Skip to content
2000
image of Biomarkers for Chronic Kidney Disease: An Updated Review of Innovative Detection Approaches

Abstract

Introduction

Chronic kidney disease (CKD) is a progressive and incurable condition that impairs kidney function over time. Affecting approximately 13% of the global population, CKD poses a substantial economic burden on healthcare systems and significantly reduces both the quality and duration of life for affected individuals. The overview of innovative methods will facilitate the identification and documentation of novel biomarkers associated with kidney diseases.

Aim

This review summarizes the findings of previous studies associated with novel therapeutic approaches and biomarkers for the early detection of CKD.

Materials and Methods

All relevant databases were searched for published articles on the topic of interest from the beginning of the study period up to April 2025, using the following search terms: “Chronic Kidney Disease,” “Conventional Biomarkers,” and “Novel Biomarkers.” We also reviewed the reference lists of eligible studies, previous review articles, and registered clinical trials. A total of 101 manuscripts were included in this evaluation.

Results

To comprehensively understand the diverse changes resulting from the complex pathomechanisms of CKD, the use of a combination of biomarkers is recommended. Relying solely on creatinine levels, estimated glomerular filtration rate (eGFR), and proteinuria may be insufficient for accurate diagnosis. However, for the diagnosis, monitoring of progression, and assessment of disease severity, direct measurement of glomerular filtration rate (GFR) remains the most reliable and optimal approach. Glomerular, tubular, and tissue integrity of endothelial and epithelial cells in the nephron could be representative of morphophysiological changes associated with CKD. Albumin and creatinine are not sufficient for clinical application in the early detection of CKD. The published articles reported urea/BUN, creatinine, and cystatin C as the functional biomarkers. Injury biomarkers included: proteinuria, hematuria, creatinine (when > 40% kidney parenchyma is damaged), cystatin C, podocytes, podocalyxin, Nephrin, Podocin, CR1, CD80, synaptopodin, GLEPP-1, CD59, WT1, and CD59. For CKD progression, measuring DKK3, CKD273, hL-FABP, Fetuin-A, and Scd25 might offer valuable information.

Conclusion

Different biomarkers should be deliberated regarding the early detection of CKD based on their sensitivity, efficacy, specificity, and, of course, cost benefits for both patients and health system decision makers, which confer relevance.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098380113250707112707
2025-07-18
2025-10-12
Loading full text...

Full text loading...

References

  1. Kovesdy CP Epidemiology of chronic kidney disease: An update 2022. Kidney Int Suppl 2022 12 1 7 11 10.1016/j.kisu.2021.11.003 35529086
    [Google Scholar]
  2. Charles C. Ferris A.H. Chronic kidney disease. Prim. Care 2020 47 4 585 595 10.1016/j.pop.2020.08.001 33121630
    [Google Scholar]
  3. Mishra M. Nichols L. Dave A.A. Pittman E.H. Cheek J.P. Caroland A.J.V. Lotwala P. Drummond J. Bridges C.C. Molecular mechanisms of cellular injury and role of toxic heavy metals in chronic kidney disease. Int. J. Mol. Sci. 2022 23 19 11105 10.3390/ijms231911105 36232403
    [Google Scholar]
  4. Wu L. Chang D.Y. Zhao M.H. Tang S.C.W. Chen M. Association between blood methylmalonic acid and chronic kidney disease in the general US population: Insights from multi-cycle National Health and Nutrition Examination Survey (NHANES). Ann. Transl. Med. 2024 12 3 47 10.21037/atm‑23‑1930 38911563
    [Google Scholar]
  5. Jain KK Role of biomarkers in health care. The Handbook of Biomarkers Humana Press 2010 115 188 10.1007/978‑1‑60761‑685‑6_5
    [Google Scholar]
  6. Mizdrak M. Kumrić M. Kurir T.T. Božić J. Emerging biomarkers for early detection of chronic kidney disease. J. Pers. Med. 2022 12 4 548 10.3390/jpm12040548 35455664
    [Google Scholar]
  7. Tolou-Ghamari Z. Updated COVID-19 pharmacotherapy in different diseases such as cancer. Coronaviruses 2025 6 2 e060524229708 10.2174/0126667975259296240409061101
    [Google Scholar]
  8. Tolou-Ghamari Z. Empagliflozin pharmacotherapy: An updated overview. New Emir. Med. J. 2025 5 10.2174/0102506882328936250115065100
    [Google Scholar]
  9. Tolou-Ghamari Z. Palizban A.A. Laboratory monitoring of cyclosporine pre-dose concentration (C 0 ) after kidney transplantation in Isfahan. IJMS 2003 28 2 81 85
    [Google Scholar]
  10. Tolou-Ghamari Z. Investigation of nosocomial urinary tract infections post transplantation, main pathogens, and sensitivity tests. Curr. Drug Ther. 2024 5 10.2174/0250688204666230811142631
    [Google Scholar]
  11. Tolou_Ghamari Z Monitoring tacrolimus after liver transplantation; A consideration of alternative techniques and the influence of clinical status. Thesis, King’s College 1999
    [Google Scholar]
  12. Tolou-Ghamari Z. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital. Antiinfect. Agents 2023 22 2 53 60 10.2174/0122113525259607231020063637
    [Google Scholar]
  13. Tolou-Ghamari Z. Nosocomial urinary tract infections in a tertiary hospital; Preliminary study of antibiotics susceptibility testing and pathogen types. Antiinfect. Agents 2024 22 2 e251023222696 10.2174/0122113525258170231016081424
    [Google Scholar]
  14. Tolou-Ghamari Z. Investigation of nosocomial urianary tract infections post transplantation, main pathogens, and sensitivity tests. Curr. Drug Ther. 2024 19 7 846 50 10.2174/0115748855271275231115064229
    [Google Scholar]
  15. Tolou-Ghamari Z. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital. Antiinfect. Agents 2024 22 2 e271023222865 10.2174/0122113525259607231020063637
    [Google Scholar]
  16. Tolou Ghamari Z. Palizban A.A. Tacrolimus pharmacotherapy: Infectious complications and toxicity in organ transplant recipients; An updated review. Curr. Drug Res. Rev. 2023 2023 10.2174/0125899775259326231212073240 38151846
    [Google Scholar]
  17. Tolou-Ghamari Z. Preliminary study of kidney transplantation from 2007-2019 in Isfahan, Iran. New Emir. Med. J. 2024 5 1 e110823219685 10.2174/0250688204666230811142631
    [Google Scholar]
  18. Jager K.J. Kovesdy C. Langham R. Rosenberg M. Jha V. Zoccali C. A single number for advocacy and communication—worldwide more than 850 million individuals have kidney diseases. Nephrol. Dial. Transplant. 2019 34 11 1803 1805 10.1093/ndt/gfz174 31566230
    [Google Scholar]
  19. Hill N.R. Fatoba S.T. Oke J.L. Hirst J.A. O’Callaghan C.A. Lasserson D.S. Hobbs F.D.R. Global prevalence of chronic kidney disease – A systematic review and meta-analysis. PLoS One 2016 11 7 e0158765 10.1371/journal.pone.0158765 27383068
    [Google Scholar]
  20. Kampmann J.D. Heaf J.G. Mogensen C.B. Mickley H. Wolff D.L. Brandt F. Prevalence and incidence of chronic kidney disease stage 3–5 – results from KidDiCo. BMC Nephrol. 2023 24 1 17 10.1186/s12882‑023‑03056‑x 36658506
    [Google Scholar]
  21. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2012 3 1 150
    [Google Scholar]
  22. Henriksen D.P. Damkier P. Hallas J. Nybo M. Sixteen years of creatinine measurements among 460 000 individuals—The Funen Laboratory Cohort (FLaC), a population‐based pharmacoepidemiological resource to study drug‐induced kidney disease. Basic Clin. Pharmacol. Toxicol. 2019 124 5 582 590 10.1111/bcpt.13167 30417606
    [Google Scholar]
  23. Gasparini A. Evans M. Coresh J. Grams M.E. Norin O. Qureshi A.R. Runesson B. Barany P. Ärnlöv J. Jernberg T. Wettermark B. Elinder C.G. Carrero J.J. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol. Dial. Transplant. 2016 31 12 2086 2094 10.1093/ndt/gfw354 27738231
    [Google Scholar]
  24. Dimke H. Sparks M.A. Thomson B.R. Frische S. Coffman T.M. Quaggin S.E. Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J. Am. Soc. Nephrol. 2015 26 5 1027 1038 10.1681/ASN.2014010060 25385849
    [Google Scholar]
  25. Lopez-Giacoman S. Madero M. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 2015 4 1 57 73 10.5527/wjn.v4.i1.57 25664247
    [Google Scholar]
  26. Abdalrahim M.S. Khalil A.A. Alramly M. Alshlool K.N. Abed M.A. Moser D.K. Pre-existing chronic kidney disease and acute kidney injury among critically ill patients. Heart Lung 2020 49 5 626 629 10.1016/j.hrtlng.2020.04.013 32354485
    [Google Scholar]
  27. Mills K.T. Xu Y. Zhang W. Bundy J.D. Chen C.S. Kelly T.N. Chen J. He J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015 88 5 950 957 10.1038/ki.2015.230 26221752
    [Google Scholar]
  28. Kidney disease surveillance system. 2021 Available from: https://nccd.cdc.gov/ckd/default.aspx
  29. Kjeldsen S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018 129 95 99 10.1016/j.phrs.2017.11.003 29127059
    [Google Scholar]
  30. Foreman K.J. Marquez N. Dolgert A. Fukutaki K. Fullman N. McGaughey M. Pletcher M.A. Smith A.E. Tang K. Yuan C.W. Brown J.C. Friedman J. He J. Heuton K.R. Holmberg M. Patel D.J. Reidy P. Carter A. Cercy K. Chapin A. Douwes-Schultz D. Frank T. Goettsch F. Liu P.Y. Nandakumar V. Reitsma M.B. Reuter V. Sadat N. Sorensen R.J.D. Srinivasan V. Updike R.L. York H. Lopez A.D. Lozano R. Lim S.S. Mokdad A.H. Vollset S.E. Murray C.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018 392 10159 2052 2090 10.1016/S0140‑6736(18)31694‑5 30340847
    [Google Scholar]
  31. Bikbov B. Purcell C.A. Levey A.S. Smith M. Abdoli A. Abebe M. Adebayo O.M. Afarideh M. Agarwal S.K. Agudelo-Botero M. Ahmadian E. Al-Aly Z. Alipour V. Almasi-Hashiani A. Al-Raddadi R.M. Alvis-Guzman N. Amini S. Andrei T. Andrei C.L. Andualem Z. Anjomshoa M. Arabloo J. Ashagre A.F. Asmelash D. Ataro Z. Atout M.M.W. Ayanore M.A. Badawi A. Bakhtiari A. Ballew S.H. Balouchi A. Banach M. Barquera S. Basu S. Bayih M.T. Bedi N. Bello A.K. Bensenor I.M. Bijani A. Boloor A. Borzì A.M. Cámera L.A. Carrero J.J. Carvalho F. Castro F. Catalá-López F. Chang A.R. Chin K.L. Chung S-C. Cirillo M. Cousin E. Dandona L. Dandona R. Daryani A. Das Gupta R. Demeke F.M. Demoz G.T. Desta D.M. Do H.P. Duncan B.B. Eftekhari A. Esteghamati A. Fatima S.S. Fernandes J.C. Fernandes E. Fischer F. Freitas M. Gad M.M. Gebremeskel G.G. Gebresillassie B.M. Geta B. Ghafourifard M. Ghajar A. Ghith N. Gill P.S. Ginawi I.A. Gupta R. Hafezi-Nejad N. Haj-Mirzaian A. Haj-Mirzaian A. Hariyani N. Hasan M. Hasankhani M. Hasanzadeh A. Hassen H.Y. Hay S.I. Heidari B. Herteliu C. Hoang C.L. Hosseini M. Hostiuc M. Irvani S.S.N. Islam S.M.S. Jafari Balalami N. James S.L. Jassal S.K. Jha V. Jonas J.B. Joukar F. Jozwiak J.J. Kabir A. Kahsay A. Kasaeian A. Kassa T.D. Kassaye H.G. Khader Y.S. Khalilov R. Khan E.A. Khan M.S. Khang Y-H. Kisa A. Kovesdy C.P. Kuate Defo B. Kumar G.A. Larsson A.O. Lim L-L. Lopez A.D. Lotufo P.A. Majeed A. Malekzadeh R. März W. Masaka A. Meheretu H.A.A. Miazgowski T. Mirica A. Mirrakhimov E.M. Mithra P. Moazen B. Mohammad D.K. Mohammadpourhodki R. Mohammed S. Mokdad A.H. Morales L. Moreno Velasquez I. Mousavi S.M. Mukhopadhyay S. Nachega J.B. Nadkarni G.N. Nansseu J.R. Natarajan G. Nazari J. Neal B. Negoi R.I. Nguyen C.T. Nikbakhsh R. Noubiap J.J. Nowak C. Olagunju A.T. Ortiz A. Owolabi M.O. Palladino R. Pathak M. Poustchi H. Prakash S. Prasad N. Rafiei A. Raju S.B. Ramezanzadeh K. Rawaf S. Rawaf D.L. Rawal L. Reiner R.C. Jr Rezapour A. Ribeiro D.C. Roever L. Rothenbacher D. Rwegerera G.M. Saadatagah S. Safari S. Sahle B.W. Salem H. Sanabria J. Santos I.S. Sarveazad A. Sawhney M. Schaeffner E. Schmidt M.I. Schutte A.E. Sepanlou S.G. Shaikh M.A. Sharafi Z. Sharif M. Sharifi A. Silva D.A.S. Singh J.A. Singh N.P. Sisay M.M.M. Soheili A. Sutradhar I. Teklehaimanot B.F. Tesfay B. Teshome G.F. Thakur J.S. Tonelli M. Tran K.B. Tran B.X. Tran Ngoc C. Ullah I. Valdez P.R. Varughese S. Vos T. Vu L.G. Waheed Y. Werdecker A. Wolde H.F. Wondmieneh A.B. Wulf Hanson S. Yamada T. Yeshaw Y. Yonemoto N. Yusefzadeh H. Zaidi Z. Zaki L. Zaman S.B. Zamora N. Zarghi A. Zewdie K.A. Ärnlöv J. Coresh J. Perico N. Remuzzi G. Murray C.J.L. Vos T. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020 395 10225 709 733 10.1016/S0140‑6736(20)30045‑3 32061315
    [Google Scholar]
  32. Sui X Kokkinos P Faselis C Samuel IBH Pittaras A Gollie J Patel S Lavie CJ Zhang J Myers J Cardiorespiratory fitness and mortality in patients with chronic kidney disease: A prospective cohort study. Mayo Clin Proc 2025 100 6 962 969 10.1016/j.mayocp.2024.09.023 40186598
    [Google Scholar]
  33. Song Q. Wang P. Wu Y. Yao Z. Wang W. Tang G. Zhang P. Understanding uremic cardiomyopathy: From pathogenesis to diagnosis and the horizon of therapeutic innovations. PeerJ 2025 13 e18978 10.7717/peerj.18978 40183047
    [Google Scholar]
  34. Hsu C.T. Huang C.Y. Chen C.H. Deng Y.L. Lin S.Y. Wu M.J. Machine learning models to predict osteoporosis in patients with chronic kidney disease stage 3–5 and end-stage kidney disease. Sci. Rep. 2025 15 1 11391 10.1038/s41598‑025‑95928‑5 40181057
    [Google Scholar]
  35. Zafrani L. Ince C. Microcirculation in acute and chronic kidney diseases. Am. J. Kidney Dis. 2015 66 6 1083 1094 10.1053/j.ajkd.2015.06.019 26231789
    [Google Scholar]
  36. Ferenbach DA Bonventre JV Acute kidney injury and chronic kidney disease: From the laboratory to the clinic. Nephrol Ther 2016 12 Suppl 1 S41 S48 10.1016/j.nephro.2016.02.005 26972097
    [Google Scholar]
  37. Villanueva S. Céspedes C. Vio C.P. Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006 290 4 R861 R870 10.1152/ajpregu.00384.2005 16284088
    [Google Scholar]
  38. Ishibe S. Cantley L.G. Epithelial-mesenchymal-epithelial cycling in kidney repair. Curr. Opin. Nephrol. Hypertens. 2008 17 4 379 385 10.1097/MNH.0b013e3283046507 18660674
    [Google Scholar]
  39. Denic A. Glassock R.J. Rule A.D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis. 2016 23 1 19 28 10.1053/j.ackd.2015.08.004 26709059
    [Google Scholar]
  40. López-Otín C. Blasco M.A. Partridge L. Serrano M. Kroemer G. The hallmarks of aging. Cell 2013 153 6 1194 1217 10.1016/j.cell.2013.05.039 23746838
    [Google Scholar]
  41. Ray N. Reddy P.H. Structural and physiological changes of the kidney with age and its impact on chronic conditions and COVID-19. Ageing Res. Rev. 2023 88 101932 10.1016/j.arr.2023.101932 37031725
    [Google Scholar]
  42. Chevalier R.L. Evolution, kidney development, and chronic kidney disease. Semin. Cell Dev. Biol. 2019 91 119 131 10.1016/j.semcdb.2018.05.024 29857053
    [Google Scholar]
  43. Forbes M.S. Thornhill B.A. Park M.H. Chevalier R.L. Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. Am. J. Pathol. 2007 170 1 87 99 10.2353/ajpath.2007.060610 17200185
    [Google Scholar]
  44. Chevalier R.L. Evolution and kidney development: A Rosetta stone for nephrology. J. Am. Soc. Nephrol. 2018 29 3 706 709 10.1681/ASN.2018010013 29449452
    [Google Scholar]
  45. Schmitt R. Melk A. Molecular mechanisms of renal aging. Kidney Int. 2017 92 3 569 579 10.1016/j.kint.2017.02.036 28729036
    [Google Scholar]
  46. Reyes-Farias M. Carrasco-Pozo C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci. 2019 20 13 3177 10.3390/ijms20133177 31261749
    [Google Scholar]
  47. Hommos M.S. Glassock R.J. Rule A.D. Structural and functional changes in human kidneys with healthy aging. J. Am. Soc. Nephrol. 2017 28 10 2838 2844 10.1681/ASN.2017040421 28790143
    [Google Scholar]
  48. Sobamowo H. Prabhakar S.S. The kidney in aging: Physiological changes and pathological implications. Molecular Biology of Aging. 1st ed Elsevier Science 2017 304 339 10.1016/bs.pmbts.2016.12.018
    [Google Scholar]
  49. Norris K.C. Smoyer K.E. Rolland C. Van der Vaart J. Grubb E.B. Albuminuria, serum creatinine, and estimated glomerular filtration rate as predictors of cardio-renal outcomes in patients with type 2 diabetes mellitus and kidney disease: A systematic literature review. BMC Nephrol. 2018 19 1 36 10.1186/s12882‑018‑0821‑9 29426298
    [Google Scholar]
  50. Lamb E.J. Levey A.S. Stevens P.E. The kidney disease improving global outcomes (KDIGO) guideline update for chronic kidney disease: Evolution not revolution. Clin. Chem. 2013 59 3 462 465 10.1373/clinchem.2012.184259 23449698
    [Google Scholar]
  51. Cusumano A.M. Rosa Diez G. Tzanno-Martins C. Editorial: Glomerular filtration rate in Chronic Kidney Disease. Front. Med. 2023 9 1105384 10.3389/fmed.2022.1105384 36703887
    [Google Scholar]
  52. Lhotta K. Uromodulin and chronic kidney disease. Kidney Blood Press. Res. 2010 33 5 393 398 10.1159/000320681 20948228
    [Google Scholar]
  53. Thielemans R. Speeckaert R. Delrue C. De Bruyne S. Oyaert M. Speeckaert M.M. Unveiling the hidden power of uromodulin: A promising potential biomarker for kidney diseases. Diagnostics 2023 13 19 3077 10.3390/diagnostics13193077 37835820
    [Google Scholar]
  54. Kademani S.P. Nelaturi P. Bhat V. Sagar S. Sambandam R. Potential biomarkers of chronic kidney disease progression among kidney-derived proteins; A review. J. Renal Inj. Prev. 2023 12 1 e32040 10.34172/jrip.2023.32040
    [Google Scholar]
  55. Nechita A.M. Rădulescu D. Peride I. Niculae A. Bratu O. Ferechide D. Ciocâlteu A. Checheriță I.A. Mischianu D. Determining factors of diuresis in chronic kidney disease patients initiating hemodialysis. J. Med. Life 2015 8 3 371 377 26351544
    [Google Scholar]
  56. Rysz J. Gluba-Brzózka A. Franczyk B. Jabłonowski Z. Ciałkowska-Rysz A. Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int. J. Mol. Sci. 2017 18 8 1702 10.3390/ijms18081702 28777303
    [Google Scholar]
  57. Tanabe K. Sato Y. Wada J. Endogenous antiangiogenic factors in chronic kidney disease: Potential biomarkers of progression. Int. J. Mol. Sci. 2018 19 7 1859 10.3390/ijms19071859 29937525
    [Google Scholar]
  58. Yang H. Fogo A.B. Cell senescence in the aging kidney. J. Am. Soc. Nephrol. 2010 21 9 1436 1439 10.1681/ASN.2010020205 20705707
    [Google Scholar]
  59. Tang J. Liu N. Tolbert E. Ponnusamy M. Ma L. Gong R. Bayliss G. Yan H. Zhuang S. Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Am. J. Pathol. 2013 183 1 160 172 10.1016/j.ajpath.2013.04.005 23684791
    [Google Scholar]
  60. Wagner K.D. Wagner N. The senescence markers p16INK4A, p14ARF/p19ARF, and p21 in organ development and homeostasis. Cells 2022 11 12 1966 10.3390/cells11121966 35741095
    [Google Scholar]
  61. Qian Y. Chen X. Senescence regulation by the p53 protein family. Methods Mol. Biol. 2013 965 37 61 10.1007/978‑1‑62703‑239‑1_3 23296650
    [Google Scholar]
  62. Monseu M. Gand E. Saulnier P.J. Ragot S. Piguel X. Zaoui P. Rigalleau V. Marechaud R. Roussel R. Hadjadj S. Halimi J.M. Acute kidney injury predicts major adverse outcomes in diabetes: synergic impact with low Glomerular filtration rate and Albuminuria. Diabetes Care 2015 38 12 2333 2340 10.2337/dc15‑1222 26512039
    [Google Scholar]
  63. Abd Elaziz MA Elewa AMG Abdel Hamid DZMZ The use of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin for diagnosis of hepato-renal syndrome in advanced cirrhotic patients. Ren. Fail. 2024 46 1 2346284 10.1080/0886022X.2024.2346284 38757700
    [Google Scholar]
  64. Iqbal M.M. Ali M. Hossain R.M. Islam M.K. Rashid H.U. Waheed S. Sarker N.R. The 25-hydroxyvitamin D level in kidney transplant recipients and its association with renal function and other cardio-metabolic risk markers. Transplant. Proc. 2024 56 3 557 560 10.1016/j.transproceed.2024.02.012 38508914
    [Google Scholar]
  65. Canki E. Kho E. Hoenderop J.G.T. Urinary biomarkers in kidney disease. Clin Chim Acta 2024 555 117798 10.1016/j.cca.2024.117798 38280489
    [Google Scholar]
  66. Shahbaz H. Gupta M. Creatinine Clearance. Stat Pearls Publishing Treasure Island 2022
    [Google Scholar]
  67. Grams M.E. Astor B.C. Bash L.D. Matsushita K. Wang Y. Coresh J. Albuminuria and estimated glomerular filtration rate independently associate with acute kidney injury. J. Am. Soc. Nephrol. 2010 21 10 1757 1764 10.1681/ASN.2010010128 20671214
    [Google Scholar]
  68. Dastych M Cundrle I Vlach O. The effect of controlled hypotension during spinal surgery on kidney function. Anaesthesist 1990 39 4 231 235 2339775
    [Google Scholar]
  69. Cappelli P. Liberato L.D. Albertazzi A. Role of dyslipidemia in the progression of chronic renal disease. Ren. Fail. 1998 20 2 391 397 10.3109/08860229809045126 9574467
    [Google Scholar]
  70. Jovanović D Krstivojević P Obradović I Djurdjević V Blagojević-Lazić R Djukanović L. Cystatin C as a measure of glomerular filtration in patients with kidney transplants. Srp Arh Celok Lek 2003 131 5-6 211 214 10.2298/sarh0306211j 14692126
    [Google Scholar]
  71. Matrat L. Ruiz M. Ecochard-Dugelay E. Loras-Duclaux I. Marotte S. Heissat S. Poinsot P. Sellier-Leclerc A.L. Bacchetta J. Dubourg L. Peretti N. Combined use of creatinine and cystatin C improves the detection of renal dysfunction in children undergoing home parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 2022 46 1 180 189 10.1002/jpen.2108 33733460
    [Google Scholar]
  72. Zhang W.R. Craven T.E. Malhotra R. Cheung A.K. Chonchol M. Drawz P. Sarnak M.J. Parikh C.R. Shlipak M.G. Ix J.H. Kidney damage biomarkers and incident chronic kidney disease during blood pressure reduction. Ann. Intern. Med. 2018 169 9 610 618 10.7326/M18‑1037 30357395
    [Google Scholar]
  73. Donadio C. Serum and urinary markers of early impairment of GFR in chronic kidney disease patients: Diagnostic accuracy of urinary β-trace protein. Am. J. Physiol. Renal Physiol. 2010 299 6 F1407 F1423 10.1152/ajprenal.00507.2009 20844024
    [Google Scholar]
  74. Jotwani V. Scherzer R. Glidden D.V. Mehrotra M. Defechereux P. Liu A. Gandhi M. Bennett M. Coca S.G. Parikh C.R. Grant R.M. Shlipak M.G. Pre-exposure prophylaxis with tenofovir disoproxil fumarate/emtricitabine and kidney tubular dysfunction in hiv-uninfected individuals. J. Acquir. Immune Defic. Syndr. 2018 78 2 169 174 10.1097/QAI.0000000000001654 29767638
    [Google Scholar]
  75. Bolignano D. Lacquaniti A. Coppolino G. Campo S. Arena A. Buemi M. Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press. Res. 2008 31 4 255 258 10.1159/000143726 18600028
    [Google Scholar]
  76. Laws R.L. Brooks D.R. Amador J.J. Weiner D.E. Kaufman J.S. Ramírez-Rubio O. Riefkohl A. Scammell M.K. López-Pilarte D. Sánchez J.M. Parikh C.R. McClean M.D. Biomarkers of kidney injury among nicaraguan sugarcane workers. Am. J. Kidney Dis. 2016 67 2 209 217 10.1053/j.ajkd.2015.08.022 26454687
    [Google Scholar]
  77. Cheng Y. Wang D. Wang F. Liu J. Huang B. Baker M.A. Yin J. Wu R. Liu X. Regner K.R. Usa K. Liu Y. Zhang C. Dong L. Geurts A.M. Wang N. Miller S.S. He Y. Liang M. Endogenous miR-204 protects the kidney against chronic injury in hypertension and diabetes. J. Am. Soc. Nephrol. 2020 31 7 1539 1554 10.1681/ASN.2019101100 32487559
    [Google Scholar]
  78. Xiaoyun G. Hongjun L. Cuijing M. Li R. Mei Z. MicroRNA-204 may predict the renal function in patients with chronic kidney disease. Medicine 2025 104 1 e41202 10.1097/MD.0000000000041202 40184113
    [Google Scholar]
  79. Du B. Ma L.M. Huang M.B. Zhou H. Huang H.L. Shao P. Chen Y.Q. Qu L.H. High glucose down‐regulates miR‐29a to increase collagen IV production in HK‐2 cells. FEBS Lett. 2010 584 4 811 816 10.1016/j.febslet.2009.12.053 20067797
    [Google Scholar]
  80. Courboulin A. Paulin R. Giguère N.J. Saksouk N. Perreault T. Meloche J. Paquet E.R. Biardel S. Provencher S. Côté J. Simard M.J. Bonnet S. Role for miR-204 in human pulmonary arterial hypertension. J. Exp. Med. 2011 208 3 535 548 10.1084/jem.20101812 21321078
    [Google Scholar]
  81. Bienaimé F. Muorah M. Yammine L. Burtin M. Nguyen C. Baron W. Garbay S. Viau A. Broueilh M. Blanc T. Peters D. Poli V. Anglicheau D. Friedlander G. Pontoglio M. Gallazzini M. Terzi F. Stat3 controls tubulointerstitial communication during CKD. J. Am. Soc. Nephrol. 2016 27 12 3690 3705 10.1681/ASN.2015091014 27153926
    [Google Scholar]
  82. Pang M. Ma L. Gong R. Tolbert E. Mao H. Ponnusamy M. Chin Y.E. Yan H. Dworkin L.D. Zhuang S. A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int. 2010 78 3 257 268 10.1038/ki.2010.154 20520592
    [Google Scholar]
  83. Yan Y. Ma L. Zhou X. Ponnusamy M. Tang J. Zhuang M.A. Tolbert E. Bayliss G. Bai J. Zhuang S. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int. 2016 89 1 68 81 10.1038/ki.2015.293 26444028
    [Google Scholar]
  84. Oktan M.A. Sarioglu O. Heybeli C. Ozdemir E. Atay I. Korucu B. Bildaci Y.D. Deger S.M. Cavdar C. Celik A. Gulcu A. Predictors of kidney disease progression after renal artery stenting. BMC Nephrol. 2025 26 1 175 10.1186/s12882‑025‑04097‑0 40181262
    [Google Scholar]
  85. Cui Y. Zhang Q. Yan J. Wu J. The value of contrast‐enhanced ultrasound versus doppler ultrasound in grading renal artery stenosis. BioMed Res. Int. 2020 2020 1 7145728 10.1155/2020/7145728 32964041
    [Google Scholar]
  86. Chen F. Zhang H. Wei Q. Tang J. Yin L. Ban Y. Zhou Q. Disrupted gut microbiota promotes the progression of chronic kidney disease in 5/6 nephrectomy mice by Bacillus pumilus gavage. Front. Cell. Infect. Microbiol. 2025 15 1548767 10.3389/fcimb.2025.1548767 40171160
    [Google Scholar]
  87. Ai S. Li Y. Tao J. Zheng H. Tian L. Wang Y. Wang Z. Liu W.J. Bibliometric visualization analysis of gut-kidney axis from 2003 to 2022. Front. Physiol. 2023 14 1176894 10.3389/fphys.2023.1176894 37362429
    [Google Scholar]
  88. Benoit S.W. Ciccia E.A. Devarajan P. Cystatin C as a biomarker of chronic kidney disease: Latest developments. Expert Rev. Mol. Diagn. 2020 20 10 1019 1026 10.1080/14737159.2020.1768849 32450046
    [Google Scholar]
  89. Bargnoux A.S. Piéroni L. Cristol J.P. Kuster N. Delanaye P. Carlier M.C. Fellahi S. Boutten A. Lombard C. González-Antuña A. Delatour V. Cavalier E. Multicenter evaluation of cystatin C measurement after assay standardization. Clin. Chem. 2017 63 4 833 841 10.1373/clinchem.2016.264325 28188233
    [Google Scholar]
  90. Schwartz G.J. Cox C. Seegmiller J.C. Maier P.S. DiManno D. Furth S.L. Warady B.A. Munoz A. Recalibration of cystatin C using standardized material in Siemens nephelometers. Pediatr. Nephrol. 2020 35 2 279 285 10.1007/s00467‑019‑04389‑2 31680199
    [Google Scholar]
  91. Canney M. Sexton D.J. O’Leary N. Healy M. Kenny R.A. Little M.A. O’Seaghdha C.M. Examining the utility of cystatin C as a confirmatory test of chronic kidney disease across the age range in middle-aged and older community-dwelling adults. J. Epidemiol. Community Health 2018 72 4 287 293 10.1136/jech‑2017‑209864 29332011
    [Google Scholar]
  92. Pizzo H. Nguyen J. Schwartz G.J. Wesseling-Perry K. Ettenger R. Chambers E.T. Weng P. Comparison of estimated GFR using cystatin C versus creatinine in pediatric kidney transplant recipients. Pediatr. Nephrol. 2024 39 7 2177 2186 10.1007/s00467‑024‑06316‑6 38427073
    [Google Scholar]
  93. Bourgonje A.R. Abdulle A.E. Bourgonje M.F. Kieneker L.M. la Bastide-van Gemert S. Gordijn S.J. Hidden C. Nilsen T. Gansevoort R.T. Mulder D.J. Dullaart R.P.F. de Borst M.H. Bakker S.J.L. van Goor H. Plasma neutrophil gelatinase-associated lipocalin associates with new-onset chronic kidney disease in the general population. Biomolecules 2023 13 2 338 10.3390/biom13020338 36830706
    [Google Scholar]
  94. Pan H.C. Yang S.Y. Chiou T.T.Y. Shiao C.C. Wu C.H. Huang C.T. Wang T.J. Chen J.Y. Liao H.W. Chen S.Y. Huang T.M. Yang Y.F. Lin H.Y.H. Chan M.J. Sun C.Y. Chen Y.T. Chen Y.C. Wu V.C. Comparative accuracy of biomarkers for the prediction of hospital-acquired acute kidney injury: A systematic review and meta-analysis. Crit. Care 2022 26 1 349 10.1186/s13054‑022‑04223‑6 36371256
    [Google Scholar]
  95. Ashida C. Nozaki Y. Li J. Akazawa H. Kishimoto K. Kinoshita K. Matsumura I. Urinary Kim-1 correlates with interstitial nephritis activity in patients with microscopic polyangiitis. Curr. Issues Mol. Biol. 2025 47 3 196 10.3390/cimb47030196 40136450
    [Google Scholar]
  96. Zhang Y. Li A. Wen J. Zhen J. Hao Q. Zhang Y. Hu Z. Xiao X. Kidney injury molecule-1 level is associated with the severity of renal interstitial injury and prognosis in adult henoch–schönlein purpura nephritis. Arch. Med. Res. 2017 48 5 449 458 10.1016/j.arcmed.2017.10.005 29122357
    [Google Scholar]
  97. Yin W. Kumar T. Lai Z. Zeng X. Kanaan H.D. Li W. Zhang P.L. Kidney injury molecule-1, a sensitive and specific marker for identifying acute proximal tubular injury, can be used to predict renal functional recovery in native renal biopsies. Int. Urol. Nephrol. 2019 51 12 2255 2265 10.1007/s11255‑019‑02311‑1 31646460
    [Google Scholar]
  98. Bulanov NM Serova AG Kuznetsova EI Bulanova ML Novikov PI Kozlovskaya LV Moiseev SV Kidney injury molecules (KIM-1, MCP-1) and type IV collagen in the assessment of activity of antineutrophil cytoplasmic antibody-associated glomerulonephritis. Ter Arkh 2017 89 6 48 55 10.17116/terarkh201789648‑55 28745689
    [Google Scholar]
  99. Zhang H. Li X. Lu J. Ke Q. Li J. Du Y. Yu Y. Renal expression and clinical significance of Bach1-related oxidative stress indicators in patients with chronic glomerulonephritis. Pathol. Res. Pract. 2025 269 155935 Epub ahead of print 10.1016/j.prp.2025.155935 40186888
    [Google Scholar]
  100. Hu S. Zhang Y. Cui Z. Zhang Y. Wang J. Tan X. Chen W. The impact of the triglyceride-glucose index on the risk of respiratory failure in patients with COPD: A study from the MIMIC database and Chinese cohorts. BMC Pulm. Med. 2025 25 1 149 10.1186/s12890‑025‑03597‑x 40176015
    [Google Scholar]
  101. Wu Z. Shu D. Wu S. Cai P. Liang T. Higher serum Lp-PLA2 is associated with cognitive impairment in Parkinson’s disease patients. Front. Neurosci. 2024 18 1374567 10.3389/fnins.2024.1374567 38533446
    [Google Scholar]
/content/journals/cas/10.2174/0118746098380113250707112707
Loading
/content/journals/cas/10.2174/0118746098380113250707112707
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: urea ; detection methods ; biomarkers ; glomerular filtration rate ; Chronic kidney disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test