Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are progressive disorders marked by neuronal loss, synaptic dysfunction, and cognitive or motor decline. Oxidative stress and chronic neuroinflammation are key drivers in their pathology. In AD, β-amyloid plaques and tau hyperphosphorylation cause mitochondrial damage and ROS overproduction, while PD involves dopaminergic neuronal loss due to oxidative damage. Elevated cytokines like TNF-α, IL-1β, and IL-6 further worsen neuronal injury. Spirulina (), a nutrient-rich cyanobacterium, is gaining attention as a neuroprotective nutraceutical. Its bioactive compounds-C-phycocyanin, β-carotene, tocopherols, and γ-linolenic acid-exhibit strong antioxidant and anti-inflammatory properties. Preclinical studies show spirulina enhances antioxidant enzymes, lowers lipid peroxidation, and improves cognitive performance. This review analyzed preclinical and clinical studies from PubMed, Scopus, and Web of Science focusing on spirulina’s effects in AD and PD models. Spirulina reduced oxidative markers (MDA, NO), increased antioxidant enzymes (GPx, SOD), downregulated pro-apoptotic genes (caspase-3, Bax), and upregulated anti-apoptotic Bcl-2. It also inhibited NF-κB signalling and reduced inflammatory cytokines. A clinical trial in AD patients reported significant MMSE score improvements with spirulina supplementation. Advanced delivery systems like spirulina-loaded nanoparticles and niosomes enhanced its bioavailability and neuroprotective effects in animal models. Overall, spirulina shows promise in mitigating neurodegeneration by targeting oxidative stress and inflammation. Despite encouraging results, larger clinical trials are needed to confirm its therapeutic potential as a safe, effective nutraceutical for neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501352964250914125955
2025-09-29
2025-12-21
Loading full text...

Full text loading...

References

  1. ChakiJ. WoźniakM. Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review.Biomed. Signal Process. Control20238010422310.1016/j.bspc.2022.104223
    [Google Scholar]
  2. WenP. SunZ. GouF. WangJ. FanQ. ZhaoD. YangL. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders.Ageing Res. Rev.202510410266710.1016/j.arr.2025.10266739848408
    [Google Scholar]
  3. HouldsworthA. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants.Brain Commun.202361fcad35610.1093/braincomms/fcad35638214013
    [Google Scholar]
  4. Tortajada-PérezJ. CarranzaA.V. Trujillo-del RíoC. Collado-PérezM. MillánJ.M. García-GarcíaG. Vázquez-ManriqueR.P. Lipid oxidation at the crossroads: Oxidative stress and neurodegeneration explored in caenorhabditis elegans. Antioxidants20251417810.3390/antiox1401007839857412
    [Google Scholar]
  5. SultanaR. CeniniG. ButterfieldD. A. Biomarkers of oxidative stress in neurodegenerative diseases.Molecular basis of oxidative stress: Chemistry, toxicology, disease pathogenesis, diagnosis, and therapeutics202543745410.1002/9781118355886
    [Google Scholar]
  6. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms2303185135163773
    [Google Scholar]
  7. PancholiB. ChoudharyM.K. KumarM. BabuR. VoraL.K. KhatriD.K. GarabaduD. Cell-penetrating proteins and peptides as a promising theragnostic agent for neurodegenerative disorder.J. Drug Deliv. Sci. Technol.202510710681610.1016/j.jddst.2025.106816
    [Google Scholar]
  8. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑537433768
    [Google Scholar]
  9. GuptaA. SharmaB. Neurodegenerative diseases (ND): An introduction.Synaptic plasticity in neurodegenerative disordersCRC Press2025320
    [Google Scholar]
  10. WalshA.E. LukensJ.R. Harnessing microglia-based cell therapies for the treatment of neurodegenerative diseases.Curr. Opin. Immunol.20259410255210.1016/j.coi.2025.10255240138748
    [Google Scholar]
  11. MartinM. PuscedduM.M. TeichennéJ. NegraT. ConnollyA. EscotéX. Torrell GalceranH. Cereto MassaguéA. Samarra MestreI. del Pino RiusA. Romero-GimenezJ. EgeaC. Alcaide-HidalgoJ.M. del BasJ.M. Preventive treatment with astaxanthin microencapsulated with spirulina powder, administered in a dose range equivalent to human consumption, prevents lps-induced cognitive impairment in rats.Nutrients20231513285410.3390/nu1513285437447181
    [Google Scholar]
  12. Pérez-JuárezA. ChamorroG. Alva-SánchezC. Paniagua-CastroN. Pacheco-RosadoJ. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death.Pharm. Biol.20165481408141210.3109/13880209.2015.110375626799655
    [Google Scholar]
  13. KumarS. SahaS. SinghK. SinghT. MishraA.K. DubeyB.N. SinghS. Beneficial effects of spirulina on brain health: A systematic review.Current Functional Foods202531e12012422562210.2174/0126668629269256231222092721
    [Google Scholar]
  14. BehairyA. ElkomyA. ElsayedF. GaballaM.M.S. SolimanA. AboubakrM. Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity.Naunyn Schmiedebergs Arch. Pharmacol.202439731875188810.1007/s00210‑023‑02739‑437773524
    [Google Scholar]
  15. HosseiniS.M. Khosravi-DaraniK. MozafariM.R. Nutritional and medical applications of spirulina microalgae.Mini. Rev. Med. Chem.20131381231123710.2174/1389557511313080009
    [Google Scholar]
  16. TrottaT. PorroC. CianciulliA. PanaroM.A. Beneficial effects of spirulina consumption on brain health.Nutrients202214367610.3390/nu1403067635277035
    [Google Scholar]
  17. GuptaC. Role of spirulina supplementation and other nutraceuticals in cardiovascular disease.Nutraceuticals in Cardiac Health Management.Apple Academic Press2025267296
    [Google Scholar]
  18. DimopoulouM. KolonasA. StagosD. GortziO. A review of the sustainability, chemical composition, bioactive compounds, antioxidant and antidiabetic activity, neuroprotective properties, and health benefits of microalgae.Biomass2025511110.3390/biomass5010011
    [Google Scholar]
  19. KhushalaA. BobbyM.N. BalasubramaniyanM. Spirulina: Morphology, cultivation, harvesting as a supplement and its therapeutic properties.Ind. Biotechnol. Appl. Algae.SingaporeSpringer Nature Singapore202517919810.1007/978‑981‑96‑1844‑6_9
    [Google Scholar]
  20. HalliwellB. Oxidative stress and neurodegeneration: Where are we now?J. Neurochem.20069761634165810.1111/j.1471‑4159.2006.03907.x16805774
    [Google Scholar]
  21. CarreraI. CorzoL. Martínez-IglesiasO. NaidooV. CacabelosR. Preventive role of cocoa-enriched extract against neuroinflammation in mice.Neurol. Int.20251744710.3390/neurolint1704004740278418
    [Google Scholar]
  22. PipliyaS. KumarS. GuptaR. K. DasR. S. MeenaD. SrivastavP. P. The future of algal proteins: Innovations in extraction and modifications, functional properties, and sustainable food applications.Future Foods20251110054910.1016/j.fufo.2025.100549
    [Google Scholar]
  23. AshrafA. GuoY. YangT. ud DinA.S. AhmadK. LiW. HouH. Microalgae-derived peptides: Exploring bioactivities and functional food innovations.J. Agric. Food Chem.20257321000101310.1021/acs.jafc.4c0680039757903
    [Google Scholar]
  24. TavaresJ. OliveiraA.V. de Souza NascimentoT. GomesJ.M.P. ParenteA.C.B. BezerraJ.R. da CostaM.D.R. de AguiarM.S.S. SampaioT.L. LimaF.A.V. de Barros VianaG.S. de AndradeG.M. Aqueous extract of spirulina exerts neuroprotection in an experimental model of alzheimer sporadic disease in mice induced by streptozotocin.Metab. Brain Dis.20244012610.1007/s11011‑024‑01477‑739565401
    [Google Scholar]
  25. SorrentiV. CastagnaD.A. FortinguerraS. BurianiA. ScapagniniG. WillcoxD.C. Spirulina microalgae and brain health: A scoping review of experimental and clinical evidence.Mar. Drugs202119629310.3390/md1906029334067317
    [Google Scholar]
  26. BachstetterA.D. JernbergJ. SchlunkA. VilaJ.L. HudsonC. ColeM.J. ShytleR.D. TanJ. SanbergP.R. SanbergC.D. BorlonganC. KanekoY. TajiriN. GemmaC. BickfordP.C. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.PLoS One201055e1049610.1371/journal.pone.001049620463965
    [Google Scholar]
  27. LeVineS.M. Exploring potential mechanisms accounting for iron accumulation in the central nervous system of patients with alzheimer’s disease.Cells202413868910.3390/cells1308068938667304
    [Google Scholar]
  28. BergD. YoudimM.B.H. Role of iron in neurodegenerative disorders.Top. Magn. Reson. Imaging200617151710.1097/01.rmr.0000245461.90406.ad17179893
    [Google Scholar]
  29. SipeJ.C. LeeP. BeutlerE. Brain iron metabolism and neurodegenerative disorders.Dev. Neurosci.2002242-318819610.1159/00006570112401958
    [Google Scholar]
  30. Bermejo-BescósP. Piñero-EstradaE. Villar del FresnoÁ.M. Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells.Toxicol. In Vitro 20082261496150210.1016/j.tiv.2008.05.00418572379
    [Google Scholar]
  31. Moradi-KorN. GhanbariA. RashidipourH. YousefiB. BandegiA.R. Rashidy-PourA. Beneficial effects of Spirulina platensis, voluntary exercise and environmental enrichment against adolescent stress induced deficits in cognitive functions, hippocampal BDNF and morphological remolding in adult female rats.Horm. Behav.2019112203110.1016/j.yhbeh.2019.03.00430917909
    [Google Scholar]
  32. AbdulQ.A. ChoiR.J. JungH.A. ChoiJ.S. Health benefit of fucosterol from marine algae: A review.J. Sci. Food Agric.20169661856186610.1002/jsfa.748926455344
    [Google Scholar]
  33. ParanthamanS. PalrajP. bioactive compounds of algae: Potential neuroprotective agents in neurodegenerative disorders.Neuroprotective Effects of Phytochemicals in Brain Ageing.SingaporeSpringer Nature Singapore202425728810.1007/978‑981‑99‑7269‑2_12
    [Google Scholar]
  34. GentschevaG. NikolovaK. PanayotovaV. PeychevaK. MakedonskiL. SlavovP. RadushevaP. PetrovaP. YotkovskaI. Application of arthrospira platensis for medicinal purposes and the food industry: A review of the literature.Life202313384510.3390/life1303084536984000
    [Google Scholar]
  35. FischerR. MaierO. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF.Oxid. Med. Cell. Longev.20152015111810.1155/2015/61081325834699
    [Google Scholar]
  36. ScarianE. ViolaC. DragoniF. Di GerlandoR. RizzoB. DiamantiL. GagliardiS. BordoniM. PansarasaO. New insights into oxidative stress and inflammatory response in neurodegenerative diseases.Int. J. Mol. Sci.2024255269810.3390/ijms2505269838473944
    [Google Scholar]
  37. KumarA. ChristianP.K. PanchalK. GuruprasadB.R. TiwariA.K. Supplementation of spirulina (Arthrospira platensis) improves lifespan and locomotor activity in paraquat-sensitive DJ-1β Δ93 flies, a Parkinson’s Disease model in Drosophila melanogaster.J. Diet. Suppl.201714557358810.1080/19390211.2016.127591728166438
    [Google Scholar]
  38. SinhaS. PatroN. PatroI.K. Maternal protein malnutrition: Current and future perspectives of spirulina supplementation in neuroprotection.Front. Neurosci.20181296610.3389/fnins.2018.0096630618587
    [Google Scholar]
  39. KumarA. RamamoorthyD. VermaD.K. KumarA. KumarN. KanakK.R. MarweinB.M. MohanK. Antioxidant and phytonutrient activities of Spirulina platensis.Energy Nexus2022610007010.1016/j.nexus.2022.100070
    [Google Scholar]
  40. LimaF.A.V. JoventinoI.P. JoventinoF.P. de AlmeidaA.C. NevesK.R.T. do CarmoM.R. LealL.K.A.M. de AndradeG.M. de Barros VianaG.S. Neuroprotective activities of spirulina platensis in the 6-ohda model of parkinson’s disease are related to its anti-inflammatory effects.Neurochem. Res.201742123390340010.1007/s11064‑017‑2379‑528861668
    [Google Scholar]
  41. BurkeR.E. O’MalleyK. Axon degeneration in Parkinson’s disease.Exp. Neurol.2013246728310.1016/j.expneurol.2012.01.01122285449
    [Google Scholar]
  42. ZhangF. XieJ. LuJ. ZhangJ. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson′s disease model in C57BL/6J mice.Neural Regen. Res.201510230831310.4103/1673‑5374.15238725883632
    [Google Scholar]
  43. PabonM.M. JernbergJ.N. MorgantiJ. ContrerasJ. HudsonC.E. KleinR.L. BickfordP.C. A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson’s disease.PLoS One201279e4525610.1371/journal.pone.004525623028885
    [Google Scholar]
  44. TuD. GaoY. YangR. GuanT. HongJ.S. GaoH.M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration.J. Neuroinflammation201916125510.1186/s12974‑019‑1659‑131805953
    [Google Scholar]
  45. McCartyM.F. DiNicolantonioJ.J. LernerA. A fundamental role for oxidants and intracellular calcium signals in alzheimer’s pathogenesis—and how a comprehensive antioxidant strategy may aid prevention of this disorder.Int. J. Mol. Sci.2021224214010.3390/ijms2204214033669995
    [Google Scholar]
  46. ChoiW.Y. LeeW.K. KimT.H. RyuY.K. ParkA. LeeY.J. HeoS.J. OhC. ChungY.C. KangD.H. The effects of spirulina maxima extract on memory improvement in those with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial.Nutrients20221418371410.3390/nu1418371436145090
    [Google Scholar]
  47. ManfrediG. XuZ. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS.Mitochondrion200552778710.1016/j.mito.2005.01.00216050975
    [Google Scholar]
  48. Garbuzova-DavisS. BickfordC. Short communication: Neuroprotective effect of spirulina in a mouse model of ALS.Open Tissue Eng. Regen. Med. J.201031364110.2174/1875043501003010036
    [Google Scholar]
  49. SoumyaB.S. ShreenidhiV.P. AgarwalA. GandhirajanR.K. DharmarajanA. WarrierS. Unwinding the role of Wnt signaling cascade and molecular triggers of motor neuron degeneration in amyotrophic lateral sclerosis (ALS).Cell. Signal.202311011080710.1016/j.cellsig.2023.11080737463628
    [Google Scholar]
  50. LiuP. ChoiJ.W. LeeM.K. ChoiY.H. NamT.J. Wound Healing Potential of Spirulina Protein on CCD-986sk Cells.Mar. Drugs201917213010.3390/md1702013030813318
    [Google Scholar]
  51. LeeM.S. KimY.H. LeeB. KwonS.H. MoonW.J. HongK.S. SongY.S. MoritaK. HahmD.H. ShimI. HerS. Novel antidepressant-like activity of caffeic Acid phenethyl ester is mediated by enhanced glucocorticoid receptor function in the hippocampus.Evid. Based Complement. Alternat. Med.20142014164603910.1155/2014/64603925477995
    [Google Scholar]
  52. RagusaI. NardoneG.N. ZanattaS. BertinW. AmadioE. Spirulina for skin care: A bright blue future.Cosmetics202181710.3390/cosmetics8010007
    [Google Scholar]
  53. LiB. ZhangX. GaoM. ChuX. Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis.Biomed. Pharmacother.2005591055156010.1016/j.biopha.2005.06.01216271846
    [Google Scholar]
  54. MishraP. KumarS. MalikJ.K. Molecular mechanistic insight spirulina as anti-stress agent.Middle East Research Journal of Pharmaceutical Sciences202332253010.36348/merjps.2023.v03i02.003
    [Google Scholar]
  55. SongX. ZhangL. HuiX. SunX. YangJ. WangJ. WuH. WangX. ZhengZ. CheF. WangG. Selenium-containing protein from selenium-enriched Spirulina platensis antagonizes oxygen glucose deprivation-induced neurotoxicity by inhibiting ROS-mediated oxidative damage through regulating MPTP opening.Pharm. Biol.202159162763610.1080/13880209.2021.192871534062090
    [Google Scholar]
  56. FanC. JiangJ. YinX. WongK.H. ZhengW. ChenT. Purification of selenium-containing allophycocyanin from selenium-enriched Spirulina platensis and its hepatoprotective effect against t-BOOH-induced apoptosis.Food Chem.2012134125326110.1016/j.foodchem.2012.02.130
    [Google Scholar]
  57. LipinskiB. Redox-active selenium in health and disease: A conceptual review.Mini Rev. Med. Chem.201919972072610.2174/138955751766616110412502227823560
    [Google Scholar]
  58. MallamaciR. StorelliM.M. BarbarossaA. MessinaG. ValenzanoA. MeleleoD. Potential protective effects of spirulina (spirulina platensis) against in vitro toxicity induced by heavy metals (cadmium, mercury, and lead) on sh-sy5y neuroblastoma cells.Int. J. Mol. Sci.202324231707610.3390/ijms24231707638069399
    [Google Scholar]
  59. KarkosP.D. LeongS.C. KarkosC.D. SivajiN. AssimakopoulosD.A. Spirulina in clinical practice: Evidence-based human applications.Evid. Based Complement. Alternat. Med.20112011153105310.1093/ecam/nen05818955364
    [Google Scholar]
  60. zeini hamzekolaeiF. Hajizadeh MoghaddamA. GhanbarzadehM. NazifiE. Khanjani JelodarS. Neuro-nutraceutical potential of selenium-enriched spirulina platensis in alleviating streptozotocin-induced cognitive impairment: Modulation of oxidative stress and acetylcholine activity in a rat model of Alzheimer’s disease.S. Afr. J. Bot.202518414215310.1016/j.sajb.2025.05.039
    [Google Scholar]
  61. AbdullahiD. Ahmad AnnuarA. SanusiJ. Improved spinal cord gray matter morphology induced by Spirulina platensis following spinal cord injury in rat models.Ultrastruct. Pathol.2020444-635937110.1080/01913123.2020.179259732686973
    [Google Scholar]
  62. OparaE.C. Oxidative Stress.Dis. Mon.200652518319810.1016/j.disamonth.2006.05.00316828360
    [Google Scholar]
  63. BarbosaM. ValentãoP. AndradeP. Bioactive compounds from macroalgae in the new millennium: Implications for neurodegenerative diseases.Mar. Drugs20141294934497210.3390/md1209493425257784
    [Google Scholar]
  64. MaG. GaoQ. YuanL. ChenY. CaiZ. ZhangL. HuJ. WangY. WuS. SunY. Spirulina (Arthrospira) cultivation in photobioreactors: From biochemistry and physiology to scale up engineering.Bioresour. Technol.202542313225910.1016/j.biortech.2025.13225939971103
    [Google Scholar]
  65. BoX. Microalgae and exercise: From molecular mechanisms and brain health to clinical perspectives in the context of 3P medicine.EPMA J.202516235138610.1007/s13167‑025‑00405‑840438495
    [Google Scholar]
  66. RamosM.V.N. Stalling the course of neurodegenerative diseases: Could cyanobacteria constitute a new approach toward therapy?Biomolecules20231310144410.3390/biom1310144437892126PMC10604708
    [Google Scholar]
  67. MoukhamH. LambiaseA. BaroneG.D. TripodiF. CoccettiP. Exploiting natural niches with neuroprotective properties: A comprehensive review.Nutrients2024169129810.3390/nu1609129838732545
    [Google Scholar]
  68. ShahM.A.R. ZhuF. CuiY. HuX. ChenH. KayaniS.I. HuoS. Mechanistic insights into the nutritional and therapeutic potential of Spirulina (Arthrospira) spp.: Challenges and opportunities.Trends Food Sci. Technol.202415110464810.1016/j.tifs.2024.104648
    [Google Scholar]
  69. AbdelmoniemE.A. MorsyM.M. RashadW.A. Abd-AlmotalebN.A. An Insight about Possible neuroprotective role of Spirulina platensis.Zagazig Univ. Med. J.202400010.21608/zumj.2024.314413.3534
    [Google Scholar]
  70. RodriguesF. ReisM. FerreiraL. GrossoC. FerrazR. VieiraM. VasconcelosV. MartinsR. The neuroprotective role of cyanobacteria with focus on the anti-inflammatory and antioxidant potential: Current status and perspectives.Molecules20242920479910.3390/molecules2920479939459167
    [Google Scholar]
  71. NguE.L. TanC.Y. LaiN.J.Y. WongK.H. LimS.H. MingL.C. TanK.O. PhangS.M. YowY.Y. Spirulina platensis suppressed iNOS and proinflammatory cytokines in lipopolysaccharide-induced BV2 microglia.Metabolites20221211114710.3390/metabo1211114736422287
    [Google Scholar]
  72. TamtajiO.R. Heidari-soureshjaniR. AsemiZ. KouchakiE. The effects of spirulina intake on clinical and metabolic parameters in Alzheimer’s disease: A randomized, double-blind, controlled trial.Phytother. Res.20233772957296410.1002/ptr.779136861852
    [Google Scholar]
  73. WlaźlakS. BiesekJ. Spirulina platensis and Chlorella vulgaris in poultry nutrition - a review of current research and potential opportunities.Poult. Sci.2025104910545610.1016/j.psj.2025.10545640570455
    [Google Scholar]
  74. LopesM.J.P. DelmondesG.A. LeiteG.M.L. CavalcanteD.R.A. AquinoP.É.A. LimaF.A.V. NevesK.R.T. CostaA.S. OliveiraH.D. Bezerra FelipeC.F. Pampolha LimaI.S. KerntopfM.R. VianaG.S.B. The protein-rich fraction from Spirulina platensis exerts neuroprotection in hemiparkinsonian rats by decreasing brain inflammatory-related enzymes and glial fibrillary acidic protein expressions.J. Med. Food202225769570910.1089/jmf.2021.010035834631
    [Google Scholar]
  75. SabatS. BejS. SwainS. BishoyiA.K. SahooC.R. SabatG. PadhyR.N. Phycochemistry and pharmacological significance of filamentous cyanobacterium Spirulina sp.Bioresour. Bioprocess.20251212710.1186/s40643‑025‑00861‑040178689
    [Google Scholar]
  76. KohE.J. SeoY.J. ChoiJ. LeeH.Y. KangD.H. KimK.J. LeeB.Y. Spirulina maxima extract prevents neurotoxicity via promoting activation of BDNF/CREB signaling pathways in neuronal cells and mice.Molecules2017228136310.3390/molecules2208136328817076
    [Google Scholar]
  77. BotutiheL. A. SafiraR. YulianiS. Combination of Spirulina platensis powder and Stichopus variegatus powder against Bcl2 expression in the hippocampus of dementia rats.Pharmaciana202414119
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501352964250914125955
Loading
/content/journals/cbiot/10.2174/0122115501352964250914125955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test