Skip to content
2000
image of Advancing Mitochondrial Health in Huntington Disease (HD): Small Molecule Therapies and Neurodegeneration

Abstract

Huntington's disease (HD) is a severe neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene, leading to the production of a mutant huntingtin protein. This mutation results in progressive motor, cognitive, and psychiatric impairments, alongside significant neuronal loss. Mitochondrial dysfunction plays a pivotal role in the pathophysiology of HD, contributing to disease progression and neuronal death. This article aims to evaluate small molecule-based therapeutic strategies designed to enhance mitochondrial function as a potential approach to alleviate symptoms and slow the progression of HD and related neurodegenerative disorders. A comprehensive review of recent literature is conducted to identify small molecules targeting mitochondrial dysfunction from Google Scholar, PubMed/Medline/PMC, ScienceDirect, Elsevier, Google Patents, and Clinicaltrials.gov.in, among others. The analysis focuses on their mechanisms of action, including reducing oxidative stress, enhancing mitochondrial biogenesis, and improving mitochondrial dynamics and function. The review identifies several promising small molecules capable of targeting mitochondrial dysfunction. These agents demonstrate potential in preclinical studies to alleviate HD symptoms and modify disease progression by addressing key aspects of mitochondrial health. Small molecule therapies targeting mitochondrial dysfunction offer considerable promise for treating HD. However, further research is required to optimize these therapies for clinical use and to evaluate their long-term impact on disease progression to fully establish their therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098387655250818072130
2025-09-11
2025-12-17
Loading full text...

Full text loading...

References

  1. Andrew S.E. Paul Goldberg Y. Kremer B. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat. Genet. 1993 4 4 398 403 10.1038/ng0893‑398 8401589
    [Google Scholar]
  2. Borrell-Pagès M. Zala D. Humbert S. Saudou F. Huntington’s disease: From huntingtin function and dysfunction to therapeutic strategies. Cell. Mol. Life Sci. 2006 63 22 2642 2660 10.1007/s00018‑006‑6242‑0 17041811
    [Google Scholar]
  3. Gil J.M. Rego A.C. Mechanisms of neurodegeneration in Huntington’s disease. Eur. J. Neurosci. 2008 27 11 2803 2820 10.1111/j.1460‑9568.2008.06310.x 18588526
    [Google Scholar]
  4. Pidgeon C. Rickards H. The pathophysiology and pharmacological treatment of Huntington disease. Behav. Neurol. 2013 26 4 245 253 10.1155/2013/705373 22713409
    [Google Scholar]
  5. Piao X. Li D. Liu H. Guo Q. Yu Y. Advances in gene and cellular therapeutic approaches for Huntington’s disease. Protein Cell 2025 16 5 307 337 10.1093/procel/pwae042 39121016
    [Google Scholar]
  6. Chistiakov D.A. Shkurat T.P. Melnichenko A.A. Grechko A.V. Orekhov A.N. The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann. Med. 2018 50 2 121 127 10.1080/07853890.2017.1417631 29237304
    [Google Scholar]
  7. Carmo C. Naia L. Lopes C. Rego A.C. Mitochondrial dysfunction in Huntington’s disease. Adv. Exp. Med. Biol. 2018 1049 59 83 10.1007/978‑3‑319‑71779‑1_3 29427098
    [Google Scholar]
  8. Bezprozvanny I. Hayden M.R. Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun. 2004 322 4 1310 1317 10.1016/j.bbrc.2004.08.035 15336977
    [Google Scholar]
  9. Czeredys M. Dysregulation of neuronal calcium signaling via store-operated channels in Huntington’s disease. Front. Cell Dev. Biol. 2020 8 611735 10.3389/fcell.2020.611735 33425919
    [Google Scholar]
  10. Simo I. Robinson K.J. Kam J. Mitochondrial dysfunction in Machado Joseph disease: Insights from a multi-model system. bioRxiv 2025
    [Google Scholar]
  11. San-Millán I. The key role of mitochondrial function in health and disease. Antioxidants 2023 12 4 782 10.3390/antiox12040782 37107158
    [Google Scholar]
  12. Franco-Iborra S. Vila M. Perier C. Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson’s disease and Huntington’s disease. Front. Neurosci. 2018 12 342 10.3389/fnins.2018.00342 29875626
    [Google Scholar]
  13. Memme J.M. Erlich A.T. Phukan G. Hood D.A. Exercise and mitochondrial health. J. Physiol. 2021 599 3 803 817 10.1113/JP278853 31674658
    [Google Scholar]
  14. Kotiadis V.N. Duchen M.R. Osellame L.D. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 4 1254 1265 10.1016/j.bbagen.2013.10.041 24211250
    [Google Scholar]
  15. Wang Y. Liu N. Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther. 2019 25 7 859 875 10.1111/cns.13140 31050206
    [Google Scholar]
  16. Ahamad S. Bhat S.A. The emerging landscape of small-molecule therapeutics for the treatment of Huntington’s disease. J. Med. Chem. 2022 65 24 15993 16032 10.1021/acs.jmedchem.2c00799 36490325
    [Google Scholar]
  17. Bhat S.A. Ahamad S. Dar N.J. Siddique Y.H. Nazir A. The emerging landscape of natural small-molecule therapeutics for Huntington’s disease. Curr. Neuropharmacol. 2023 21 4 867 889 10.2174/1570159X21666230216104621 36797612
    [Google Scholar]
  18. Lee H. Elkamhawy A. Rakhalskaya P. Small molecules in Parkinson’s disease Therapy: From dopamine pathways to new emerging targets. Pharmaceuticals 2024 17 12 1688 10.3390/ph17121688 39770531
    [Google Scholar]
  19. Smith A.J. New horizons in therapeutic antibody discovery: Opportunities and challenges versus small-molecule therapeutics. SLAS Discov. 2015 20 4 437 453 10.1177/1087057114562544 25512329
    [Google Scholar]
  20. Tabrizi S.J. Flower M.D. Ross C.A. Wild E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020 16 10 529 546 10.1038/s41582‑020‑0389‑4 32796930
    [Google Scholar]
  21. Jodeiri Farshbaf M. Ghaedi K. Huntington’s disease and mitochondria. Neurotox. Res. 2017 32 3 518 529 10.1007/s12640‑017‑9766‑1 28639241
    [Google Scholar]
  22. Alqahtani T. Deore S.L. Kide A.A. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023 71 83 92 10.1016/j.mito.2023.05.007 37269968
    [Google Scholar]
  23. Cisbani G. Cicchetti F. An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis. 2012 3 8 382 10.1038/cddis.2012.121 22932724
    [Google Scholar]
  24. Wanker E.E. Ast A. Schindler F. Trepte P. Schnoegl S. The pathobiology of perturbed mutant huntingtin protein–protein interactions in Huntington’s disease. J. Neurochem. 2019 151 4 507 519 10.1111/jnc.14853 31418858
    [Google Scholar]
  25. Zheng Z. Diamond M.I. Huntington disease and the huntingtin protein. Prog. Mol. Biol. Transl. Sci. 2012 107 189 214 10.1016/B978‑0‑12‑385883‑2.00010‑2 22482451
    [Google Scholar]
  26. Reddy P.H. Mao P. Manczak M. Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res. Brain Res. Rev. 2009 61 1 33 48 10.1016/j.brainresrev.2009.04.001 19394359
    [Google Scholar]
  27. Sharma A. Behl T. Sharma L. Aelya L. Bungau S. Mitochondrial dysfunction in Huntington’s disease: Pathogenesis and therapeutic opportunities. Curr. Drug Targets 2021 22 14 1637 1667 10.2174/1389450122666210224105945 33655829
    [Google Scholar]
  28. Dai Y. Wang H. Lian A. A comprehensive perspective of Huntington’s disease and mitochondrial dysfunction. Mitochondrion 2023 70 8 19 10.1016/j.mito.2023.03.001 36906250
    [Google Scholar]
  29. Sawant N. Morton H. Kshirsagar S. Reddy A.P. Reddy P.H. Mitochondrial abnormalities and synaptic damage in Huntington’s disease: A focus on defective mitophagy and mitochondria-targeted therapeutics. Mol. Neurobiol. 2021 58 12 6350 6377 10.1007/s12035‑021‑02556‑x 34519969
    [Google Scholar]
  30. Parikh S. Saneto R. Falk M.J. A modern approach to the treatment of mitochondrial disease. Curr. Treat. Options Neurol. 2009 11 6 414 430 10.1007/s11940‑009‑0046‑0 19891905
    [Google Scholar]
  31. Hroudová J. Singh N. Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. BioMed Res. Int. 2014 2014 1 1 9 10.1155/2014/175062 24900954
    [Google Scholar]
  32. Quintanilla R.A. Johnson G.V.W. Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res. Bull. 2009 80 4-5 242 247 10.1016/j.brainresbull.2009.07.010 19622387
    [Google Scholar]
  33. Ayala-Peña S. Role of oxidative DNA damage in mitochondrial dysfunction and Huntington’s disease pathogenesis. Free Radic. Biol. Med. 2013 62 102 110 10.1016/j.freeradbiomed.2013.04.017 23602907
    [Google Scholar]
  34. Johri A. Beal M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012 342 3 619 630 10.1124/jpet.112.192138 22700435
    [Google Scholar]
  35. Dagda R.K. Role of mitochondrial dysfunction in degenerative brain diseases, an overview. Brain Sci. 2018 8 10 178 10.3390/brainsci8100178 30241333
    [Google Scholar]
  36. Pérez-Arancibia R. Cisternas-Olmedo M. Sepúlveda D. Troncoso-Escudero P. Vidal R.L. Small molecules to perform big roles: The search for Parkinson’s and Huntington’s disease therapeutics. Front. Neurosci. 2023 16 1084493 10.3389/fnins.2022.1084493 36699535
    [Google Scholar]
  37. Markossian S. Ang K.K. Wilson C.G. Arkin M.R. Small-molecule screening for genetic diseases. Annu. Rev. Genomics Hum. Genet. 2018 19 1 263 288 10.1146/annurev‑genom‑083117‑021452 29799800
    [Google Scholar]
  38. Dailah H.G. Potential of therapeutic small molecules in apoptosis regulation in the treatment of neurodegenerative diseases: An updated review. Molecules 2022 27 21 7207 10.3390/molecules27217207 36364033
    [Google Scholar]
  39. Yang N.J. Hinner M.J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Site-specific protein labeling. Methods Protoc. 2014 29 53
    [Google Scholar]
  40. Kraichely E. Kim S. Wang J.C. Jung K.W. Chung P.J. BPS2025 - High-throughput assay for small-molecule therapeutics targeting mutant HTT RNA in Huntington’s disease. Biophys. J. 2025 124 3 419a 10.1016/j.bpj.2024.11.2249
    [Google Scholar]
  41. Popov L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med. 2020 24 9 4892 4899 10.1111/jcmm.15194 32279443
    [Google Scholar]
  42. Golpich M. Amini E. Mohamed Z. Azman Ali R. Mohamed Ibrahim N. Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017 23 1 5 22 10.1111/cns.12655 27873462
    [Google Scholar]
  43. Onyango I.G. Lu J. Rodova M. Lezi E. Crafter A.B. Swerdlow R.H. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 228 234 10.1016/j.bbadis.2009.07.014 19682571
    [Google Scholar]
  44. Sanchis-Gomar F. García-Giménez J. Gómez-Cabrera M. Pallardó F. Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr. Pharm. Des. 2014 20 35 5619 5633 10.2174/1381612820666140306095106 24606801
    [Google Scholar]
  45. Guedes-Dias P. Pinho B.R. Soares T.R. de Proença J. Duchen M.R. Oliveira J.M.A. Mitochondrial dynamics and quality control in Huntington’s disease. Neurobiol. Dis. 2016 90 51 57 10.1016/j.nbd.2015.09.008 26388396
    [Google Scholar]
  46. Duan W. Jiang M. Jin J. Metabolism in HD: Still a relevant mechanism? Mov. Disord. 2014 29 11 1366 1374 10.1002/mds.25992 25124273
    [Google Scholar]
  47. Gao J. Wang L. Liu J. Xie F. Su B. Wang X. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 2017 6 2 25 10.3390/antiox6020025 28379197
    [Google Scholar]
  48. Agrawal N. Dasaradhi P.V.N. Mohmmed A. Malhotra P. Bhatnagar R.K. Mukherjee S.K. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003 67 4 657 685 10.1128/MMBR.67.4.657‑685.2003 14665679
    [Google Scholar]
  49. Nandety R.S. Kuo Y.W. Nouri S. Falk B.W. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 2015 6 1 8 19 10.4161/21655979.2014.979701 25424593
    [Google Scholar]
  50. Zhu K.Y. Palli S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020 65 1 293 311 10.1146/annurev‑ento‑011019‑025224 31610134
    [Google Scholar]
  51. Bonaldi T. Straub T. Cox J. Kumar C. Becker P.B. Mann M. Combined use of RNAi and quantitative proteomics to study gene function in Drosophila. Mol. Cell 2008 31 5 762 772 10.1016/j.molcel.2008.07.018 18775334
    [Google Scholar]
  52. Saakre M. Jaiswal S. Rathinam M. Host-delivered RNA interference for durable pest resistance in plants: Advanced methods, challenges, and applications. Mol. Biotechnol. 2024 66 8 1786 1805 10.1007/s12033‑023‑00833‑9 37523020
    [Google Scholar]
  53. Famulok M. Verma S. In vivo-applied functional RNAs as tools in proteomics and genomics research. Trends Biotechnol. 2002 20 11 462 466 10.1016/S0167‑7799(02)02063‑2 12413820
    [Google Scholar]
  54. Das P.R. Sherif S.M. Application of exogenous dsRNAs-induced RNAi in agriculture: Challenges and triumphs. Front Plant Sci 2020 11 946 10.3389/fpls.2020.00946 32670336
    [Google Scholar]
  55. Seok H. Lee H. Jang E.S. Chi S.W. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell. Mol. Life Sci. 2018 75 5 797 814 10.1007/s00018‑017‑2656‑0 28905147
    [Google Scholar]
  56. Orlacchio A. Bernardi G. Orlacchio A. Martino S. RNA interference as a tool for Alzheimer’s disease therapy. Mini Rev. Med. Chem. 2007 7 11 1166 1176 10.2174/138955707782331678 18045220
    [Google Scholar]
  57. Chaudhary D. Jeena A.S. Advances in RNA interference for plant functional genomics: Unveiling traits, mechanisms, and future directions. Appl. Biochem. Biotechnol. 2024 196 9 5681 5710 10.1007/s12010‑023‑04850‑x 38175411
    [Google Scholar]
  58. Andrusenko I. Gemmi M. 3D electron diffraction for structure determination of small‐molecule nanocrystals: A possible breakthrough for the pharmaceutical industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 5 1810 10.1002/wnan.1810 35595285
    [Google Scholar]
  59. Meyers J. Brown N. Blagg J. Mapping the 3D structures of small molecule binding sites. J. Cheminform. 2016 8 1 70 10.1186/s13321‑016‑0180‑0
    [Google Scholar]
  60. Andronico A. Randall A. Benz R.W. Baldi P. Data-driven high-throughput prediction of the 3-D structure of small molecules: Review and progress. J. Chem. Inf. Model. 2011 51 4 760 776 10.1021/ci100223t 21417267
    [Google Scholar]
  61. Najmanovich R. Kurbatova N. Thornton J. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Bioinformatics 2008 24 16 i105 i111 10.1093/bioinformatics/btn263 18689810
    [Google Scholar]
  62. Gorham R.D. Nuñez V. Lin J.H. Rooijakkers S.H.M. Vullev V.I. Morikis D. Discovery of small molecules for fluorescent detection of complement activation product C3d. J. Med. Chem. 2015 58 24 9535 9545 10.1021/acs.jmedchem.5b01062 26613117
    [Google Scholar]
  63. Sadowski P. Baldi P. Small-molecule 3D structure prediction using open crystallography data. J. Chem. Inf. Model. 2013 53 12 3127 3130 10.1021/ci4005282 24261562
    [Google Scholar]
  64. Fecke W. Gianfriddo M. Gaviraghi G. Terstappen G.C. Heitz F. Small molecule drug discovery for Huntington’s Disease. Drug Discov. Today 2009 14 9-10 453 464 10.1016/j.drudis.2009.02.006 19429504
    [Google Scholar]
  65. Tanaka M. Machida Y. Nukina N. A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J. Mol. Med. 2005 83 5 343 352 10.1007/s00109‑004‑0632‑2 15759103
    [Google Scholar]
  66. Khan E. Mishra S.K. Mishra R. Mishra A. Kumar A. Discovery of a potent small molecule inhibiting Huntington’s disease (HD) pathogenesis via targeting CAG repeats RNA and Poly Q protein. Sci. Rep. 2019 9 1 16872 10.1038/s41598‑019‑53410‑z 31728006
    [Google Scholar]
  67. Üremiş N. Üremiş M.M. Oxidative/nitrosative stress, apoptosis, and redox signaling: Key players in neurodegenerative diseases. J. Biochem. Mol. Toxicol. 2025 39 1 70133 10.1002/jbt.70133 39799559
    [Google Scholar]
  68. Wang F. Ogasawara M.A. Huang P. Small mitochondria-targeting molecules as anti-cancer agents. Mol. Aspects Med. 2010 31 1 75 92 10.1016/j.mam.2009.12.003 19995573
    [Google Scholar]
  69. Millichap L.E. Damiani E. Tiano L. Hargreaves I.P. Targetable pathways for alleviating mitochondrial dysfunction in neurodegeneration of metabolic and non-metabolic diseases. Int. J. Mol. Sci. 2021 22 21 11444 10.3390/ijms222111444 34768878
    [Google Scholar]
  70. He L. Wang S. Peng L. CRISPR/Cas9 mediated gene correction ameliorates abnormal phenotypes in spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cells. Transl. Psychiatry 2021 11 1 479 10.1038/s41398‑021‑01605‑2 34535635
    [Google Scholar]
  71. Bu J. Molecular pathways of neuronal apoptosis in neurodegenerative diseases and intervention strategies. BIO Web Conf 2025 166 2025 01006 10.1051/bioconf/202516601006
    [Google Scholar]
  72. Lakatta E.G. Levy D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part I: Aging arteries: A “set up” for vascular disease. Circulation 2003 107 1 139 146 10.1161/01.CIR.0000048892.83521.58 12515756
    [Google Scholar]
  73. Mortensen S.A. Rosenfeldt F. Kumar A. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: Results from Q-SYMBIO: A randomized double-blind trial. JACC Heart Fail. 2014 2 6 641 649 10.1016/j.jchf.2014.06.008 25282031
    [Google Scholar]
  74. Griffin R. Nally R. Nolan Y. McCartney Y. Linden J. Lynch M.A. The age‐related attenuation in long‐term potentiation is associated with microglial activation. J. Neurochem. 2006 99 4 1263 1272 10.1111/j.1471‑4159.2006.04165.x 16981890
    [Google Scholar]
  75. Killoran A. Biglan K. Biomarkers for Huntington’s disease: A brief overview. J. Rare Dis. Res. Treat. 2016 1 2 46 50 10.29245/2572‑9411/2016/2.1029
    [Google Scholar]
  76. Morgenstern M. Stiller S.B. Lübbert P. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 2017 19 13 2836 2852 10.1016/j.celrep.2017.06.014 28658629
    [Google Scholar]
  77. Sloane J.A. Hollander W. Moss M.B. Rosene D.L. Abraham C.R. Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiol. Aging 1999 20 4 395 405 10.1016/S0197‑4580(99)00066‑4 10604432
    [Google Scholar]
  78. Widlansky M.E. Gokce N. Keaney J.F. Vita J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003 42 7 1149 1160 10.1016/S0735‑1097(03)00994‑X 14522472
    [Google Scholar]
  79. Jiang Z. Yin X. Wang M. Effects of ketogenic diet on neuroinflammation in neurodegenerative diseases. Aging Dis. 2022 13 4 1146 1165 10.14336/AD.2021.1217 35855338
    [Google Scholar]
  80. Wang W.W. Han R. He H.J. Delineating the role of mitophagy inducers for Alzheimer disease patients. Aging Dis. 2021 12 3 852 867 10.14336/AD.2020.0913 34094647
    [Google Scholar]
  81. Martini-Stoica H. Xu Y. Ballabio A. Zheng H. The autophagy–lysosomal pathway in neurodegeneration: A TFEB perspective. Trends Neurosci. 2016 39 4 221 234 10.1016/j.tins.2016.02.002 26968346
    [Google Scholar]
  82. Pinosanu L.R. Capitanescu B. Glavan D. Neuroglia cells transcriptomic in brain development, aging and neurodegenerative diseases. Aging Dis. 2023 14 1 63 83 10.14336/AD.2022.0621 36818562
    [Google Scholar]
  83. Ni Y.Q. Liu Y.S. New insights into the roles and mechanisms of spermidine in aging and age-related diseases. Aging Dis. 2021 12 8 1948 1963 10.14336/AD.2021.0603 34881079
    [Google Scholar]
  84. Song J. Herrmann J.M. Becker T. Quality control of the mitochondrial proteome. Nat. Rev. Mol. Cell Biol. 2021 22 1 54 70 10.1038/s41580‑020‑00300‑2 33093673
    [Google Scholar]
  85. Hinman J.D. Duce J.A. Siman R.A. Hollander W. Abraham C.R. Activation of calpain‐1 in myelin and microglia in the white matter of the aged rhesus monkey. J. Neurochem. 2004 89 2 430 441 10.1046/j.1471‑4159.2004.02348.x 15056286
    [Google Scholar]
  86. Seo A.Y. Joseph A.M. Dutta D. Hwang J.C.Y. Aris J.P. Leeuwenburgh C. New insights into the role of mitochondria in aging: Mitochondrial dynamics and more. J. Cell Sci. 2010 123 15 2533 2542 10.1242/jcs.070490 20940129
    [Google Scholar]
  87. Johnson L.V. Walsh M.L. Chen L.B. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA 1980 77 2 990 994 10.1073/pnas.77.2.990 6965798
    [Google Scholar]
  88. Schatz G. The protein import system of mitochondria. J. Biol. Chem. 1996 271 50 31763 31766 10.1074/jbc.271.50.31763 8943210
    [Google Scholar]
  89. Valenti D. Vacca R.A. Moro L. Atlante A. Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int. J. Mol. Sci. 2021 22 15 8312 10.3390/ijms22158312 34361078
    [Google Scholar]
  90. Joshi D.C. Chavan M.B. Gurow K. Gupta M. Dhaliwal J.S. Ming L.C. The role of mitochondrial dysfunction in Huntington’s disease: Implications for therapeutic targeting. Biomed. Pharmacother. 2025 183 117827 10.1016/j.biopha.2025.117827 39854819
    [Google Scholar]
  91. Wild E.J. Tabrizi S.J. Targets for future clinical trials in Huntington’s disease: What’s in the pipeline? Mov. Disord. 2014 29 11 1434 1445 10.1002/mds.26007 25155142
    [Google Scholar]
  92. McColgan P. Tabrizi S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018 25 1 24 34 10.1111/ene.13413 28817209
    [Google Scholar]
  93. Rodrigues F.B. Wild E.J. Huntington’s disease clinical trials corner: February 2018. J. Huntingtons Dis. 2018 7 1 89 98 10.3233/JHD‑189001 29480210
    [Google Scholar]
  94. Sampaio C. Borowsky B. Reilmann R. Clinical trials in Huntington’s disease: Interventions in early clinical development and newer methodological approaches. Mov. Disord. 2014 29 11 1419 1428 10.1002/mds.26021 25216371
    [Google Scholar]
  95. Travessa A.M. Rodrigues F.B. Mestre T.A. Ferreira J.J. Fifteen years of clinical trials in Huntington’s disease: A very low clinical drug development success rate. J. Huntingtons Dis. 2017 6 2 157 163 10.3233/JHD‑170245 28671135
    [Google Scholar]
  96. Rosser A.E. Bachoud-Lévi A.C. Clinical trials of neural transplantation in Huntington’s disease. Prog Brain Res 2012 200 345 71 10.1016/B978‑0‑444‑59575‑1.00016‑8 23195427
    [Google Scholar]
  97. Rodrigues F.B. Wild E.J. Huntington’s disease clinical trials corner: April 2020. J. Huntingtons Dis. 2020 9 2 185 197 10.3233/JHD‑200002 32250312
    [Google Scholar]
  98. Rosser A.E. Busse M.E. Gray W.P. Translating cell therapies for neurodegenerative diseases: Huntington’s disease as a model disorder. Brain 2022 145 5 1584 1597 10.1093/brain/awac086 35262656
    [Google Scholar]
  99. Golde TE Overcoming translational barriers impeding development of Alzheimer’s disease modifying therapies. J Neurochem 2016 139 S2 224 36 (Suppl. 2) 10.1111/jnc.13583 27145445
    [Google Scholar]
  100. Yim SJ Yasar S Schoenborn N Lang E Expanded disease definitions in Alzheimer’s disease and the new era of disease-modifying drugs. BMJ Evid Based Med 2025 bmjebm-2023-112588 10.1136/bmjebm‑2023‑112588 39939159
    [Google Scholar]
/content/journals/cas/10.2174/0118746098387655250818072130
Loading
/content/journals/cas/10.2174/0118746098387655250818072130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test