Skip to content
2000
image of Allicin and its Therapeutic Potential in Diabetes Management: A Comprehensive Review

Abstract

It has been known since ancient times that garlic (), a member of the Alliaceae family, is an indispensable component of human food. This compound contains abundant nutrients, minerals, sulphur-containing compounds, essential oils, phenols, and free amino acids. Sugar levels in the blood that are abnormally high are a symptom of diabetes mellitus, in which the body has difficulty appropriately regulating glucose metabolism. Elevated levels of glucose in blood plasma are considered DM. It has been suggested that two primary mechanisms are responsible for the pathogenesis of the disease. One of the main causes of the persistent hyperglycemia linked to diabetes mellitus is the immune system's devastation of pancreatic β-cells, which results in a lack of insulin synthesis. Additionally, endogenous resistance of the body cells to the action of insulin is also a contributing factor. Children who have type 1 diabetes frequently experience symptoms such as polyuria, weight loss, and polydipsia of varying degrees. A comprehensive literature search on the potential benefits of allicin in diabetes mellitus (DM) was conducted using reputable databases such as PubMed, Web of Science, Scopus, and other recognized scientific sources. Furthermore, information on the clinical application of allicin was reviewed and compiled from ClinicalTrials.gov to provide insights into ongoing and completed clinical studies. Allicin is a compound that has the potential to have effects on pancreatic cells, wound healing, promoting insulin secretion, diabetic macroangiopathy, maintaining glucose homeostasis, and diabetic nephropathy. In addition, studies on cell lines that were carried out with different concentrations of allicin demonstrated a significant inhibitory effect on diabetes mellitus. The promising treatment strategy, therapeutic benefits, and inhibitory actions that allicin exhibits on diabetes make it an appealing candidate for additional research and the possibility of its application in the treatment of diabetes mellitus.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098362006250602085308
2025-06-24
2025-09-15
Loading full text...

Full text loading...

References

  1. Nadeem M.S. Kazmi I. Ullah I. Muhammad K. Anwar F. Allicin, an antioxidant and neuroprotective agent, ameliorates cognitive impairment. Antioxidants 2021 11 1 87 10.3390/antiox11010087 35052591
    [Google Scholar]
  2. Martins N. Petropoulos S. Ferreira I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016 211 41 50 10.1016/j.foodchem.2016.05.029 27283605
    [Google Scholar]
  3. Ashfaq F Ali Q Haider MA Hafeez MM Malik A Therapeutic activities of garlic constituent phytochemicals. Biol. Clin. Sci. Res. J. 2021 2021 1 10.54112/bcsrj.v2021i1.53
    [Google Scholar]
  4. Asgharpour M Khavandegar A Balaei P Enayati N Mardi P Alirezaei A Bakhtiyari M Efficacy of oral administration of Allium sativum powder “garlic extract” on lipid profile, inflammation, and cardiovascular indices among hemodialysis patients. Evidence-Based Complementary and Alternative Medicine. Evid Based Complement Alternat Med. 2021 2021 6667453 10.1155/2021/6667453.
    [Google Scholar]
  5. Choo S. Chin V.K. Wong E.H. Madhavan P. Tay S.T. Yong P.V.C. Chong P.P. Review: Antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol. (Praha) 2020 65 3 451 465 10.1007/s12223‑020‑00786‑5 32207097
    [Google Scholar]
  6. El-Saber Batiha G. Magdy Beshbishy A. G Wasef L. Elewa Y.H.A. A Al-Sagan A. Abd El-Hack M.E. Taha A.E. M Abd-Elhakim Y. Prasad Devkota H. Prasad Devkota H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020 12 3 872 10.3390/nu12030872 32213941
    [Google Scholar]
  7. Ilić D.P. Stojanović S. Najman S. Nikolić V.D. Stanojević L.P. Tačić A. Nikolić L.B. Biological evaluation of synthesized allicin and its transformation products obtained by microwaves in methanol: Antioxidant activity and effect on cell growth. Biotechnol. Biotechnol. Equip. 2015 29 1 189 194 10.1080/13102818.2014.994267 26019632
    [Google Scholar]
  8. García-Trejo E.M.A. Arellano-Buendía A.S. Argüello-García R. Loredo-Mendoza M.L. García-Arroyo F.E. Arellano-Mendoza M.G. Castillo-Hernández M.C. Guevara-Balcázar G. Tapia E. Sánchez-Lozada L.G. Osorio-Alonso H. Effects of allicin on hypertension and cardiac function in chronic kidney disease. Oxid. Med. Cell. Longev. 2016 2016 1 3850402 10.1155/2016/3850402 27990229
    [Google Scholar]
  9. García Trejo E. Arellano Buendía A. Sánchez Reyes O. García Arroyo F. Arguello García R. Loredo Mendoza M. Tapia E. Sánchez Lozada L. Osorio Alonso H. The beneficial effects of allicin in chronic kidney disease are comparable to losartan. Int. J. Mol. Sci. 2017 18 9 1980 10.3390/ijms18091980 28926934
    [Google Scholar]
  10. Huang H. Jiang Y. Mao G. Yuan F. Zheng H. Ruan Y. Wu T. Protective effects of allicin on streptozotocin-induced diabetic nephropathy in rats. J. Sci. Food Agric. 2017 97 4 1359 1366 10.1002/jsfa.7874 27363537
    [Google Scholar]
  11. Arellano Buendía A.S. Tostado González M. Sánchez Reyes O. García Arroyo F.E. Argüello García R. Tapia E. Sánchez Lozada L.G. Osorio Alonso H. Immunomodulatory effects of the nutraceutical garlic derivative allicin in the progression of diabetic nephropathy. Int. J. Mol. Sci. 2018 19 10 3107 10.3390/ijms19103107 30314265
    [Google Scholar]
  12. Arellano-Buendía A.S. Castañeda-Lara L.G. Loredo-Mendoza M.L. García-Arroyo F.E. Rojas-Morales P. Argüello-García R. Juárez-Rojas J.G. Tapia E. Pedraza-Chaverri J. Sánchez-Lozada L.G. Osorio-Alonso H. Effects of allicin on pathophysiological mechanisms during the progression of nephropathy associated to diabetes. Antioxidants 2020 9 11 1134 10.3390/antiox9111134 33203103
    [Google Scholar]
  13. Ding L. Wu J. Tang N. Tao L. Xu W. Lu Z. Zhang Y. Antifungal activity of an allicin derivative against Penicillium expansum via induction of oxidative stress. J. Basic Microbiol. 2020 60 11-12 962 970 10.1002/jobm.202000267 33022788
    [Google Scholar]
  14. Reyes B.A.S. Dufourt E.C. Ross J. Warner M.J. Tanquilut N.C. Leung A.B. Selected phyto and marine bioactive compounds: Alternatives for the treatment of type 2 diabetes. Stud. Nat. Prod. Chem. 2018 55 111 143 10.1016/B978‑0‑444‑64068‑0.00004‑8
    [Google Scholar]
  15. Gruhlke M. Nicco C. Batteux F. Slusarenko A. The effects of allicin, a reactive sulfur species from garlic, on a selection of mammalian cell lines. Antioxidants 2016 6 1 1 10.3390/antiox6010001 28035949
    [Google Scholar]
  16. Marchese A. Barbieri R. Sanches-Silva A. Daglia M. Nabavi S.F. Jafari N.J. Izadi M. Ajami M. Nabavi S.M. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci. Technol. 2016 52 49 56 10.1016/j.tifs.2016.03.010
    [Google Scholar]
  17. Sarvizadeh M. Hasanpour O. Naderi Ghale-Noie Z. Mollazadeh S. Rezaei M. Pourghadamyari H. Masoud Khooy M. Aschner M. Khan H. Rezaei N. Shojaie L. Mirzaei H. Allicin and digestive system cancers: From chemical structure to its therapeutic opportunities. Front. Oncol. 2021 11 650256 10.3389/fonc.2021.650256 33987085
    [Google Scholar]
  18. Salehi B. Zucca P. Orhan I.E. Azzini E. Adetunji C.O. Mohammed S.A. Banerjee S.K. Sharopov F. Rigano D. Sharifi-Rad J. Armstrong L. Martorell M. Sureda A. Martins N. Selamoğlu Z. Ahmad Z. Allicin and health: A comprehensive review. Trends Food Sci. Technol. 2019 86 502 516 10.1016/j.tifs.2019.03.003
    [Google Scholar]
  19. Sharifi-Rad J. Cristina Cirone Silva N. Jantwal A. Martins N. Taheri Y. Therapeutic potential of allicin-rich garlic preparations: emphasis on clinical evidence toward upcoming drugs formulation. Appl. Sci. (Basel) 2019 9 24 5555 10.3390/app9245555
    [Google Scholar]
  20. Kannar D. Wattanapenpaiboon N. Savige G.S. Wahlqvist M.L. Hypocholesterolemic effect of an enteric-coated garlic supplement. J. Am. Coll. Nutr. 2001 20 3 225 231 10.1080/07315724.2001.10719036 11444418
    [Google Scholar]
  21. Shi X. Zhou X. Chu X. Wang J. Xie B. Ge J. Guo Y. Li X. Yang G. Allicin improves metabolism in high-fat diet-induced obese mice by modulating the gut microbiota. Nutrients 2019 11 12 2909 10.3390/nu11122909 31810206
    [Google Scholar]
  22. Savairam V.D. Patil N.A. Borate S.R. Ghaisas M.M. Shete R.V. Allicin: A review of its important pharmacological activities. Pharmacological Research-Modern Chinese Medicine 2023 100283
    [Google Scholar]
  23. Cavallito C.J. Bailey J.H. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 1944 66 11 1950 1951 10.1021/ja01239a048
    [Google Scholar]
  24. Ankri S. Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999 1 2 125 129 10.1016/S1286‑4579(99)80003‑3 10594976
    [Google Scholar]
  25. Quesada I. de Paola M. Torres-Palazzolo C. Camargo A. Ferder L. Manucha W. Castro C. Effect of garlic’s active constituents in inflammation, obesity and cardiovascular disease. Curr. Hypertens. Rep. 2020 22 1 6 10.1007/s11906‑019‑1009‑9 31925548
    [Google Scholar]
  26. Nakamoto M. Kunimura K. Suzuki J.I. Kodera Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp. Ther. Med. 2020 19 2 1550 1553 32010337
    [Google Scholar]
  27. Bădescu S.V. Tătaru C. Kobylinska L. Georgescu E.L. Zahiu D.M. Zăgrean A.M. Zăgrean L. The association between Diabetes mellitus and depression. J. Med. Life 2016 9 2 120 125 27453739
    [Google Scholar]
  28. Kivimäki M. Batty D.G. Kawachi I. Steptoe A. The Routledge international handbook of psychosocial epidemiology. Routledge 2017 10.4324/9781315673097
    [Google Scholar]
  29. Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin. Ther. Targets 2018 22 2 153 160 10.1080/14728222.2018.1420168 29257914
    [Google Scholar]
  30. Odeyemi S. Bradley G. Medicinal plants used for the traditional management of diabetes in the Eastern Cape, South Africa: pharmacology and toxicology. Molecules 2018 23 11 2759 10.3390/molecules23112759 30366359
    [Google Scholar]
  31. Kanter J.E. Bornfeldt K.E. Impact of diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 2016 36 6 1049 1053 10.1161/ATVBAHA.116.307302 27225786
    [Google Scholar]
  32. Kleinberger J.W. Pollin T.I. Personalized medicine in diabetes mellitus: Current opportunities and future prospects. Ann. N. Y. Acad. Sci. 2015 1346 1 45 56 10.1111/nyas.12757 25907167
    [Google Scholar]
  33. Wang Q. Zhang X. Fang L. Guan Q. Guan L. Li Q. Prevalence, awareness, treatment and control of diabetes mellitus among middle-aged and elderly people in a rural Chinese population: A cross-sectional study. PLoS One 2018 13 6 e0198343 10.1371/journal.pone.0198343 29856828
    [Google Scholar]
  34. Sun Y. Tao Q. Wu X. Zhang L. Liu Q. Wang L. The utility of exosomes in diagnosis and therapy of diabetes mellitus and associated complications. Front. Endocrinol. (Lausanne) 2021 12 756581 10.3389/fendo.2021.756581 34764939
    [Google Scholar]
  35. Chen W. Li X. Zeng L. Pan H. Liu Z. Allicin-loaded chitosan/polyvinyl alcohol scaffolds as a potential wound dressing material to treat diabetic wounds: An in vitro and in vivo study. J. Drug Deliv. Sci. Technol. 2021 65 102734 10.1016/j.jddst.2021.102734
    [Google Scholar]
  36. He X. Kuang G. Wu Y. Ou C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 2021 11 6 e468 10.1002/ctm2.468 34185424
    [Google Scholar]
  37. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care 2014 37 1 Suppl. 1 S81 S90 24357215
    [Google Scholar]
  38. Lovic D. Piperidou A. Zografou I. Grassos H. Pittaras A. Manolis A. The growing epidemic of diabetes mellitus. Curr. Vasc. Pharmacol. 2020 18 2 104 109 10.2174/1570161117666190405165911 30961501
    [Google Scholar]
  39. Pontes J.P.J. Mendes F.F. Vasconcelos M.M. Batista N.R. Evaluation and perioperative management of patients with diabetes mellitus. A challenge for the anesthesiologist. Braz. J. Anesthesiol. 2018 68 1 75 86 10.1016/j.bjan.2017.04.017 28571661
    [Google Scholar]
  40. Cole J.B. Florez J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020 16 7 377 390 10.1038/s41581‑020‑0278‑5 32398868
    [Google Scholar]
  41. Hara K. Kadowaki T. Odawara M. Genes associated with diabetes: Potential for novel therapeutic targets? Expert Opin. Ther. Targets 2016 20 3 255 267 10.1517/14728222.2016.1098618 26458049
    [Google Scholar]
  42. Papatheodorou K Banach M Edmonds M Papanas N Papazoglou D Complications of diabetes. J Diabetes Res 2015 2015 189525 10.1155/2015/189525
    [Google Scholar]
  43. Defeudis G. Mazzilli R. Tenuta M. Rossini G. Zamponi V. Olana S. Faggiano A. Pozzilli P. Isidori A.M. Gianfrilli D. Erectile dysfunction and diabetes: A melting pot of circumstances and treatments. Diabetes Metab. Res. Rev. 2022 38 2 e3494 10.1002/dmrr.3494 34514697
    [Google Scholar]
  44. Huang H. Zheng F. Dong X. Wu F. Wu T. Li H. Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro. Exp. Ther. Med. 2017 13 1 254 262 10.3892/etm.2016.3913 28123498
    [Google Scholar]
  45. Chan J.Y.Y. Yuen A.C.Y. Chan R.Y.K. Chan S.W. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res. 2013 27 5 637 646 10.1002/ptr.4796 22888009
    [Google Scholar]
  46. Osman M. Adnan A. Bakar N.S. Alashkham F. Allicin has significant effect on autoimmune anti-islet cell antibodies in type 1 diabetic rats. Pol. J. Pathol. 2012 4 4 248 254 10.5114/pjp.2012.32772 23359194
    [Google Scholar]
  47. Hoogwerf B.J. Type of diabetes mellitus: Does it matter to the clinician? Cleve. Clin. J. Med. 2020 87 2 100 108 10.3949/ccjm.87a.19020 32015063
    [Google Scholar]
  48. Arneth B. Arneth R. Shams M. Metabolomics of type 1 and type 2 diabetes. Int. J. Mol. Sci. 2019 20 10 2467 10.3390/ijms20102467 31109071
    [Google Scholar]
  49. Li W. Huang E. Gao S. Type 1 diabetes mellitus and cognitive impairments: A systematic review. J. Alzheimers Dis. 2017 57 1 29 36 10.3233/JAD‑161250 28222533
    [Google Scholar]
  50. Zaccardi F. Webb D.R. Yates T. Davies M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J. 2016 92 1084 63 69 10.1136/postgradmedj‑2015‑133281 26621825
    [Google Scholar]
  51. Bielka W. Przezak A. Pawlik A. The role of the gut microbiota in the pathogenesis of diabetes. Int. J. Mol. Sci. 2022 23 1 480 10.3390/ijms23010480 35008906
    [Google Scholar]
  52. Lu X. Zhao C. Exercise and type 1 diabetes. Physical Exercise for Human Health 2020 107 121
    [Google Scholar]
  53. Primavera M. Giannini C. Chiarelli F. Prediction and prevention of type 1 diabetes. Front. Endocrinol. (Lausanne) 2020 11 248 10.3389/fendo.2020.00248 32670194
    [Google Scholar]
  54. Kahaly G.J. Hansen M.P. Type 1 diabetes associated autoimmunity. Autoimmun. Rev. 2016 15 7 644 648 10.1016/j.autrev.2016.02.017 26903475
    [Google Scholar]
  55. Fan W. Pang H. Xie Z. Huang G. Zhou Z. Circular RNAs in diabetes mellitus and its complications. Front. Endocrinol. (Lausanne) 2022 13 885650 10.3389/fendo.2022.885650 35979435
    [Google Scholar]
  56. Buzzetti R. Zampetti S. Maddaloni E. Adult-onset autoimmune diabetes: current knowledge and implications for management. Nat. Rev. Endocrinol. 2017 13 11 674 686 10.1038/nrendo.2017.99 28885622
    [Google Scholar]
  57. Desai S. Deshmukh A. Mapping of type 1 diabetes mellitus. Curr. Diabetes Rev. 2020 16 5 438 441 10.2174/1573399815666191004112647 31584373
    [Google Scholar]
  58. DiMeglio L.A. Evans-Molina C. Oram R.A. Type 1 diabetes. Lancet 2018 391 10138 2449 2462 10.1016/S0140‑6736(18)31320‑5 29916386
    [Google Scholar]
  59. Ilonen J. Lempainen J. Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2019 15 11 635 650 10.1038/s41574‑019‑0254‑y 31534209
    [Google Scholar]
  60. Rewers M. Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet 2016 387 10035 2340 2348 10.1016/S0140‑6736(16)30507‑4 27302273
    [Google Scholar]
  61. Vehik K. Lynch K.F. Wong M.C. Tian X. Ross M.C. Gibbs R.A. Ajami N.J. Petrosino J.F. Rewers M. Toppari J. Ziegler A.G. She J.X. Lernmark A. Akolkar B. Hagopian W.A. Schatz D.A. Krischer J.P. Hyöty H. Lloyd R.E. TEDDY Study Group Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat. Med. 2019 25 12 1865 1872 10.1038/s41591‑019‑0667‑0 31792456
    [Google Scholar]
  62. Op de Beeck A. Eizirik D.L. Viral infections in type 1 diabetes mellitus — why the β cells? Nat. Rev. Endocrinol. 2016 12 5 263 273 10.1038/nrendo.2016.30 27020257
    [Google Scholar]
  63. Qian R. Chen H. Lin H. Jiang Y. He P. Ding Y. Wu H. Peng Y. Wang L. Chen C. Wang D. Ji W. Guo X. Shan X. The protective roles of allicin on type 1 diabetes mellitus through AMPK/mTOR mediated autophagy pathway. Front. Pharmacol. 2023 14 1108730 10.3389/fphar.2023.1108730 36817124
    [Google Scholar]
  64. Ma Q. Li Y. Li P. Wang M. Wang J. Tang Z. Wang T. Luo L. Wang C. Wang T. Zhao B. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed. Pharmacother. 2019 117 109138 10.1016/j.biopha.2019.109138 31247468
    [Google Scholar]
  65. Rehman K. Akash M.S.H. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? J. Cell. Biochem. 2017 118 11 3577 3585 10.1002/jcb.26097 28460155
    [Google Scholar]
  66. American Diabetes Association Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 2018 41 1 Suppl. 1 S13 S27 29222373
    [Google Scholar]
  67. Udler M.S. Kim J. von Grotthuss M. Bonàs-Guarch S. Cole J.B. Chiou J. Boehnke M. Laakso M. Atzmon G. Glaser B. Mercader J.M. Gaulton K. Flannick J. Getz G. Florez J.C. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med. 2018 15 9 e1002654 10.1371/journal.pmed.1002654 30240442
    [Google Scholar]
  68. Tanase DM Gosav EM Costea CF Ciocoiu M Lacatusu CM Maranduca MA Ouatu A Floria M The intricate relationship between type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J Diabetes Res. 2020 31 3920196 10.1155/2020/3920196.4
    [Google Scholar]
  69. Henning R.J. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018 14 6 491 509 10.2217/fca‑2018‑0045 30409037
    [Google Scholar]
  70. Laakso M. Biomarkers for type 2 diabetes. Mol. Metab. 2019 27 Suppl. S139 S146 10.1016/j.molmet.2019.06.016 31500825
    [Google Scholar]
  71. Xu L. Li Y. Dai Y. Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018 130 451 465 10.1016/j.phrs.2018.01.015 29395440
    [Google Scholar]
  72. Ramírez-Alarcón K. Victoriano M. Mardones L. Villagran M. Al-Harrasi A. Al-Rawahi A. Cruz-Martins N. Sharifi-Rad J. Martorell M. Phytochemicals as potential epidrugs in type 2 diabetes mellitus. Front. Endocrinol. (Lausanne) 2021 12 656978 10.3389/fendo.2021.656978 34140928
    [Google Scholar]
  73. Hou Y.Y. Ojo O. Wang L.L. Wang Q. Jiang Q. Shao X.Y. Wang X.H. A randomized controlled trial to compare the effect of peanuts and almonds on the cardio-metabolic and inflammatory parameters in patients with type 2 diabetes mellitus. Nutrients 2018 10 11 1565 10.3390/nu10111565 30360498
    [Google Scholar]
  74. Hewston P. Deshpande N. Fear of falling and balance confidence in older adults with type 2 diabetes mellitus: A scoping review. Can. J. Diabetes 2018 42 6 664 670 10.1016/j.jcjd.2018.02.009 29914779
    [Google Scholar]
  75. Yan Y. Wu T. Zhang M. Li C. Liu Q. Li F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population. BMC Public Health 2022 22 1 1382 10.1186/s12889‑022‑13759‑9 35854279
    [Google Scholar]
  76. Sodhi R.K. Singh R. Bansal Y. Bishnoi M. Parhar I. Kuhad A. Soga T. Intersections in neuropsychiatric and metabolic disorders: Possible role of TRPA1 channels. Front. Endocrinol. (Lausanne) 2021 12 771575 10.3389/fendo.2021.771575 34912298
    [Google Scholar]
  77. Yu Z. Zhao S. Allicin depresses biological activities of pancreatic cancer cells by regulating miRNA-339-5p/ZNF-689 axis. Arch. Med. Sci. 2021 10.5114/aoms/138466
    [Google Scholar]
  78. Ribeiro M. Alvarenga L. Cardozo L.F.M.F. Chermut T.R. Sequeira J. de Souza Gouveia Moreira L. Teixeira K.T.R. Shiels P.G. Stenvinkel P. Mafra D. From the distinctive smell to therapeutic effects: Garlic for cardiovascular, hepatic, gut, diabetes and chronic kidney disease. Clin. Nutr. 2021 40 7 4807 4819 10.1016/j.clnu.2021.03.005 34147285
    [Google Scholar]
  79. Li L. Song Q. Zhang X. Yan Y. Wang X. Allicin alleviates diabetes mellitus by inhibiting the formation of advanced glycation end products. Molecules 2022 27 24 8793 10.3390/molecules27248793 36557926
    [Google Scholar]
  80. Moldogazieva NT Mokhosoev IM Mel’nikova TI Porozov YB Terentiev AA Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid Med Cell Longev. 2019 2019 10.1155/2019/3085756
    [Google Scholar]
  81. Toygar I. Tureyen A. Demir D. Cetinkalp S. Effect of allicin on wound healing: An experimental diabetes model. J. Wound Care 2020 29 7 388 392 10.12968/jowc.2020.29.7.388 32654608
    [Google Scholar]
  82. Patil P.V. Raut A.M. Formulation and evaluation of allicin onitment for a wound healing. Int. J.Creative Research. Thoughts. 2022 10 2320 2882 [IJCRT].
    [Google Scholar]
  83. Jung H Lee JS Lee JJ Park HS Anti-inflammatory and Anti-bacterial effects of Allicin-coated tracheal tube on Trachea mucosa. in vivo. 2022 36 3 1195
    [Google Scholar]
  84. Chen H. Zhu B. Zhao L. Liu Y. Zhao F. Feng J. Jin Y. Sun J. Geng R. Wei Y. Allicin inhibits proliferation and invasion in vitro and in vivo via SHP-1-mediated STAT3 signaling in cholangiocarcinoma. Cell. Physiol. Biochem. 2018 47 2 641 653 10.1159/000490019 29794468
    [Google Scholar]
  85. Markakis K. Bowling F.L. Boulton A.J.M. The diabetic foot in 2015: An overview. Diabetes Metab. Res. Rev. 2016 32 S1 Suppl. 1 169 178 10.1002/dmrr.2740 26451519
    [Google Scholar]
  86. Liu D.S. Wang S.L. Li J.M. Liang E.S. Yan M.Z. Gao W. Allicin improves carotid artery intima-media thickness in coronary artery disease patients with hyperhomocysteinemia. Exp. Ther. Med. 2017 14 2 1722 1726 10.3892/etm.2017.4698 28810641
    [Google Scholar]
  87. Li C. Liu X. Qiao Y. Ning L. Li W. Sun Y. Liu D. Gao W. Ma C. Allicin alleviates inflammation of diabetic macroangiopathy via the Nrf2 and NF-kB pathway. Eur. J. Pharmacol. 2020 876 173052 10.1016/j.ejphar.2020.173052 32135124
    [Google Scholar]
  88. Zhang C. He X. Sheng Y. Yang C. Xu J. Zheng S. Liu J. Xu W. Luo Y. Huang K. Allicin‐induced host‐gut microbe interactions improves energy homeostasis. FASEB J. 2020 34 8 10682 10698 10.1096/fj.202001007R 32619085
    [Google Scholar]
  89. Zhang C. He X. Sheng Y. Xu J. Yang C. Zheng S. Liu J. Li H. Ge J. Yang M. Zhai B. Xu W. Luo Y. Huang K. Allicin regulates energy homeostasis through brown adipose tissue. iScience 2020 23 5 101113 10.1016/j.isci.2020.101113 32413611
    [Google Scholar]
  90. Suryavanshi S.V. Kulkarni Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol. 2017 8 798 10.3389/fphar.2017.00798 29163178
    [Google Scholar]
  91. Qian Y.Q. Feng Z.H. Li X.B. Hu Z.C. Xuan J.W. Wang X. Xu H.C. Chen J.X. Downregulating PI3K/Akt/NF-κB signaling with allicin for ameliorating the progression of osteoarthritis: In vitro and vivo studies. Food Funct. 2018 9 9 4865 4875 10.1039/C8FO01095A 30160278
    [Google Scholar]
  92. Padiya R. Chowdhury D. Borkar R. Srinivas R. Pal Bhadra M. Banerjee S.K. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS One 2014 9 5 e94228 10.1371/journal.pone.0094228 24796753
    [Google Scholar]
  93. Coutinho-Wolino K.S. Almeida P.P. Mafra D. Stockler-Pinto M.B. Bioactive compounds modulating Toll-like 4 receptor (TLR4)-mediated inflammation: Pathways involved and future perspectives. Nutr. Res. 2022 107 96 116 10.1016/j.nutres.2022.09.001 36209684
    [Google Scholar]
  94. Li S.C. Ma L.N. Chen J. Li Y.K. Effect of allicin on myocardial fibrosis after myocardial infarction in rats and its relationship with TGFβ/Smads signal transduction. China. J.Chin. Materia Medica. 2016 41 13 2517 2521 28905578
    [Google Scholar]
  95. Mita T. Katakami N. Shiraiwa T. Yoshii H. Onuma T. Kuribayashi N. Osonoi T. Kaneto H. Kosugi K. Umayahara Y. Yamamoto T. Matsumoto K. Yokoyama H. Tsugawa M. Gosho M. Shimomura I. Watada H. Collaborators on the Sitagliptin Preventive Study of Intima-Media Thickness Evaluation (SPIKE) Trial Sitagliptin attenuates the progression of carotid intima-media thickening in insulin-treated patients with type 2 diabetes: The sitagliptin preventive study of intima-media thickness evaluation (SPIKE). Diabetes Care 2016 39 3 455 464 10.2337/dc15‑2145 26822324
    [Google Scholar]
  96. Yin Y.W. Ma H.X. Tian X.H. Xu Y.C. Allicin improves endothelium-dependent relaxation in diabetic rats through maintaining eNOS protein stability. Int. J. Clin. Exp. Med. 2016 9 8 15755 15763
    [Google Scholar]
  97. Lee C.G. Rhee D.K. Kim B.O. Um S.H. Pyo S. Allicin induces beige-like adipocytes via KLF15 signal cascade. J. Nutr. Biochem. 2019 64 13 24 10.1016/j.jnutbio.2018.09.014 30423518
    [Google Scholar]
  98. Zhang Nn. Kang Js. Liu SS. Flavanomarein inhibits high glucose-stimulated epithelial-mesenchymal transition in HK-2 cells via targeting spleen tyrosine kinase. Sci Rep. 2020 10 239 10.1038/s41598‑019‑57360‑4
    [Google Scholar]
  99. Wang S.L. Liu D.S. Liang E.S. Gao Y.H. Cui Y. Liu Y.Z. Gao W. Protective effect of allicin on high glucose/hypoxia-induced aortic endothelial cells via reduction of oxidative stress. Exp. Ther. Med. 2015 10 4 1394 1400 10.3892/etm.2015.2708 26622496
    [Google Scholar]
  100. Kong L. Ji X. Liu Y. Du Y. Effect of artemisinin combined with allicin on improving cardiac function, fibrosis and NF-κB signaling pathway in rats with diabetic cardiomyopathy. Acta Biochim. Pol. 2023 70 2 401 405 10.18388/abp.2020_6692 37307593
    [Google Scholar]
  101. Alhashim M. Lombardo J. Mechanism of action of topical garlic on wound healing. Dermatol. Surg. 2018 44 5 630 634 10.1097/DSS.0000000000001382 29077629
    [Google Scholar]
  102. Khan I.A. Lodhi A.H. Munawar S.H. Manzoor A. Raza M.A. Formulation and evaluation of allicin and curcumin gel improves normal and diabetic ulcers in rabbits. Lat. Am. J. Pharm. 2018 37 8 1602 1607
    [Google Scholar]
  103. Soumya R.S. Sherin S. Raghu K.G. Abraham A. Allicin functionalized locust bean gum nanoparticles for improved therapeutic efficacy: An in silico, in vitro and in vivo approach. Int. J. Biol. Macromol. 2018 109 740 747 10.1016/j.ijbiomac.2017.11.065 29155156
    [Google Scholar]
  104. Lawson L.D. Hunsaker S.M. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients 2018 10 7 812 10.3390/nu10070812 29937536
    [Google Scholar]
  105. Cutler R.R. Odent M. Hajj-Ahmad H. Maharjan S. Bennett N.J. Josling P.D. Ball V. Hatton P. Dall’Antonia M. In vitro activity of an aqueous allicin extract and a novel allicin topical gel formulation against Lancefield group B streptococci. J. Antimicrob. Chemother. 2008 63 1 151 154 10.1093/jac/dkn457 19001449
    [Google Scholar]
  106. Silliker, Inc. Allicin bioavailability from garlic supplements and garlic foods. NC Patent T00874666 2009
  107. National Taiwan University Hospital Investigating the gut microbiota modulation effects of allicin for cardiovascular disease protection and establishing microbiota directed personalized nutrition guidance with novel humanized gnotobiotic mice model, microbial culturomics and metabolomic technique. NC Patent T04545879 2024
  108. Institute of atherosclerosis, research, russia. the effects of allicor on patients after coronary arteria revascularization treatment (TEA-CART). NC Patent T05803759 2025
  109. University of Guadalajara Pirfenidone Plus M-DDO Gel in Moderate and Severe Acne. NC Patent 03076320 2025
/content/journals/cas/10.2174/0118746098362006250602085308
Loading
/content/journals/cas/10.2174/0118746098362006250602085308
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: macroangiopathy ; nephropathy ; garlic ; wound healing ; Allicin ; cell line
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test