Skip to content
2000
image of Potential Therapeutic and Health Benefits of Spirulina Microalgae, in Neurodegenerative Disorders: From Nutraceutical to Neuroprotectant

Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are progressive disorders marked by neuronal loss, synaptic dysfunction, and cognitive or motor decline. Oxidative stress and chronic neuroinflammation are key drivers in their pathology. In AD, β-amyloid plaques and tau hyperphosphorylation cause mitochondrial damage and ROS overproduction, while PD involves dopaminergic neuronal loss due to oxidative damage. Elevated cytokines like TNF-α, IL-1β, and IL-6 further worsen neuronal injury. Spirulina (), a nutrient-rich cyanobacterium, is gaining attention as a neuroprotective nutraceutical. Its bioactive compounds-C-phycocyanin, β-carotene, tocopherols, and γ-linolenic acid-exhibit strong antioxidant and anti-inflammatory properties. Preclinical studies show spirulina enhances antioxidant enzymes, lowers lipid peroxidation, and improves cognitive performance. This review analyzed preclinical and clinical studies from PubMed, Scopus, and Web of Science focusing on spirulina’s effects in AD and PD models. Spirulina reduced oxidative markers (MDA, NO), increased antioxidant enzymes (GPx, SOD), downregulated pro-apoptotic genes (caspase-3, Bax), and upregulated anti-apoptotic Bcl-2. It also inhibited NF-κB signalling and reduced inflammatory cytokines. A clinical trial in AD patients reported significant MMSE score improvements with spirulina supplementation. Advanced delivery systems like spirulina-loaded nanoparticles and niosomes enhanced its bioavailability and neuroprotective effects in animal models. Overall, spirulina shows promise in mitigating neurodegeneration by targeting oxidative stress and inflammation. Despite encouraging results, larger clinical trials are needed to confirm its therapeutic potential as a safe, effective nutraceutical for neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501352964250914125955
2025-09-29
2025-11-01
Loading full text...

Full text loading...

References

  1. Chaki J. Woźniak M. Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review. Biomed. Signal Process. Control 2023 80 104223 10.1016/j.bspc.2022.104223
    [Google Scholar]
  2. Wen P. Sun Z. Gou F. Wang J. Fan Q. Zhao D. Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res. Rev. 2025 104 102667 10.1016/j.arr.2025.102667 39848408
    [Google Scholar]
  3. Houldsworth A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2023 6 1 fcad356 10.1093/braincomms/fcad356 38214013
    [Google Scholar]
  4. Tortajada-Pérez J. Carranza A.V. Trujillo-del Río C. Collado-Pérez M. Millán J.M. García-García G. Vázquez-Manrique R.P. Lipid oxidation at the crossroads: Oxidative stress and neurodegeneration explored in caenorhabditis elegans. Antioxidants 2025 14 1 78 10.3390/antiox14010078 39857412
    [Google Scholar]
  5. Sultana R. Cenini G. Butterfield D. A. Biomarkers of oxidative stress in neurodegenerative diseases. Molecular basis of oxidative stress: Chemistry, toxicology, disease pathogenesis, diagnosis, and therapeutics 2025 437 454 10.1002/9781118355886
    [Google Scholar]
  6. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  7. Pancholi B. Choudhary M.K. Kumar M. Babu R. Vora L.K. Khatri D.K. Garabadu D. Cell-penetrating proteins and peptides as a promising theragnostic agent for neurodegenerative disorder. J. Drug Deliv. Sci. Technol. 2025 107 106816 10.1016/j.jddst.2025.106816
    [Google Scholar]
  8. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  9. Gupta A. Sharma B. Neurodegenerative diseases (ND): An introduction. Synaptic plasticity in neurodegenerative disorders CRC Press 2025 3 20
    [Google Scholar]
  10. Walsh A.E. Lukens J.R. Harnessing microglia-based cell therapies for the treatment of neurodegenerative diseases. Curr. Opin. Immunol. 2025 94 102552 10.1016/j.coi.2025.102552 40138748
    [Google Scholar]
  11. Martin M. Pusceddu M.M. Teichenné J. Negra T. Connolly A. Escoté X. Torrell Galceran H. Cereto Massagué A. Samarra Mestre I. del Pino Rius A. Romero-Gimenez J. Egea C. Alcaide-Hidalgo J.M. del Bas J.M. Preventive treatment with astaxanthin microencapsulated with spirulina powder, administered in a dose range equivalent to human consumption, prevents lps-induced cognitive impairment in rats. Nutrients 2023 15 13 2854 10.3390/nu15132854 37447181
    [Google Scholar]
  12. Pérez-Juárez A. Chamorro G. Alva-Sánchez C. Paniagua-Castro N. Pacheco-Rosado J. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death. Pharm. Biol. 2016 54 8 1408 1412 10.3109/13880209.2015.1103756 26799655
    [Google Scholar]
  13. Kumar S. Saha S. Singh K. Singh T. Mishra A.K. Dubey B.N. Singh S. Beneficial effects of spirulina on brain health: A systematic review. Current Functional Foods 2025 3 1 e120124225622 10.2174/0126668629269256231222092721
    [Google Scholar]
  14. Behairy A. Elkomy A. Elsayed F. Gaballa M.M.S. Soliman A. Aboubakr M. Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 3 1875 1888 10.1007/s00210‑023‑02739‑4 37773524
    [Google Scholar]
  15. Kolte P.B. Jadhav V. Sanap G. Nutritional and medical applications of spirulina microalgae. Mini. Rev. Med. Chem. 2013 13 8 1231 1237 10.2174/1389557511313080009
    [Google Scholar]
  16. Trotta T. Porro C. Cianciulli A. Panaro M.A. Beneficial effects of spirulina consumption on brain health. Nutrients 2022 14 3 676 10.3390/nu14030676 35277035
    [Google Scholar]
  17. Gupta C. Role of spirulina supplementation and other nutraceuticals in cardiovascular disease. Nutraceuticals in Cardiac Health Management. Apple Academic Press 2025 267 296
    [Google Scholar]
  18. Dimopoulou M. Kolonas A. Stagos D. Gortzi O. A review of the sustainability, chemical composition, bioactive compounds, antioxidant and antidiabetic activity, neuroprotective properties, and health benefits of microalgae. Biomass 2025 5 1 11 10.3390/biomass5010011
    [Google Scholar]
  19. Khushala A. Bobby M.N. Balasubramaniyan M. Spirulina: Morphology, cultivation, harvesting as a supplement and its therapeutic properties. Ind. Biotechnol. Appl. Algae. Singapore Springer Nature Singapore 2025 179 198 10.1007/978‑981‑96‑1844‑6_9
    [Google Scholar]
  20. Halliwell B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006 97 6 1634 1658 10.1111/j.1471‑4159.2006.03907.x 16805774
    [Google Scholar]
  21. Carrera I. Corzo L. Martínez-Iglesias O. Naidoo V. Cacabelos R. Preventive role of cocoa-enriched extract against neuroinflammation in mice. Neurol. Int. 2025 17 4 47 10.3390/neurolint17040047 40278418
    [Google Scholar]
  22. Pipliya S. Kumar S. Gupta R. K. Das R. S. Meena D. Srivastav P. P. The future of algal proteins: Innovations in extraction and modifications, functional properties, and sustainable food applications. Future Foods 2025 11 100549 10.1016/j.fufo.2025.100549
    [Google Scholar]
  23. Ashraf A. Guo Y. Yang T. ud Din A.S. Ahmad K. Li W. Hou H. Microalgae-derived peptides: Exploring bioactivities and functional food innovations. J. Agric. Food Chem. 2025 73 2 1000 1013 10.1021/acs.jafc.4c06800 39757903
    [Google Scholar]
  24. Tavares J. Oliveira A.V. de Souza Nascimento T. Gomes J.M.P. Parente A.C.B. Bezerra J.R. da Costa M.D.R. de Aguiar M.S.S. Sampaio T.L. Lima F.A.V. de Barros Viana G.S. de Andrade G.M. Aqueous extract of spirulina exerts neuroprotection in an experimental model of alzheimer sporadic disease in mice induced by streptozotocin. Metab. Brain Dis. 2024 40 1 26 10.1007/s11011‑024‑01477‑7 39565401
    [Google Scholar]
  25. Sorrenti V. Castagna D.A. Fortinguerra S. Buriani A. Scapagnini G. Willcox D.C. Spirulina microalgae and brain health: A scoping review of experimental and clinical evidence. Mar. Drugs 2021 19 6 293 10.3390/md19060293 34067317
    [Google Scholar]
  26. Bachstetter A.D. Jernberg J. Schlunk A. Vila J.L. Hudson C. Cole M.J. Shytle R.D. Tan J. Sanberg P.R. Sanberg C.D. Borlongan C. Kaneko Y. Tajiri N. Gemma C. Bickford P.C. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS One 2010 5 5 e10496 10.1371/journal.pone.0010496 20463965
    [Google Scholar]
  27. LeVine S.M. Exploring potential mechanisms accounting for iron accumulation in the central nervous system of patients with alzheimer’s disease. Cells 2024 13 8 689 10.3390/cells13080689 38667304
    [Google Scholar]
  28. Berg D. Youdim M.B.H. Role of iron in neurodegenerative disorders. Top. Magn. Reson. Imaging 2006 17 1 5 17 10.1097/01.rmr.0000245461.90406.ad 17179893
    [Google Scholar]
  29. Sipe J.C. Lee P. Beutler E. Brain iron metabolism and neurodegenerative disorders. Dev. Neurosci. 2002 24 2-3 188 196 10.1159/000065701 12401958
    [Google Scholar]
  30. Bermejo-Bescós P. Piñero-Estrada E. Villar del Fresno Á.M. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol. In Vitro 2008 22 6 1496 1502 10.1016/j.tiv.2008.05.004 18572379
    [Google Scholar]
  31. Moradi-Kor N. Ghanbari A. Rashidipour H. Yousefi B. Bandegi A.R. Rashidy-Pour A. Beneficial effects of Spirulina platensis, voluntary exercise and environmental enrichment against adolescent stress induced deficits in cognitive functions, hippocampal BDNF and morphological remolding in adult female rats. Horm. Behav. 2019 112 20 31 10.1016/j.yhbeh.2019.03.004 30917909
    [Google Scholar]
  32. Abdul Q.A. Choi R.J. Jung H.A. Choi J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric. 2016 96 6 1856 1866 10.1002/jsfa.7489 26455344
    [Google Scholar]
  33. Paranthaman S. Palraj P. bioactive compounds of algae: Potential neuroprotective agents in neurodegenerative disorders. Neuroprotective Effects of Phytochemicals in Brain Ageing. Singapore Springer Nature Singapore 2024 257 288 10.1007/978‑981‑99‑7269‑2_12
    [Google Scholar]
  34. Gentscheva G. Nikolova K. Panayotova V. Peycheva K. Makedonski L. Slavov P. Radusheva P. Petrova P. Yotkovska I. Application of arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life 2023 13 3 845 10.3390/life13030845 36984000
    [Google Scholar]
  35. Fischer R. Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid. Med. Cell. Longev. 2015 2015 1 1 18 10.1155/2015/610813 25834699
    [Google Scholar]
  36. Scarian E. Viola C. Dragoni F. Di Gerlando R. Rizzo B. Diamanti L. Gagliardi S. Bordoni M. Pansarasa O. New insights into oxidative stress and inflammatory response in neurodegenerative diseases. Int. J. Mol. Sci. 2024 25 5 2698 10.3390/ijms25052698 38473944
    [Google Scholar]
  37. Kumar A. Christian P.K. Panchal K. Guruprasad B.R. Tiwari A.K. Supplementation of spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1β Δ93 flies, a Parkinson’s Disease model in Drosophila melanogaster. J. Diet. Suppl. 2017 14 5 573 588 10.1080/19390211.2016.1275917 28166438
    [Google Scholar]
  38. Sinha S. Patro N. Patro I.K. Maternal protein malnutrition: Current and future perspectives of spirulina supplementation in neuroprotection. Front. Neurosci. 2018 12 966 10.3389/fnins.2018.00966 30618587
    [Google Scholar]
  39. Kumar A. Ramamoorthy D. Verma D.K. Kumar A. Kumar N. Kanak K.R. Marwein B.M. Mohan K. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus 2022 6 100070 10.1016/j.nexus.2022.100070
    [Google Scholar]
  40. Lima F.A.V. Joventino I.P. Joventino F.P. de Almeida A.C. Neves K.R.T. do Carmo M.R. Leal L.K.A.M. de Andrade G.M. de Barros Viana G.S. Neuroprotective activities of spirulina platensis in the 6-ohda model of parkinson’s disease are related to its anti-inflammatory effects. Neurochem. Res. 2017 42 12 3390 3400 10.1007/s11064‑017‑2379‑5 28861668
    [Google Scholar]
  41. Burke R.E. O’Malley K. Axon degeneration in Parkinson’s disease. Exp. Neurol. 2013 246 72 83 10.1016/j.expneurol.2012.01.011 22285449
    [Google Scholar]
  42. Zhang F. Xie J. Lu J. Zhang J. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson′s disease model in C57BL/6J mice. Neural Regen. Res. 2015 10 2 308 313 10.4103/1673‑5374.152387 25883632
    [Google Scholar]
  43. Pabon M.M. Jernberg J.N. Morganti J. Contreras J. Hudson C.E. Klein R.L. Bickford P.C. A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson’s disease. PLoS One 2012 7 9 e45256 10.1371/journal.pone.0045256 23028885
    [Google Scholar]
  44. Tu D. Gao Y. Yang R. Guan T. Hong J.S. Gao H.M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation 2019 16 1 255 10.1186/s12974‑019‑1659‑1 31805953
    [Google Scholar]
  45. McCarty M.F. DiNicolantonio J.J. Lerner A. A fundamental role for oxidants and intracellular calcium signals in alzheimer’s pathogenesis—and how a comprehensive antioxidant strategy may aid prevention of this disorder. Int. J. Mol. Sci. 2021 22 4 2140 10.3390/ijms22042140 33669995
    [Google Scholar]
  46. Choi W.Y. Lee W.K. Kim T.H. Ryu Y.K. Park A. Lee Y.J. Heo S.J. Oh C. Chung Y.C. Kang D.H. The effects of spirulina maxima extract on memory improvement in those with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2022 14 18 3714 10.3390/nu14183714 36145090
    [Google Scholar]
  47. Manfredi G. Xu Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 2005 5 2 77 87 10.1016/j.mito.2005.01.002 16050975
    [Google Scholar]
  48. Garbuzova-Davis S. Bickford C. Short communication: Neuroprotective effect of spirulina in a mouse model of ALS. Open Tissue Eng. Regen. Med. J. 2010 3 1 36 41 10.2174/1875043501003010036
    [Google Scholar]
  49. Soumya B.S. Shreenidhi V.P. Agarwal A. Gandhirajan R.K. Dharmarajan A. Warrier S. Unwinding the role of Wnt signaling cascade and molecular triggers of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Cell. Signal. 2023 110 110807 10.1016/j.cellsig.2023.110807 37463628
    [Google Scholar]
  50. Liu P. Choi J.W. Lee M.K. Choi Y.H. Nam T.J. Wound Healing Potential of Spirulina Protein on CCD-986sk Cells. Mar. Drugs 2019 17 2 130 10.3390/md17020130 30813318
    [Google Scholar]
  51. Lee M.S. Kim Y.H. Lee B. Kwon S.H. Moon W.J. Hong K.S. Song Y.S. Morita K. Hahm D.H. Shim I. Her S. Novel antidepressant-like activity of caffeic Acid phenethyl ester is mediated by enhanced glucocorticoid receptor function in the hippocampus. Evid. Based Complement. Alternat. Med. 2014 2014 1 646039 10.1155/2014/646039 25477995
    [Google Scholar]
  52. Ragusa I. Nardone G.N. Zanatta S. Bertin W. Amadio E. Spirulina for skin care: A bright blue future. Cosmetics 2021 8 1 7 10.3390/cosmetics8010007
    [Google Scholar]
  53. Li B. Zhang X. Gao M. Chu X. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomed. Pharmacother. 2005 59 10 551 560 10.1016/j.biopha.2005.06.012 16271846
    [Google Scholar]
  54. Mishra P. Kumar S. Malik J.K. Molecular mechanistic insight spirulina as anti-stress agent. Middle East Research Journal of Pharmaceutical Sciences 2023 3 2 25 30 10.36348/merjps.2023.v03i02.003
    [Google Scholar]
  55. Song X. Zhang L. Hui X. Sun X. Yang J. Wang J. Wu H. Wang X. Zheng Z. Che F. Wang G. Selenium-containing protein from selenium-enriched Spirulina platensis antagonizes oxygen glucose deprivation-induced neurotoxicity by inhibiting ROS-mediated oxidative damage through regulating MPTP opening. Pharm. Biol. 2021 59 1 627 636 10.1080/13880209.2021.1928715 34062090
    [Google Scholar]
  56. Fan C. Jiang J. Yin X. Wong K.H. Zheng W. Chen T. Purification of selenium-containing allophycocyanin from selenium-enriched Spirulina platensis and its hepatoprotective effect against t-BOOH-induced apoptosis. Food Chem. 2012 134 1 253 261 10.1016/j.foodchem.2012.02.130
    [Google Scholar]
  57. Lipinski B. Redox-active selenium in health and disease: A conceptual review. Mini Rev. Med. Chem. 2019 19 9 720 726 10.2174/1389557517666161104125022 27823560
    [Google Scholar]
  58. Mallamaci R. Storelli M.M. Barbarossa A. Messina G. Valenzano A. Meleleo D. Potential protective effects of spirulina (spirulina platensis) against in vitro toxicity induced by heavy metals (cadmium, mercury, and lead) on sh-sy5y neuroblastoma cells. Int. J. Mol. Sci. 2023 24 23 17076 10.3390/ijms242317076 38069399
    [Google Scholar]
  59. Karkos P.D. Leong S.C. Karkos C.D. Sivaji N. Assimakopoulos D.A. Spirulina in clinical practice: Evidence-based human applications. Evid. Based Complement. Alternat. Med. 2011 2011 1 531053 10.1093/ecam/nen058 18955364
    [Google Scholar]
  60. zeini hamzekolaei F. Hajizadeh Moghaddam A. Ghanbarzadeh M. Nazifi E. Khanjani Jelodar S. Neuro-nutraceutical potential of selenium-enriched spirulina platensis in alleviating streptozotocin-induced cognitive impairment: Modulation of oxidative stress and acetylcholine activity in a rat model of Alzheimer’s disease. S. Afr. J. Bot. 2025 184 142 153 10.1016/j.sajb.2025.05.039
    [Google Scholar]
  61. Abdullahi D. Ahmad Annuar A. Sanusi J. Improved spinal cord gray matter morphology induced by Spirulina platensis following spinal cord injury in rat models. Ultrastruct. Pathol. 2020 44 4-6 359 371 10.1080/01913123.2020.1792597 32686973
    [Google Scholar]
  62. Opara E.C. Oxidative Stress. Dis. Mon. 2006 52 5 183 198 10.1016/j.disamonth.2006.05.003 16828360
    [Google Scholar]
  63. Barbosa M. Valentão P. Andrade P. Bioactive compounds from macroalgae in the new millennium: Implications for neurodegenerative diseases. Mar. Drugs 2014 12 9 4934 4972 10.3390/md12094934 25257784
    [Google Scholar]
  64. Ma G. Gao Q. Yuan L. Chen Y. Cai Z. Zhang L. Hu J. Wang Y. Wu S. Sun Y. Spirulina (Arthrospira) cultivation in photobioreactors: From biochemistry and physiology to scale up engineering. Bioresour. Technol. 2025 423 132259 10.1016/j.biortech.2025.132259 39971103
    [Google Scholar]
  65. Bo X. Microalgae and exercise: From molecular mechanisms and brain health to clinical perspectives in the context of 3P medicine. EPMA J. 2025 16 2 351 386 10.1007/s13167‑025‑00405‑8 40438495
    [Google Scholar]
  66. Ramos M.V.N. Stalling the course of neurodegenerative diseases: Could cyanobacteria constitute a new approach toward therapy? Biomolecules 2023 13 10 1444 10.3390/biom13101444 37892126 PMC10604708
    [Google Scholar]
  67. Moukham H. Lambiase A. Barone G.D. Tripodi F. Coccetti P. Exploiting natural niches with neuroprotective properties: A comprehensive review. Nutrients 2024 16 9 1298 10.3390/nu16091298 38732545
    [Google Scholar]
  68. Shah M.A.R. Zhu F. Cui Y. Hu X. Chen H. Kayani S.I. Huo S. Mechanistic insights into the nutritional and therapeutic potential of Spirulina (Arthrospira) spp.: Challenges and opportunities. Trends Food Sci. Technol. 2024 151 104648 10.1016/j.tifs.2024.104648
    [Google Scholar]
  69. Abdelmoniem E.A. Morsy M.M. Rashad W.A. Abd-Almotaleb N.A. An Insight about Possible neuroprotective role of Spirulina platensis. Zagazig Univ. Med. J. 2024 0 0 0 10.21608/zumj.2024.314413.3534
    [Google Scholar]
  70. Rodrigues F. Reis M. Ferreira L. Grosso C. Ferraz R. Vieira M. Vasconcelos V. Martins R. The neuroprotective role of cyanobacteria with focus on the anti-inflammatory and antioxidant potential: Current status and perspectives. Molecules 2024 29 20 4799 10.3390/molecules29204799 39459167
    [Google Scholar]
  71. Ngu E.L. Tan C.Y. Lai N.J.Y. Wong K.H. Lim S.H. Ming L.C. Tan K.O. Phang S.M. Yow Y.Y. Spirulina platensis suppressed iNOS and proinflammatory cytokines in lipopolysaccharide-induced BV2 microglia. Metabolites 2022 12 11 1147 10.3390/metabo12111147 36422287
    [Google Scholar]
  72. Tamtaji O.R. Heidari-soureshjani R. Asemi Z. Kouchaki E. The effects of spirulina intake on clinical and metabolic parameters in Alzheimer’s disease: A randomized, double‐blind, controlled trial. Phytother. Res. 2023 37 7 2957 2964 10.1002/ptr.7791 36861852
    [Google Scholar]
  73. Wlaźlak S. Biesek J. Spirulina platensis and Chlorella vulgaris in poultry nutrition - a review of current research and potential opportunities. Poult. Sci. 2025 104 9 105456 10.1016/j.psj.2025.105456 40570455
    [Google Scholar]
  74. Lopes M.J.P. Delmondes G.A. Leite G.M.L. Cavalcante D.R.A. Aquino P.É.A. Lima F.A.V. Neves K.R.T. Costa A.S. Oliveira H.D. Bezerra Felipe C.F. Pampolha Lima I.S. Kerntopf M.R. Viana G.S.B. The protein-rich fraction from Spirulina platensis exerts neuroprotection in hemiparkinsonian rats by decreasing brain inflammatory-related enzymes and glial fibrillary acidic protein expressions. J. Med. Food 2022 25 7 695 709 10.1089/jmf.2021.0100 35834631
    [Google Scholar]
  75. Sabat S. Bej S. Swain S. Bishoyi A.K. Sahoo C.R. Sabat G. Padhy R.N. Phycochemistry and pharmacological significance of filamentous cyanobacterium Spirulina sp. Bioresour. Bioprocess. 2025 12 1 27 10.1186/s40643‑025‑00861‑0 40178689
    [Google Scholar]
  76. Koh E.J. Seo Y.J. Choi J. Lee H.Y. Kang D.H. Kim K.J. Lee B.Y. Spirulina maxima extract prevents neurotoxicity via promoting activation of BDNF/CREB signaling pathways in neuronal cells and mice. Molecules 2017 22 8 1363 10.3390/molecules22081363 28817076
    [Google Scholar]
  77. Botutihe L. A. Safira R. Yuliani S. Combination of Spirulina platensis powder and Stichopus variegatus powder against Bcl2 expression in the hippocampus of dementia rats. Pharmaciana 2024 14 1 1 9
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501352964250914125955
Loading
/content/journals/cbiot/10.2174/0122115501352964250914125955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test