholar]
  24. Dai L. Song J. Lu X. Deng Y.Q. Musyoki A.M. Cheng H. Zhang Y. Yuan Y. Song H. Haywood J. Xiao H. Yan J. Shi Y. Qin C.F. Qi J. Gao G.F. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 2016 19 5 696 704 10.1016/j.chom.2016.04.013 27158114
    [Google Scholar]
  25. Taylor A. Foo S.S. Bruzzone R. Vu Dinh L. King N.J.C. Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol. Rev. 2015 268 1 340 364 10.1111/imr.12367 26497532
    [Google Scholar]
  26. Adams C. Carbaugh D.L. Shu B. Ng T.S. Castillo I.N. Bhowmik R. Segovia-Chumbez B. Puhl A.C. Graham S. Diehl S.A. Lazear H.M. Lok S. de Silva A.M. Premkumar L. Structure and neutralization mechanism of a human antibody targeting a complex Epitope on Zika virus. PLoS Pathog. 2023 19 1 e1010814 10.1371/journal.ppat.1010814 36626401
    [Google Scholar]
  27. Yen L.C. Chen H.W. Ho C.L. Lin C.C. Lin Y.L. Yang Q.W. Chiu K.C. Lien S.P. Lin R.J. Liao C.L. Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. J. Biomed. Sci. 2023 30 1 41 10.1186/s12929‑023‑00938‑y 37316861
    [Google Scholar]
  28. Halstead S.B. Nimmannitya S. Cohen S.N. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J. Biol. Med. 1970 42 5 311 328 5419206
    [Google Scholar]
  29. Roy S.K. Bhattacharjee S. Dengue virus: Epidemiology, biology, and disease aetiology. Can. J. Microbiol. 2021 67 10 687 702 10.1139/cjm‑2020‑0572 34171205
    [Google Scholar]
  30. Andrade P. Narvekar P. Montoya M. Michlmayr D. Balmaseda A. Coloma J. Harris E. Primary and secondary dengue virus infections elicit similar memory B-Cell responses, but breadth to other serotypes and cross-reactivity to Zika virus is higher in secondary dengue. J. Infect. Dis. 2020 222 4 590 600 10.1093/infdis/jiaa120 32193549
    [Google Scholar]
  31. Acosta e.g. Bartenschlager R. Paradoxical role of antibodies in dengue virus infections: Considerations for prophylactic vaccine development. Expert Rev. Vaccines 2016 15 4 467 482 10.1586/14760584.2016.1121814 26577689
    [Google Scholar]
  32. Pierson T.C. Xu Q. Nelson S. Oliphant T. Nybakken G.E. Fremont D.H. Diamond M.S. The stoichiometry of antibody- mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 2007 1 2 135 145 10.1016/j.chom.2007.03.002 18005691
    [Google Scholar]
  33. Lee W.S. Wheatley A.K. Kent S.J. DeKosky B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 2020 5 10 1185 1191 10.1038/s41564‑020‑00789‑5 32908214
    [Google Scholar]
  34. Narayan R. Tripathi S. Intrinsic ADE: The dark side of antibody dependent enhancement during dengue infection. Front. Cell. Infect. Microbiol. 2020 10 580096 10.3389/fcimb.2020.580096 33123500
    [Google Scholar]
  35. Thomas S. Smatti M.K. Ouhtit A. Cyprian F.S. Almaslamani M.A. Thani A.A. Yassine H.M. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol. Immunol. 2022 152 172 182 10.1016/j.molimm.2022.11.010 36371813
    [Google Scholar]
  36. Tran L. Radwan I. Minh L.H.N. Low S.K. Hashan M.R. Gomaa M.D. Abdelmongy M. Abdelaziz A.I. Mohamed A. Tawfik G.M. Mizukami S. Hirayama K. Huy N.T. Role of cytokines produced by T helper immune-modulators in dengue pathogenesis: A systematic review and meta-analysis. Acta Trop. 2021 216 105823 10.1016/j.actatropica.2021.105823 33421421
    [Google Scholar]
  37. Chong H.Y. Leow C.Y. Abdul Majeed A.B. Leow C.H. Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res. 2019 274 197770 10.1016/j.virusres.2019.197770 31626874
    [Google Scholar]
  38. Chan K.R. Ismail A.A. Thergarajan G. Raju C.S. Yam H.C. Rishya M. Sekaran S.D. Serological cross-reactivity among common flaviviruses. Front. Cell. Infect. Microbiol. 2022 12 975398 10.3389/fcimb.2022.975398 36189346
    [Google Scholar]
  39. Izmirly A.M. Alturki S.O. Alturki S.O. Connors J. Haddad E.K. Challenges in dengue vaccines development: Pre-existing infections and cross-reactivity. Front. Immunol. 2020 11 1055 10.3389/fimmu.2020.01055 32655548
    [Google Scholar]
  40. Halstead SB Pathogenic exploitation of Fc activity. Antibody Fc Linking Adaptive and Innate Immunity Academic Press Cambridge, Massachusetts 2014 10.1016/B978‑0‑12‑394802‑1.00019‑4
    [Google Scholar]
  41. Sarker A. Dhama N. Gupta R.D. Dengue virus neutralizing antibody: A review of targets, cross-reactivity, and antibody-dependent enhancement. Front. Immunol. 2023 14 1200195 10.3389/fimmu.2023.1200195 37334355
    [Google Scholar]
  42. Dejnirattisai W. Jumnainsong A. Onsirisakul N. Fitton P. Vasanawathana S. Limpitikul W. Puttikhunt C. Edwards C. Duangchinda T. Supasa S. Chawansuntati K. Enhancing cross-reactive anti-prM dominates the human antibody response in dengue infection. Science 2010 328 5979 10.1126/science.1185181 20448183
    [Google Scholar]
  43. Guilliams M. Bruhns P. Saeys Y. Hammad H. Lambrecht B.N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 2014 14 2 94 108 10.1038/nri3582 24445665
    [Google Scholar]
  44. Ubol S. Phuklia W. Kalayanarooj S. Modhiran N. Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies. J. Infect. Dis. 2010 201 6 923 935 10.1086/651018 20158392
    [Google Scholar]
  45. Zhang X. Xia H. Wang Q. Cui M. Zhang C. Wang Q. Liu X. Chen K. SOCSs: Important regulators of host cell susceptibility or resistance to viral infection. Z. Naturforsch. C J. Biosci. 2023 78 9-10 327 335 10.1515/znc‑2023‑0024 37233326
    [Google Scholar]
  46. Granato M. Santarelli R. Farina A. Gonnella R. Lotti L.V. Faggioni A. Cirone M. Epstein-barr virus blocks the autophagic flux and appropriates the autophagic machinery to enhance viral replication. J. Virol. 2014 88 21 12715 12726 10.1128/JVI.02199‑14 25142602
    [Google Scholar]
  47. Byrne A.B. Talarico L.B. Role of the complement system in antibody-dependent enhancement of flavivirus infections. Int. J. Infect. Dis. 2021 103 404 411 10.1016/j.ijid.2020.12.039 33352325
    [Google Scholar]
  48. Conde J.N. Silva E.M. Barbosa A.S. Mohana-Borges R. The complement system in flavivirus infections. Front. Microbiol. 2017 8 213 10.3389/fmicb.2017.00213 28261172
    [Google Scholar]
  49. Merle N.S. Noe R. Halbwachs-Mecarelli L. Fremeaux-Bacchi V. Roumenina L.T. Complement system part II: Role in immunity. Front. Immunol. 2015 6 257 10.3389/fimmu.2015.00257 26074922
    [Google Scholar]
  50. Duensing TD Watson SR Complement-dependent cytotoxicity assay. Cold Spring Harb Protoc 2018 2018 2 10.1101/pdb.prot093799 29438057
    [Google Scholar]
  51. Wang G. de Jong R.N. van den Bremer E.T.J. Beurskens F.J. Labrijn A.F. Ugurlar D. Gros P. Schuurman J. Parren P.W.H.I. Heck A.J.R. Molecular basis of assembly and activation of complement component C1 in complex with immunoglobulin G1 and antigen. Mol. Cell 2016 63 1 135 145 10.1016/j.molcel.2016.05.016 27320199
    [Google Scholar]
  52. von Kietzell K. Pozzuto T. Heilbronn R. Grössl T. Fechner H. Weger S. Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J. Virol. 2014 88 14 8102 8115 10.1128/JVI.00649‑14 24807719
    [Google Scholar]
  53. Ishikawa T. Yamanaka A. Konishi E. A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine 2014 32 12 1326 1337 10.1016/j.vaccine.2014.01.040 24486372
    [Google Scholar]
  54. Low J.G.H. Ooi E.E. Vasudevan S.G. Current status of dengue therapeutics research and development. J. Infect. Dis. 2017 215 Suppl. 2 S96 S102 10.1093/infdis/jiw423 28403438
    [Google Scholar]
  55. Morsy S. Hashan M.R. Hieu T.H. Mohammed A.T. Elawady S.S. Ghosh P. Elgendy M.A. Le H.H. Hamad W.M.A. Iqtadar S. Dumre S.P. Hirayama K. Huy N.T. The association between dengue viremia kinetics and dengue severity: A systemic review and meta-analysis. Rev. Med. Virol. 2020 30 6 1 10 10.1002/rmv.2121 32856357
    [Google Scholar]
  56. Gonçalves A. Bertrand J. Ke R. Comets E. de Lamballerie X. Malvy D. Pizzorno A. Terrier O. Rosa Calatrava M. Mentré F. Smith P. Perelson A.S. Guedj J. Timing of antiviral treatment initiation is critical to Reduce SARS-CoV-2 viral load. CPT Pharmacometrics Syst. Pharmacol. 2020 9 9 509 514 10.1002/psp4.12543 32558354
    [Google Scholar]
  57. Debsarma D. Saha J. Ghosh S. Factors associated with delay in treatment-seeking behaviour for fever cases among caregivers of under-five children in India: Evidence from the national family health survey-4, 2015–16. PLoS One 2022 17 6 e0269844 10.1371/journal.pone.0269844 35709164
    [Google Scholar]
  58. Watanabe S. Chan K.W.K. Dow G. Ooi E.E. Low J.G. Vasudevan S.G. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: The search for a window for potential therapeutic efficacy. Antiviral Res. 2016 127 10 19 10.1016/j.antiviral.2015.12.008 26794905
    [Google Scholar]
  59. Veit E.C. Salim M.S. Jung M.J. Richardson R.B. Boys I.N. Quinlan M. Barrall E.A. Bednarski E. Hamilton R.E. Kikawa C. Elde N.C. García-Sastre A. Evans M.J. Evolution of STAT2 resistance to flavivirus NS5 occurred multiple times despite genetic constraints. Nat. Commun. 2024 15 1 5426 10.1038/s41467‑024‑49758‑0 38926343
    [Google Scholar]
  60. Kaufmann B. Rossmann M.G. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect. 2011 13 1 1 9 10.1016/j.micinf.2010.09.005 20869460
    [Google Scholar]
  61. Strasfeld L. Chou S. Antiviral drug resistance: Mechanisms and clinical implications. Infect. Dis. Clin. North Am. 2010 24 2 413 437 10.1016/j.idc.2010.01.001 20466277
    [Google Scholar]
  62. Chen Y.L. Abdul Ghafar N. Karuna R. Fu Y. Lim S.P. Schul W. Gu F. Herve M. Yokohama F. Wang G. Cerny D. Fink K. Blasco F. Shi P.Y. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir. J. Virol. 2014 88 3 1740 1747 10.1128/JVI.02841‑13 24257621
    [Google Scholar]
  63. Shyr Z.A. Cheng Y.S. Lo D.C. Zheng W. Drug combination therapy for emerging viral diseases. Drug Discov. Today 2021 26 10 2367 2376 10.1016/j.drudis.2021.05.008 34023496
    [Google Scholar]
  64. Diani E. Lagni A. Lotti V. Tonon E. Cecchetto R. Gibellini D. Vector-transmitted flaviviruses: An antiviral molecules overview. Microorganisms 2023 11 10 2427 10.3390/microorganisms11102427 37894085
    [Google Scholar]
  65. Fibriansah G. Ibarra K.D. Ng T.S. Smith S.A. Tan J.L. Lim X.N. Ooi J.S.G. Kostyuchenko V.A. Wang J. de Silva A.M. Harris E. Crowe J.E. Jr Lok S.M. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science 2015 349 6243 88 91 10.1126/science.aaa8651 26138979
    [Google Scholar]
  66. Harrison S.C. Mechanism of membrane fusion by viral envelope proteins. Adv. Virus Res. 2005 64 231 261 10.1016/S0065‑3527(05)64007‑9 16139596
    [Google Scholar]
  67. Robinson L.N. Tharakaraman K. Rowley K.J. Costa V.V. Chan K.R. Wong Y.H. Ong L.C. Tan H.C. Koch T. Cain D. Kirloskar R. Viswanathan K. Liew C.W. Tissire H. Ramakrishnan B. Myette J.R. Babcock G.J. Sasisekharan V. Alonso S. Chen J. Lescar J. Shriver Z. Ooi E.E. Sasisekharan R. Structure-guided design of an anti-dengue antibody directed to a non-immunodominant epitope. Cell 2015 162 3 493 504 10.1016/j.cell.2015.06.057 26189681
    [Google Scholar]
  68. Khan M.B. Yang Z.S. Lin C.Y. Hsu M.C. Urbina A.N. Assavalapsakul W. Wang W.H. Chen Y.H. Wang S.F. Dengue overview: An updated systemic review. J. Infect. Public Health 2023 16 10 1625 1642 10.1016/j.jiph.2023.08.001 37595484
    [Google Scholar]
  69. Zhao C. Zhao W. NLRP3 inflammasome—A key player in antiviral responses. Front. Immunol. 2020 11 211 10.3389/fimmu.2020.00211 32133002
    [Google Scholar]
  70. Tanaka T. Narazaki M. Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016 8 8 959 970 10.2217/imt‑2016‑0020 27381687
    [Google Scholar]
  71. Liu T Zhang L Joo D Sun SC. NF NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 1 1 9 10.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  72. Ulmer J.B. Liu M.A. Ethical issues for vaccines and immunization. Nat. Rev. Immunol. 2002 2 4 291 296 10.1038/nri780 12002000
    [Google Scholar]
  73. Salisch N.C. Stephenson K.E. Williams K. Cox F. van der Fits L. Heerwegh D. Truyers C. Habets M.N. Kanjilal D.G. Larocca R.A. Abbink P. Liu J. Peter L. Fierro C. De La Barrera R.A. Modjarrad K. Zahn R.C. Hendriks J. Cahill C.P. Leyssen M. Douoguih M. van Hoof J. Schuitemaker H. Barouch D.H. A double-blind, randomized, placebo-controlled phase 1 study of Ad26. ZIKV. 001, an Ad26-vectored anti–Zika virus vaccine. Ann. Intern. Med. 2021 174 5 585 594 10.7326/M20‑5306 33587687
    [Google Scholar]
  74. Dowd K.A. Ko S.Y. Morabito K.M. Yang E.S. Pelc R.S. DeMaso C.R. Castilho L.R. Abbink P. Boyd M. Nityanandam R. Gordon D.N. Gallagher J.R. Chen X. Todd J.P. Tsybovsky Y. Harris A. Huang Y.J.S. Higgs S. Vanlandingham D.L. Andersen H. Lewis M.G. De La Barrera R. Eckels K.H. Jarman R.G. Nason M.C. Barouch D.H. Roederer M. Kong W.P. Mascola J.R. Pierson T.C. Graham B.S. Rapid development of a DNA vaccine for Zika virus. Science 2016 354 6309 237 240 10.1126/science.aai9137 27708058
    [Google Scholar]
  75. Sabchareon A. Wallace D. Sirivichayakul C. Limkittikul K. Chanthavanich P. Suvannadabba S. Jiwariyavej V. Dulyachai W. Pengsaa K. Wartel T.A. Moureau A. Saville M. Bouckenooghe A. Viviani S. Tornieporth N.G. Lang J. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: A randomised, controlled phase 2b trial. Lancet 2012 380 9853 1559 1567 10.1016/S0140‑6736(12)61428‑7 22975340
    [Google Scholar]
  76. Halstead S.B. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine 2017 35 47 6355 6358 10.1016/j.vaccine.2017.09.089 29029938
    [Google Scholar]
  77. Thomas S.J. Yoon I.K. A review of Dengvaxia®: Development to deployment. Hum. Vaccin. Immunother. 2019 15 10 2295 2314 10.1080/21645515.2019.1658503 31589551
    [Google Scholar]
  78. Precioso A.R. Palacios R. Thomé B. Mondini G. Braga P. Kalil J. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine. Vaccine 2015 33 50 7121 7125 10.1016/j.vaccine.2015.09.105 26458796
    [Google Scholar]
  79. Kräutler N.J. Suan D. Butt D. Bourne K. Hermes J.R. Chan T.D. Sundling C. Kaplan W. Schofield P. Jackson J. Basten A. Christ D. Brink R. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J. Exp. Med. 2017 214 5 1259 1267 10.1084/jem.20161533 28363897
    [Google Scholar]
  80. Liu M. Gan H. Liang Z. Liu L. Liu Q. Mai Y. Chen H. Lei B. Yu S. Chen H. Zheng P. Sun B. Review of therapeutic mechanisms and applications based on SARS-CoV-2 neutralizing antibodies. Front. Microbiol. 2023 14 1122868 10.3389/fmicb.2023.1122868 37007494
    [Google Scholar]
  81. Uhuami A.O. Lawal N. Bello M.B. Imam M.U. Flavivirus cross-reactivity: Insights into e-protein conservancy, pre-existing immunity, and co-infection. Microbe 2024 4 100105 10.1016/j.microb.2024.100105
    [Google Scholar]
  82. Collins M.H. McGowan E. Jadi R. Young E. Lopez C.A. Baric R.S. Lazear H.M. de Silva A.M. Lack of durable cross-neutralizing antibodies against Zika virus from dengue virus infection. Emerg. Infect. Dis. 2017 23 5 773 781 10.3201/eid2305.161630 28418292
    [Google Scholar]
  83. Montoya M. Collins M. Dejnirattisai W. Katzelnick L.C. Puerta-Guardo H. Jadi R. Schildhauer S. Supasa P. Vasanawathana S. Malasit P. Mongkolsapaya J. de Silva A.D. Tissera H. Balmaseda A. Screaton G. de Silva A.M. Harris E. Longitudinal analysis of antibody cross-neutralization following Zika virus and dengue virus infection in Asia and the Americas. J. Infect. Dis. 2018 218 4 536 545 10.1093/infdis/jiy164 29618091
    [Google Scholar]
  84. Mansuy J.M. Suberbielle E. Chapuy-Regaud S. Mengelle C. Bujan L. Marchou B. Delobel P. Gonzalez-Dunia D. Malnou C.E. Izopet J. Martin-Blondel G. Zika virus in semen and spermatozoa. Lancet Infect. Dis. 2016 16 10 1106 1107 10.1016/S1473‑3099(16)30336‑X 27676340
    [Google Scholar]
  85. Lindsey N.P. Staples J.E. Powell K. Rabe I.B. Fischer M. Powers A.M. Kosoy O.I. Mossel E.C. Munoz-Jordan J.L. Beltran M. Hancock W.T. Toews K.E. Ellis E.M. Ellis B.R. Panella A.J. Basile A.J. Calvert A.E. Laven J. Goodman C.H. Gould C.V. Martin S.W. Thomas J.D. Villanueva J. Mataia M.L. Sciulli R. Gose R. Whelen A.C. Hills S.L. Ability to serologically confirm recent Zika virus infection in areas with varying past incidence of dengue virus infection in the United States and US territories in 2016. J. Clin. Microbiol. 2017 56 1 10 128 29093104
    [Google Scholar]
  86. Screaton G. Mongkolsapaya J. Yacoub S. Roberts C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 2015 15 12 745 759 10.1038/nri3916 26603900
    [Google Scholar]
  87. Stettler K. Beltramello M. Espinosa D.A. Graham V. Cassotta A. Bianchi S. Vanzetta F. Minola A. Jaconi S. Mele F. Foglierini M. Pedotti M. Simonelli L. Dowall S. Atkinson B. Percivalle E. Simmons C.P. Varani L. Blum J. Baldanti F. Cameroni E. Hewson R. Harris E. Lanzavecchia A. Sallusto F. Corti D. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 2016 353 6301 823 826 10.1126/science.aaf8505 27417494
    [Google Scholar]
  88. Hu T. Wu Z. Wu S. Chen S. Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol. J. 2021 18 1 136 10.1186/s12985‑021‑01611‑2 34217298
    [Google Scholar]
  89. Kuhn R.J. Barrett A.D.T. Desilva A.M. Harris E. Kramer L.D. Montgomery R.R. Pierson T.C. Sette A. Diamond M.S. A prototype-pathogen approach for the development of flavivirus countermeasures. J. Infect. Dis. 2023 228 Suppl. 6 S398 S413 10.1093/infdis/jiad193 37849402
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501364702250707105742
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test