Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Since each dimension of a tensor can store different types of genomics data, compared to matrix methods, utilizing tensor structure can provide a deeper understanding of multi-dimensional data while also facilitating the discovery of more useful information related to cancer. However, in reality, there are issues such as insufficient utilization of prior knowledge in multi-omics data and limitations in the recovery of low-tubal-rank tensors. Therefore, the method proposed in this article was developed.

Objective

In this paper, we proposed a low transformed tubal rank tensor model (LTTRT) using a spatial-tubal constraint to accurately partition different types of cancer samples and provide reliable theoretical support for the identification, diagnosis, and treatment of cancer.

Methods

In the LTTRT method, the transformed tensor nuclear norm based on the transformed tensor singular value decomposition is characterized by the low-rank tensor, which can explore the global low-rank property of the tensor, resolving the challenge of the tensor nuclear norm-based method not achieving the lowest tubal rank. Additionally, the introduction of weighted total variation regularization is conducive to extracting more information from sequencing data in both spatial and tubal dimensions, exploring cross-correlation features of multiple genomic data, and addressing the problem of overlooking prior knowledge from various perspectives. In addition, the L-norm is used to improve sparsity. A symmetric Gauss‒Seidel-based alternating direction method of multipliers (sGS-ADMM) is used to update the LTTRT model iteratively.

Results

The experiments of sample clustering on multiple integrated cancer multi-omics datasets show that the proposed LTTRT method is better than existing methods. Experimental results validate the effectiveness of LTTRT in accurately partitioning different types of cancer samples.

Conclusion

The LTTRT method achieves precise segmentation of different types of cancer samples.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936319920241001024239
2024-10-21
2025-10-26
Loading full text...

Full text loading...

References

  1. Karimi-MalehH. KarimiF. FuL. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor.J. Hazard. Mater.202242312705810.1016/j.jhazmat.2021.127058
    [Google Scholar]
  2. JungI. KimM. RheeS. LimS. KimS. MONTI: A multi-omics non-negative tensor decomposition framework for gene-level integrative analysis.Front. Genet.202112114
    [Google Scholar]
  3. WangM. WangQ. HongD. RoyS.K. ChanussotJ. Learning tensor low-rank representation for hyperspectral anomaly detection.IEEE Trans. Cybern.2022113 35609106
    [Google Scholar]
  4. ZhengY.B. HuangT.Z. ZhaoX.L. JiangT.X. MaT.H. JiT.Y. Mixed noise removal in hyperspectral image via low-fibered-rank regularization.IEEE Trans. Geosci. Remote Sens.202058173474910.1109/TGRS.2019.2940534
    [Google Scholar]
  5. CaoW. WangY. SunJ. Total variation regularized tensor RPCA for background subtraction from compressive measurements.IEEE Trans. Image Process.20162594075409010.1109/TIP.2016.2579262 27305675
    [Google Scholar]
  6. LiZ. WangY. ZhaoQ. ZhangS. MengD. A tensor-based online RPCA model for compressive background subtraction.IEEE Trans. Neural Netw. Learn. Syst.202234121066810682
    [Google Scholar]
  7. XieM. LiuX. YangX. A nonlocal self-similarity-based weighted tensor low-rank decomposition for multichannel image completion with mixture noise.IEEE Trans. Neural Netw. Learn. Syst.2024351738710.1109/TNNLS.2022.3172184
    [Google Scholar]
  8. BenguaJ.A. PhienH.N. TuanH.D. DoM.N. Efficient tensor completion for color image and video recovery: Low-rank tensor train.IEEE Trans. Image Process.20172652466247910.1109/TIP.2017.2672439 28237929
    [Google Scholar]
  9. YangJ-H. ChenC. DaiH-N. DingM. WuZ-B. ZhengZ. Robust corrupted data recovery and clustering via generalized transformed tensor low-rank representation.IEEE Trans. Neural Netw. Learn. Syst.202235788398853
    [Google Scholar]
  10. PengH. HuY. ChenJ. WangH. LiY. CaiH. Integrating tensor similarity to enhance clustering performance.IEEE Trans. Pattern Anal. Mach. Intell.20224452582259310.1109/TPAMI.2020.3040306 33232225
    [Google Scholar]
  11. HuangJ. ZhangF. SafaeiB. QinZ. ChuF. The flexible tensor singular value decomposition and its applications in multisensor signal fusion processing.Mech. Syst. Signal Process.202422011166210.1016/j.ymssp.2024.111662
    [Google Scholar]
  12. XuH. WangX. HuangJ. ZhangF. ChuF. Semi-supervised multi-sensor information fusion tailored graph embedded low-rank tensor learning machine under extremely low labeled rate.Inf. Fusion202410510222210.1016/j.inffus.2023.102222
    [Google Scholar]
  13. HuY. LiuJ.X. GaoY.L. ShangJ. DSTPCA: Double-sparse constrained tensor principal component analysis method for feature selection.IEEE/ACM Trans. Comput. Biol. Bioinformatics20211841481149110.1109/TCBB.2019.2943459 31562100
    [Google Scholar]
  14. LiuP. LuoJ. ChenX. miRCom: Tensor completion integrating multi-view information to deduce the potential disease-related miRNA-miRNA pairs.IEEE/ACM Trans. Comput. Biol. Bioinformatics20221931747175910.1109/TCBB.2020.3037331 33180730
    [Google Scholar]
  15. LuoJ. LiuY. LiuP. LaiZ. WuH. Data integration using tensor decomposition for the prediction of miRNA-disease associations.IEEE J. Biomed. Health Inform.20222652370237810.1109/JBHI.2021.3125573 34748505
    [Google Scholar]
  16. LiuY. ShangF. JiaoL. ChengJ. ChengH. Trace norm regularized CANDECOMP/PARAFAC decomposition with missing data.IEEE Trans. Cybern.201545112437244810.1109/TCYB.2014.2374695 26470059
    [Google Scholar]
  17. LiuJ. MusialskiP. WonkaP. YeJ. Tensor completion for estimating missing values in visual data.IEEE Trans. Pattern Anal. Mach. Intell.201335120822010.1109/TPAMI.2012.39 22271823
    [Google Scholar]
  18. JiangT-X. HuangT-Z. ZhaoX-L. DengL-J. Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm.J. Comput. Appl. Math.202037211268010.1016/j.cam.2019.112680
    [Google Scholar]
  19. HanZ.F. LeungC.S. HuangL.T. SoH.C. Sparse and truncated nuclear norm based tensor completion.Neural Process. Lett.201745372974310.1007/s11063‑016‑9503‑4
    [Google Scholar]
  20. LuC. FengJ. ChenY. LiuW. LinZ. YanS. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Las Vegas, NV, USA, 27-30 June20165249525710.1109/CVPR.2016.567
    [Google Scholar]
  21. HuY. LiuJ.X. GaoY.L. LiS.J. WangJ. Differentially expressed genes extracted by the tensor robust principal component analysis (TRPCA) method.Complexity201920191613624510.1155/2019/6136245
    [Google Scholar]
  22. LuC. FengJ. ChenY. LiuW. LinZ. YanS. Tensor robust principal component analysis with a new tensor nuclear norm.IEEE Trans. Pattern Anal. Mach. Intell.202042492593810.1109/TPAMI.2019.2891760 30629495
    [Google Scholar]
  23. GuoJ. SunY. GaoJ. HuY. YinB. Logarithmic Schatten-p norm minimization for tensorial multi-view subspace clustering.IEEE Trans. Pattern Anal. Mach. Intell.202345333963410 35648873
    [Google Scholar]
  24. SunS. LiuJ. ChenX. LiW. LiH. Hyperspectral anomaly detection with tensor average rank and piecewise smoothness constraints.IEEE Trans. Neural Netw. Learn. Syst.202334118679869210.1109/TNNLS.2022.3152252 35245203
    [Google Scholar]
  25. ZhangX. NgM.K. Low rank tensor completion with poisson observations.IEEE Trans. Pattern Anal. Mach. Intell.202244842394251 33587697
    [Google Scholar]
  26. OhT.H. TaiY.W. BazinJ.C. KimH. KweonI.S. Partial sum minimization of singular values in robust PCA: Algorithm and applications.IEEE Trans. Pattern Anal. Mach. Intell.201638474475810.1109/TPAMI.2015.2465956 26353362
    [Google Scholar]
  27. ChenL. JiangX. LiuX. ZhouZ. Logarithmic norm regularized low-rank factorization for matrix and tensor completion.IEEE Trans. Image Process.2021303434344910.1109/TIP.2021.3061908 33651693
    [Google Scholar]
  28. SongG. NgM.K. ZhangX. Robust tensor completion using transformed tensor singular value decomposition.Numer. Linear Algebra Appl.2020273e229910.1002/nla.2299
    [Google Scholar]
  29. NgM.K. ZhangX. ZhaoX-L. Patched-tube unitary transform for robust tensor completion.Pattern Recognit.2020100107181
    [Google Scholar]
  30. QiuD. BaiM. NgM.K. ZhangX. Nonlocal robust tensor recovery with nonconvex regularization *.Inverse Probl.202137303500110.1088/1361‑6420/abd85b
    [Google Scholar]
  31. WangM. WangQ. ChanussotJ. Tensor low-rank constraint and $l_0$ total variation for hyperspectral image mixed noise removal.IEEE J. Sel. Top. Signal Process.202115371873310.1109/JSTSP.2021.3058503
    [Google Scholar]
  32. ChenL. SunD. TohK.C. An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high-dimensional convex composite conic programming.Math. Program.20171611-223727010.1007/s10107‑016‑1007‑5
    [Google Scholar]
  33. LiX. SunD. TohK.C. A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions.Math. Program.20161551-233337310.1007/s10107‑014‑0850‑5
    [Google Scholar]
  34. NgM.K. Iterative methods for Toeplitz systems.OxfordAcademic200410.1093/oso/9780198504207.001.0001
    [Google Scholar]
  35. RockafellarR.T. WetsR.J-B. Variational Analysis.Springer Sci. & Bus. Media2009
    [Google Scholar]
  36. TanR.S.Y.C. OngW.S. LeeK.H. HER2 expression, copy number variation and survival outcomes in HER2-low non-metastatic breast cancer: An international multicentre cohort study and TCGA-METABRIC analysis.BMC Med.202220110510.1186/s12916‑022‑02284‑6 35296300
    [Google Scholar]
  37. ZhouP. FengJ. Outlier-robust tensor PCA.2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Honolulu, HI, USA, 21-26 July201739383946
    [Google Scholar]
  38. LiuY. ChenL. ZhuC. Improved robust tensor principal component analysis via low-rank core matrix.IEEE J. Sel. Top. Signal Process.20181261378138910.1109/JSTSP.2018.2873142
    [Google Scholar]
  39. QiaoQ. GaoY-L. YuanS-S. LiuJ-X. Robust tensor method based on correntropy and tensor singular value decomposition for cancer genomics data.2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Houston, TX, USA, 09-12 December202150951410.1109/BIBM52615.2021.9669785
    [Google Scholar]
  40. ZhengR. LiM. LiangZ. WuF.X. PanY. WangJ. SinNLRR: A robust subspace clustering method for cell type detection by non-negative and low-rank representation.Bioinformatics201935193642365010.1093/bioinformatics/btz139 30821315
    [Google Scholar]
  41. LovászL. PlummerM.D. Matching theory.Elsevier200910.1090/chel/367
    [Google Scholar]
  42. WangY. PengJ. ZhaoQ. LeungY. ZhaoX.L. MengD. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.20181141227124310.1109/JSTARS.2017.2779539
    [Google Scholar]
  43. KanungoT. MountD.M. NetanyahuN.S. PiatkoC.D. SilvermanR. WuA.Y. An efficient k-means clustering algorithm: Analysis and implementation.IEEE Trans. Pattern Anal. Mach. Intell.200224788189210.1109/TPAMI.2002.1017616
    [Google Scholar]
  44. LeesJ. ChanA. Polypharmacy in elderly patients with cancer: Clinical implications and management.Lancet Oncol.201112131249125710.1016/S1470‑2045(11)70040‑7 21741307
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936319920241001024239
Loading
/content/journals/cbio/10.2174/0115748936319920241001024239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test