Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

Cancers routinely exhibit chromosomal instability that results in copy number variants (CNVs), namely changes in the abundance of genomic material. Unfortunately, the detection of these variants in cancer genomes is difficult.

Methods

We present Ploidetect, a software package that effectively identifies CNVs within whole-genome sequenced tumors. Ploidetect utilizes a coarse-to-fine segmentation approach which yields highly contiguous segments while allowing for focal CNVs to be detected with high sensitivity.

Results

We benchmark Ploidetect against popular CNV tools using synthetic data, cell line data, and real-world metastatic tumor data and demonstrate strong performance in all tests. We show that high quality CNVs from Ploidetect enable the identification of recurrent homozygous deletions and genes associated with chromosomal instability in a multi-cancer cohort of 687 patients. Using highly contiguous CNV calls afforded by Ploidetect, we also demonstrate the use of segment N50 as a novel metric for the measurement of chromosomal instability within tumor biopsies.

Conclusion

We propose that the increasingly accurate determination of CNVs is critical for their productive study in cancer, and our work demonstrates advances made possible by progress in this regard.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936312589240910071837
2024-10-28
2025-10-26
Loading full text...

Full text loading...

References

  1. ZackT.I. SchumacherS.E. CarterS.L. Pan-cancer patterns of somatic copy number alteration.Nat. Genet.201345101134114010.1038/ng.2760 24071852
    [Google Scholar]
  2. HieronymusH MuraliR TinA Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death.Elife20187e3729410.7554/eLife.37294
    [Google Scholar]
  3. TelliM.L. TimmsK.M. ReidJ. Homologous recombination deficiency (hrd) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer.Clin. Cancer Res.201622153764377310.1158/1078‑0432.CCR‑15‑2477 26957554
    [Google Scholar]
  4. MenghiF. BarthelF.P. YadavV. The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations.Cancer Cell201834219710.e510.1016/j.ccell.2018.06.008
    [Google Scholar]
  5. MacintyreG. GoranovaT.E. De SilvaD. Copy number signatures and mutational processes in ovarian carcinoma.Nat. Genet.20185091262127010.1038/s41588‑018‑0179‑8 30104763
    [Google Scholar]
  6. HeiligC.E. LöfflerH. MahlknechtU. Chromosomal instability correlates with poor outcome in patients with myelodysplastic syndromes irrespectively of the cytogenetic risk group.J. Cell. Mol. Med.201014489590210.1111/j.1582‑4934.2009.00905.x 19754665
    [Google Scholar]
  7. OrsettiB. SelvesJ. Bascoul-MolleviC. Impact of chromosomal instability on colorectal cancer progression and outcome.BMC Cancer20141412110.1186/1471‑2407‑14‑121
    [Google Scholar]
  8. ChoiC.M. SeoK.W. JangS.J. Chromosomal instability is a risk factor for poor prognosis of adenocarcinoma of the lung: Fluorescence in situ hybridization analysis of paraffin-embedded tissue from Korean patients.Lung Cancer2009641667010.1016/j.lungcan.2008.07.016 18814932
    [Google Scholar]
  9. FaveroF. JoshiT. MarquardA.M. Sequenza: Allele-specific copy number and mutation profiles from tumor sequencing data.Ann. Oncol.2015261647010.1093/annonc/mdu479 25319062
    [Google Scholar]
  10. XiR. LeeS. XiaY. KimT.M. ParkP.J. Copy number analysis of whole-genome data using BIC-seq2 and its application to detection of cancer susceptibility variants.Nucleic Acids Res.201644136274628610.1093/nar/gkw491 27260798
    [Google Scholar]
  11. OlshenA.B. VenkatramanE.S. LucitoR. WiglerM. Circular binary segmentation for the analysis of array-based DNA copy number data.Biostatistics20045455757210.1093/biostatistics/kxh008 15475419
    [Google Scholar]
  12. NilsenG. LiestølK. Van LooP. Copynumber: Efficient algorithms for single- and multi-track copy number segmentation.BMC Genomics201213159110.1186/1471‑2164‑13‑591 23442169
    [Google Scholar]
  13. TalevichE. ShainA.H. BottonT. BastianB.C. CNVkit: Genome-wide copy number detection and visualization from targeted DNA sequencing.PLOS Comput. Biol.2016124e100487310.1371/journal.pcbi.1004873 27100738
    [Google Scholar]
  14. Van LooP. NordgardS.H. LingjærdeO.C. Allele-specific copy number analysis of tumors.Proc. Natl. Acad. Sci. USA201010739169101691510.1073/pnas.1009843107 20837533
    [Google Scholar]
  15. CameronD.L. BaberJ. ShaleC. GRIDSS, PURPLE, LINX: Unscrambling the tumor genome via integrated analysis of structural variation and copy number.bioRxiv201978101310.1101/781013
    [Google Scholar]
  16. Ben-YaacovE. EldarY.C. A fast and flexible method for the segmentation of aCGH data.Bioinformatics20082416i139i14510.1093/bioinformatics/btn272 18689815
    [Google Scholar]
  17. ShahS.P. XuanX. DeLeeuwR.J. Integrating copy number polymorphisms into array CGH analysis using a robust HMM.Bioinformatics20062214e431e43910.1093/bioinformatics/btl238 16873504
    [Google Scholar]
  18. ZhangL. BaiW. YuanN. DuZ. Comprehensively benchmarking applications for detecting copy number variation.PLOS Comput. Biol.2019155e100706910.1371/journal.pcbi.1007069 31136576
    [Google Scholar]
  19. The importance of no evidence.Nat. Hum. Behav.20193319710.1038/s41562‑019‑0569‑7 30953022
    [Google Scholar]
  20. RobinsonD.R. WuY.M. LonigroR.J. Integrative clinical genomics of metastatic cancer.Nature2017548766729730310.1038/nature23306 28783718
    [Google Scholar]
  21. PleasanceE. TitmussE. WilliamsonL. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes.Nat. Can.20201445246810.1038/s43018‑020‑0050‑6 35121966
    [Google Scholar]
  22. Nik-ZainalS. DaviesH. StaafJ. Landscape of somatic mutations in 560 breast cancer whole-genome sequences.Nature20165347605475410.1038/nature17676 27135926
    [Google Scholar]
  23. AaltonenL.A. AbascalF. AbeshouseA. Pan-cancer analysis of whole genomes.Nature20205787793829310.1038/s41586‑020‑1969‑6 32025007
    [Google Scholar]
  24. LaskinJ. JonesS. AparicioS. Lessons learned from the application of whole-genome analysis to the treatment of patients with advanced cancers.Molecular Case Studies201511a00057010.1101/mcs.a000570 27148575
    [Google Scholar]
  25. DanecekP. BonfieldJ.K. LiddleJ. Twelve years of SAMtools and BCFtools.Gigascience2021102giab00810.1093/gigascience/giab008 33590861
    [Google Scholar]
  26. QuinlanA.R. HallI.M. BEDTools: A flexible suite of utilities for comparing genomic features.Bioinformatics201026684184210.1093/bioinformatics/btq033 20110278
    [Google Scholar]
  27. CraigD.W. NasserS. CorbettR. A somatic reference standard for cancer genome sequencing.Sci. Rep.2016612460710.1038/srep24607 27094764
    [Google Scholar]
  28. YueJ.X. LitiG. SimuG. simuG: A general-purpose genome simulator.Bioinformatics201935214442444410.1093/bioinformatics/btz424 31116378
    [Google Scholar]
  29. CockP.J.A. AntaoT. ChangJ.T. Biopython: Freely available Python tools for computational molecular biology and bioinformatics.Bioinformatics200925111422142310.1093/bioinformatics/btp163 19304878
    [Google Scholar]
  30. HuangW. LiL. MyersJ.R. MarthG.T. ART: A next-generation sequencing read simulator.Bioinformatics201228459359410.1093/bioinformatics/btr708 22199392
    [Google Scholar]
  31. LiH. Minimap2: Pairwise alignment for nucleotide sequences.Bioinformatics201834183094310010.1093/bioinformatics/bty191 29750242
    [Google Scholar]
  32. PriestleyP. BaberJ. LolkemaM.P. Pan-cancer whole-genome analyses of metastatic solid tumours.Nature2019575778121021610.1038/s41586‑019‑1689‑y 31645765
    [Google Scholar]
  33. Nik-ZainalS. Van LooP. WedgeD.C. The life history of 21 breast cancers.Cell20121495994100710.1016/j.cell.2012.04.023 22608083
    [Google Scholar]
  34. RaineKM Van LooP WedgeDC ascatNgs: Identifying somatically acquired copy-number alterations from whole-genome sequencing data.Curr Protoc Bioinformatics20165615.9.115.9.1710.1002/cpbi.17
    [Google Scholar]
  35. ZaccariaS. RaphaelB.J. Accurate quantification of copy-number aberrations and whole-genome duplications in multi-sample tumor sequencing data.Nat. Commun.2020111430110.1038/s41467‑020‑17967‑y 32879317
    [Google Scholar]
  36. KösterJ. RahmannS. Snakemake—A scalable bioinformatics workflow engine.Bioinformatics201228192520252210.1093/bioinformatics/bts480 22908215
    [Google Scholar]
  37. BenjaminiY. HochbergY. BenjaminiY. HochbergY. Controlling the false discovery rate: A practical and powerful approach to multiple testing.J. R. Stat. Soc. Series B Stat. Methodol.199557128930010.1111/j.2517‑6161.1995.tb02031.x
    [Google Scholar]
  38. PedregosaF. VaroquauxG. GramfortA. Scikit-learn: Machine learning in Python.J. Mach. Learn. Res.2011128528252830
    [Google Scholar]
  39. BoerkoelP.K. DixonK. FitzsimonsC. Long‐read genome sequencing resolves a complex 13q structural variant associated with syndromic anophthalmia.Am. J. Med. Genet. A.202218851589159410.1002/ajmg.a.62676 35122461
    [Google Scholar]
  40. ZookJ.M. CatoeD. McDanielJ. Extensive sequencing of seven human genomes to characterize benchmark reference materials.Sci. Data20163116002510.1038/sdata.2016.25 27271295
    [Google Scholar]
  41. ChengJ. DemeulemeesterJ. WedgeD.C. Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour suppressors.Nat. Commun.201781122110.1038/s41467‑017‑01355‑0 29089486
    [Google Scholar]
  42. DruscoA. PekarskyY. CostineanS. Common fragile site tumor suppressor genes and corresponding mouse models of cancer.J. Biomed. Biotechnol.20112011984505 21318118
    [Google Scholar]
  43. SiposO. ToveyH. QuistJ. Assessment of structural chromosomal instability phenotypes as biomarkers of carboplatin response in triple negative breast cancer: The TNT trial.Ann. Oncol.2021321586510.1016/j.annonc.2020.10.475 33098992
    [Google Scholar]
  44. PrzybytkowskiE. LenkiewiczE. BarrettM.T. Chromosome-breakage genomic instability and chromothripsis in breast cancer.BMC Genomics201415157910.1186/1471‑2164‑15‑579 25011954
    [Google Scholar]
  45. CantoL.M. LarsenS.J. Catin KupperB.E. Increased levels of genomic instability and mutations in homologous recombination genes in locally advanced rectal carcinomas.Front. Oncol.2019939510.3389/fonc.2019.00395 31192117
    [Google Scholar]
  46. HieronymusH. SchultzN. GopalanA. Copy number alteration burden predicts prostate cancer relapse.Proc. Natl. Acad. Sci. USA201411130111391114410.1073/pnas.1411446111 25024180
    [Google Scholar]
  47. BakhoumS.F. NgoB. LaughneyA.M. Chromosomal instability drives metastasis through a cytosolic DNA response.Nature2018553768946747210.1038/nature25432 29342134
    [Google Scholar]
  48. DaltonW.B. YuB. YangV.W. p53 suppresses structural chromosome instability after mitotic arrest in human cells.Oncogene201029131929194010.1038/onc.2009.477 20062083
    [Google Scholar]
  49. BanS. ShinoharaT. HiraiY. MoritakuY. CologneJ.B. MacPheeD.G. Chromosomal instability in BRCA1- or BRCA2-defective human cancer cells detected by spontaneous micronucleus assay.Mutat. Res.20014741-2152310.1016/S0027‑5107(00)00152‑4 11239959
    [Google Scholar]
  50. FoijerF. XieS.Z. SimonJ.E. Chromosome instability induced by Mps1 and p53 mutation generates aggressive lymphomas exhibiting aneuploidy-induced stress.Proc. Natl. Acad. Sci. USA201411137134271343210.1073/pnas.1400892111 25197064
    [Google Scholar]
  51. TuttA. GabrielA. BertwistleD. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification.Curr. Biol.19999191107S110.1016/S0960‑9822(99)80479‑5 10531007
    [Google Scholar]
  52. BassA.J. ThorssonV. ShmulevichI. Comprehensive molecular characterization of gastric adenocarcinoma.Nature2014513751720220910.1038/nature13480 25079317
    [Google Scholar]
  53. LingH. HanashiroK. LuongT.H. BenavidesL. FukasawaK. Functional relationship among PLK2, PLK4 and ROCK2 to induce centrosome amplification.Cell Cycle201514454455310.4161/15384101.2014.989121 25590559
    [Google Scholar]
  54. OkuY. TareyanagiC. TakayaS. Multimodal effects of small molecule ROCK and LIMK inhibitors on mitosis, and their implication as anti-leukemia agents.PLoS One201493e9240210.1371/journal.pone.0092402 24642638
    [Google Scholar]
  55. LibanjeF. RaingeaudJ. LuanR. ROCK 2 inhibition triggers the collective invasion of colorectal adenocarcinomas.EMBO J.20193814e9929910.15252/embj.201899299 31304629
    [Google Scholar]
  56. XiaL. HuangW. BellaniM. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes.Cancer Cell2017315653668.e710.1016/j.ccell.2017.04.005 28486105
    [Google Scholar]
  57. OyamaY. ShigetaS. TokunagaH. CHD4 regulates platinum sensitivity through MDR1 expression in ovarian cancer: A potential role of CHD4 inhibition as a combination therapy with platinum agents.PLoS One2021166e025107910.1371/journal.pone.0251079 34161330
    [Google Scholar]
  58. ArendsT. DegeC. BortnickA. CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis.Proc. Natl. Acad. Sci. USA201911622109271093610.1073/pnas.1821301116 31085655
    [Google Scholar]
  59. SteeleC.D. AbbasiA. IslamS.M.A. Signatures of copy number alterations in human cancer.Nature2022606791698499110.1038/s41586‑022‑04738‑6 35705804
    [Google Scholar]
  60. IbragimovaM.K. TsyganovM.M. PevznerA.M. LitviakovN. Transcriptome of breast tumors with different amplification status of the long arm of chromosome 8.Anticancer Res.202141118719510.21873/anticanres.14764 33419812
    [Google Scholar]
  61. ZhaoE.Y. ShenY. PleasanceE. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer.Clin. Cancer Res.201723247521753010.1158/1078‑0432.CCR‑17‑1941 29246904
    [Google Scholar]
  62. GagliardiA. PorterV.L. ZongZ. Analysis of Ugandan cervical carcinomas identifies human papillomavirus clade–specific epigenome and transcriptome landscapes.Nat. Genet.202052880081010.1038/s41588‑020‑0673‑7 32747824
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936312589240910071837
Loading
/content/journals/cbio/10.2174/0115748936312589240910071837
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test