Skip to content
2000
image of Dendrimers: Advancing Therapeutic Strategies for Dementia

Abstract

Dementia, characterized by a progressive decline in cognitive function, poses a significant challenge to global healthcare systems, with current therapeutic approaches offering limited efficacy. The development of nanotechnology-based drug delivery systems has introduced promising avenues for enhancing the treatment of neurodegenerative disorders such as Alzheimer’s disease. Dendrimers, with their highly branched, nanoscale structure, provide an innovative platform for targeted drug delivery to the brain. Dendrimers serve as nanoscale drug carriers that facilitate controlled drug release, enhance bioavailability, and improve penetration across the blood-brain barrier (BBB), leading to superior therapeutic efficacy in neurodegenerative disorders. In particular, dendrimers can encapsulate both hydrophilic and hydrophobic drugs, increasing their stability and minimizing systemic side effects. This review explores the unique properties of dendrimers, focusing on their potential as drug delivery vehicles in dementia treatment. We also highlight advancements in the design and application of dendrimer-based therapeutics, emphasizing their role in targeting key pathological mechanisms underlying dementia. Through these approaches, dendrimers represent a promising strategy for developing more effective and personalized treatment modalities for patients suffering from cognitive impairment and dementia.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098343913250818112618
2025-09-01
2025-12-15
Loading full text...

Full text loading...

References

  1. Jonker C. Geerlings M.I. Schmand B. Are memory complaints predictive for dementia? A review of clinical and population-based studies. Int. J. Geriatr. Psychiatry 2000 15 11 983 991 10.1002/1099‑1166(200011)15:11<983::AID‑GPS238>3.0.CO;2‑5 11113976
    [Google Scholar]
  2. Mitchell AJ The clinical significance of subjective memory complaints in the diagnosis of mild cognitive impairment and dementia: A meta-analysis. Int. J. Geriatr. Psychiatry. 2008 23 11 1191 1202 10.1002/gps.2053
    [Google Scholar]
  3. Knopman DS Boeve BF Petersen RC Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. Mayo Clin Proc 2003 78 10 1290 1308 10.4065/78.10.1290
    [Google Scholar]
  4. Prince M. Wimo A. Guerchet M. Ali G.C. Wu Y.T. Prina M. The global impact of dementia: An analysis of prevalence, incidence, cost and trends. Doctoral dissertation, Alzheimer's Disease International 2015
    [Google Scholar]
  5. Singh A. Ansari V.A. Mahmood T. Ahsan F. Wasim R. Shariq M. Parveen S. Maheshwari S. Receptor for advanced glycation end products: Dementia and cognitive impairment. Drug Res. 2023 73 5 247 250 10.1055/a‑2015‑8041 36889338
    [Google Scholar]
  6. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  7. Babazadeh A. Vahed F.M. Liu Q. Siddiqui S.A. Kharazmi M.S. Jafari S.M. Natural bioactive molecules as neuromedicines for the treatment/prevention of neurodegenerative diseases. ACS Omega 2023 8 4 3667 3683 10.1021/acsomega.2c06098 36743024
    [Google Scholar]
  8. Fymat A.L. Dementia: A review. J. Clin. Psychiatr Neurosci. 2018 1 3 27 34
    [Google Scholar]
  9. Taso O.V. Philippou A. Moustogiannis A. Zevolis E. Koutsilieris M. Lipid peroxidation products and their role in neurodegenerative diseases. Ann. Res. Hosp. 2019 3 2 10.21037/arh.2018.12.02
    [Google Scholar]
  10. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  11. Gao J. Wang L. Liu J. Xie F. Su B. Wang X. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 2017 6 2 25 10.3390/antiox6020025 28379197
    [Google Scholar]
  12. Faridi Esfanjani A. Assadpour E. Jafari S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol. 2018 76 56 66 10.1016/j.tifs.2018.04.002
    [Google Scholar]
  13. Stan S.D. Kar S. Stoner G.D. Singh S.V. Bioactive food components and cancer risk reduction. J. Cell. Biochem. 2008 104 1 339 356 10.1002/jcb.21623 18092339
    [Google Scholar]
  14. Abuhamdah S. Abuhamdah R. Howes M.J.R. Al-Olimat S. Ennaceur A. Chazot P.L. Pharmacological and neuroprotective profile of an essential oil derived from leaves of A loysia citrodora Palau. J. Pharm. Pharmacol. 2015 67 9 1306 1315 10.1111/jphp.12424 25877296
    [Google Scholar]
  15. Wang S. Yang S. Liu W. Zhang Y. Xu P. Wang T. Ling T. Liu R. Alpha-tocopherol quinine ameliorates spatial memory deficits by reducing beta-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer’s disease. Behav. Brain Res. 2016 296 109 117 10.1016/j.bbr.2015.09.003 26358659
    [Google Scholar]
  16. Poudel P. Park S. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems. Pharmaceutics 2022 14 4 835 10.3390/pharmaceutics14040835 35456671
    [Google Scholar]
  17. Agrawal M. Saraf S. Saraf S. Antimisiaris S.G. Hamano N. Li S.D. Chougule M. Shoyele S.A. Gupta U. Ajazuddin Alexander A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin. Drug Deliv. 2018 15 6 589 617 10.1080/17425247.2018.1471058 29733231
    [Google Scholar]
  18. Babazadeh A. Ghanbarzadeh B. Hamishehkar H. Formulation of food grade nanostructured lipid carrier (NLC) for potential applications in medicinal-functional foods. J. Drug Deliv. Sci. Technol. 2017 39 50 58 10.1016/j.jddst.2017.03.001
    [Google Scholar]
  19. Singh A. Maheshwari S. Dendrimers for neuro targeting. Int. J. Pharm. Prof. Res. 2023 14 1 124 130
    [Google Scholar]
  20. Maheshwari S. Singh A. Ansari V.A. Mahmood T. Wasim R. Akhtar J. Verma A. Navigating the dementia landscape: Biomarkers and emerging therapies. Ageing Res. Rev. 2024 94 102193 10.1016/j.arr.2024.102193 38215913
    [Google Scholar]
  21. Babazadeh A. Mohammadi Vahed F. Jafari S.M. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J. Control. Release 2020 321 211 221 10.1016/j.jconrel.2020.02.015 32035189
    [Google Scholar]
  22. Singh A. Ansari V.A. Mahmood T. Ahsan F. Wasim R. Dendrimers: A neuroprotective lead in alzheimer disease: A review on its synthetic approach and applications. Drug Res. 2022 72 8 417 423 10.1055/a‑1886‑3208 35931069
    [Google Scholar]
  23. Singh A Ansari VA Mahmood T Ahsan F Wasim R Maheshwari S Emerging nanotechnology for the treatment of Alzheimer's disease. CNS Neu. Dis. Drug Targ. 2024 23 6 687 696 10.2174/1871527322666230501232815
    [Google Scholar]
  24. Singh A. Ansari V.A. Ansari T.M. Hasan S.M. Ahsan F. Singh K. Wasim R. Maheshwari S. Ahmad A. Consequence of dementia and cognitive impairment by primary nucleation pathway. Horm. Metab. Res. 2023 55 5 304 314 10.1055/a‑2052‑8462 37130536
    [Google Scholar]
  25. Paramanick D. Singh V.D. Singh V.K. Neuroprotective effect of phytoconstituents via nanotechnology for treatment of Alzheimer diseases. J. Control. Release 2022 351 638 655 10.1016/j.jconrel.2022.09.058 36191675
    [Google Scholar]
  26. Loureiro J. Andrade S. Duarte A. Neves A. Queiroz J. Nunes C. Sevin E. Fenart L. Gosselet F. Coelho M. Pereira M. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules 2017 22 2 277 10.3390/molecules22020277 28208831
    [Google Scholar]
  27. Mathew A. Fukuda T. Nagaoka Y. Hasumura T. Morimoto H. Yoshida Y. Maekawa T. Venugopal K. Kumar D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012 7 3 32616 10.1371/journal.pone.0032616 22403681
    [Google Scholar]
  28. Zhang S.Q. Obregon D. Ehrhart J. Deng J. Tian J. Hou H. Giunta B. Sawmiller D. Tan J. Baicalein reduces β‐amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J. Neurosci. Res. 2013 91 9 1239 1246 10.1002/jnr.23244 23686791
    [Google Scholar]
  29. Kumar R. Garg R. Bacoside rich extract loaded solid lipid nanoparticles for Alzheimer’s disease. Plant Arch. 2020 20 S1 247 252
    [Google Scholar]
  30. Saini S. Sharma T. Jain A. Kaur H. Katare O.P. Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces 2021 205 111838 10.1016/j.colsurfb.2021.111838 34022704
    [Google Scholar]
  31. Singh M. Thakur V. Deshmukh R. Sharma A. Rathore M.S. Kumar A. Mishra N. Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer’s disease. J. Microencapsul. 2018 35 2 137 148 10.1080/02652048.2018.1441916 29448848
    [Google Scholar]
  32. Lohan S. Raza K. Mehta S.K. Bhatti G.K. Saini S. Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm. 2017 530 1-2 263 278 10.1016/j.ijpharm.2017.07.080 28774853
    [Google Scholar]
  33. Elnaggar Y.S.R. Etman S.M. Abdelmonsif D.A. Abdallah O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci. 2015 104 10 3544 3556 10.1002/jps.24557
    [Google Scholar]
  34. Esteves M. Cristóvão A.C. Saraiva T. Rocha S.M. Baltazar G. Ferreira L. Bernardino L. Retinoic acid-loaded polymeric nanoparticles induce neuroprotection in a mouse model for Parkinson’s disease. Front. Aging Neurosci. 2015 7 20 10.3389/fnagi.2015.00020 25798108
    [Google Scholar]
  35. kheradmand E. Hajizadeh Moghaddam A. Zare M. Neuroprotective effect of hesperetin and nano-hesperetin on recognition memory impairment and the elevated oxygen stress in rat model of Alzheimer’s disease. Biomed. Pharmacother. 2018 97 1096 1101 10.1016/j.biopha.2017.11.047 29136946
    [Google Scholar]
  36. Berron D. van Westen D. Ossenkoppele R. Strandberg O. Hansson O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 2020 143 4 1233 1248 10.1093/brain/awaa068 32252068
    [Google Scholar]
  37. Hoesen G.W.V. Hyman B.T. Hippocampal formation: Anatomy and the patterns of pathology in Alzheimer’s disease. Prog. Brain Res. 1990 83 445 457 10.1016/S0079‑6123(08)61268‑6 2392569
    [Google Scholar]
  38. Maass A. Lockhart S.N. Harrison T.M. Bell R.K. Mellinger T. Swinnerton K. Baker S.L. Rabinovici G.D. Jagust W.J. Entorhinal tau pathology, episodic memory decline, and neurodegeneration in aging. J. Neurosci. 2018 38 3 530 543 10.1523/JNEUROSCI.2028‑17.2017 29192126
    [Google Scholar]
  39. Du A.T. Schuff N. Amend D. Laakso M.P. Hsu Y.Y. Jagust W.J. Yaffe K. Kramer J.H. Reed B. Norman D. Chui H.C. Weiner M.W. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2001 71 4 441 447 10.1136/jnnp.71.4.441 11561025
    [Google Scholar]
  40. Zhen Z.H. Guo M.R. Li H.M. Guo O.Y. Zhen J.L. Fu J. Tan G.J. Normal and abnormal sharp wave ripples in the hippocampal-entorhinal cortex system: Implications for memory consolidation, Alzheimer’s disease, and temporal lobe epilepsy. Front. Aging Neurosci. 2021 13 683483 10.3389/fnagi.2021.683483 34262446
    [Google Scholar]
  41. Paola M. Macaluso E. Carlesimo G.A. Tomaiuolo F. Worsley K.J. Fadda L. Caltagirone C. Episodic memory impairment in patients with Alzheimer’s disease is correlated with entorhinal cortex atrophy. J. Neurol. 2007 254 6 774 781 10.1007/s00415‑006‑0435‑1 17404777
    [Google Scholar]
  42. Insausti R. Insausti A.M. Sobreviela M.T. Salinas A. Martínez-Peñuela J.M. Human medial temporal lobe in aging: Anatomical basis of memory preservation. Microsc. Res. Tech. 1998 43 1 8 15 10.1002/(SICI)1097‑0029(19981001)43:1<8::AID‑JEMT2>3.0.CO;2‑4 9829453
    [Google Scholar]
  43. Wisse L.E.M. Xie L. Das S.R. de Flores R. Hansson O. Habes M. Doshi J. Davatzikos C. Yushkevich P.A. Wolk D.A. Tau pathology mediates age effects on medial temporal lobe structure. Neurobiol. Aging 2022 109 135 144 10.1016/j.neurobiolaging.2021.09.017 34740075
    [Google Scholar]
  44. Clark C.M. Davatzikos C. Borthakur A. Newberg A. Leight S. Lee V.M.Y. Trojanowski J.Q. Biomarkers for early detection of Alzheimer pathology. Neurosignals 2008 16 1 11 18 10.1159/000109754 18097155
    [Google Scholar]
  45. Blennow K. Zetterberg H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 2018 284 6 643 663 10.1111/joim.12816 30051512
    [Google Scholar]
  46. Hawksworth J. Fernández E. Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res. Rev. 2022 79 101654 10.1016/j.arr.2022.101654 35636691
    [Google Scholar]
  47. Shaw L.M. Korecka M. Figurski M. Toledo J. Irwin D. Hee Kang J. Trojanowski J.Q. Detection of Alzheimer disease pathology in patients using biochemical biomarkers: Prospects and challenges for use in clinical practice. J. Appl. Lab. Med. 2020 5 1 183 193 10.1373/jalm.2019.029587 31848218
    [Google Scholar]
  48. Vemuri P. Wiste H.J. Weigand S.D. Knopman D.S. Shaw L.M. Trojanowski J.Q. Aisen P.S. Weiner M. Petersen R.C. Jack C.R. Jr Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann. Neurol. 2010 67 3 308 316 10.1002/ana.21953 20373342
    [Google Scholar]
  49. Zhang H. Ma Q. Zhang Y. Xu H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J. Neurochem. 2012 120 s1 9 21 10.1111/j.1471‑4159.2011.07519.x 22122372
    [Google Scholar]
  50. Cole S.L. Vassar R. The Alzheimer’s disease β-secretase enzyme, BACE1. Mol. Neurodegener. 2007 2 1 22 10.1186/1750‑1326‑2‑22 18005427
    [Google Scholar]
  51. Ling Y. Morgan K. Kalsheker N. Amyloid precursor protein (APP) and the biology of proteolytic processing: Relevance to Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2003 35 11 1505 1535 10.1016/S1357‑2725(03)00133‑X 12824062
    [Google Scholar]
  52. Tan J.Z.A. Gleeson P.A. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim. Biophys. Acta Biomembr. 2019 1861 4 697 712 10.1016/j.bbamem.2018.11.013 30639513
    [Google Scholar]
  53. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: Pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 2009 10 5 333 344 10.1038/nrn2620 19339974
    [Google Scholar]
  54. Zhou Z. Chan C.H. Ma Q. Xu X. Xiao Z. Tan E.K. The roles of amyloid precursor protein (APP) in neurogenesis. Cell Adhes. Migr. 2011 5 4 280 292 10.4161/cam.5.4.16986 21785276
    [Google Scholar]
  55. Selkoe D.J. Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J. Clin. Invest. 2002 110 10 1375 1381 10.1172/JCI0216783 12438432
    [Google Scholar]
  56. Vetrivel K.S. Thinakaran G. Amyloidogenic processing of β-amyloid precursor protein in intracellular compartments. Neurology 2006 66 1_suppl_1 S69 S73 10.1212/01.wnl.0000192107.17175.39 16432149
    [Google Scholar]
  57. Binda A. Murano C. Rivolta I. Innovative therapies and nanomedicine applications for the treatment of Alzheimer’s disease: A state-of-the-art (2017–2020). Int. J. Nanomedicine 2020 15 6113 6135 10.2147/IJN.S231480 32884267
    [Google Scholar]
  58. Wilson B. Geetha K.M. Neurotherapeutic applications of nanomedicine for treating Alzheimer’s disease. J. Control. Release 2020 325 25 37 10.1016/j.jconrel.2020.05.044 32473177
    [Google Scholar]
  59. Andrieux K Couvreur P Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: The example of Alzheimer's disease. Ann Pharm Fr 2013 71 4 225 233 10.1016/j.pharma.2013.04.001
    [Google Scholar]
  60. Carradori D. Gaudin A. Brambilla D. Andrieux K. Application of nanomedicine to the CNS diseases. Int. Rev. Neurobiol. 2016 130 73 113 10.1016/bs.irn.2016.06.002 27678175
    [Google Scholar]
  61. Karthivashan G. Ganesan P. Park S.Y. Kim J.S. Choi D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018 25 1 307 320 10.1080/10717544.2018.1428243 29350055
    [Google Scholar]
  62. Harilal S. Jose J. Parambi D.G.T. Kumar R. Mathew G.E. Uddin M.S. Kim H. Mathew B. Advancements in nanotherapeutics for Alzheimer’s disease: Current perspectives. J. Pharm. Pharmacol. 2019 71 9 1370 1383 10.1111/jphp.13132 31304982
    [Google Scholar]
  63. Xu Y. Zhao M. Zhou D. Zheng T. Zhang H. The application of multifunctional nanomaterials in Alzheimer’s disease: A potential theranostics strategy. Biomed. Pharmacother. 2021 137 111360 10.1016/j.biopha.2021.111360 33582451
    [Google Scholar]
  64. Ahmad MZ Ahmad J Amin S Rahman M Anwar M Mallick N Ahmad FJ Rahman Z Kamal MA Akhter S Role of nanomedicines in delivery of anti-acetylcholinesterase compounds to the brain in Alzheimer’s disease. CNS Neu. Dis. Drug Targ. 2014 13 8 1315 1324
    [Google Scholar]
  65. Ahmad J. Akhter S. Rizwanullah M. Khan M.A. Pigeon L. Addo R.T. Greig N.H. Midoux P. Pichon C. Kamal M.A. Nanotechnology based theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr. Alzheimer Res. 2017 14 11 1164 1181 28482786
    [Google Scholar]
  66. Majd S. Power J. Majd Z. Modulation of tau phosphorylation by oxidative stress: Insights into the interplay among LKB1, AMPK, and Akt pathways in differentiated SH-SY5Y cells. Auth. Prep. 2023
    [Google Scholar]
  67. Yasir M. Sara U.V. Chauhan I. Gaur P.K. Singh A.P. Puri D. Ameeduzzafar. Solid lipid nanoparticles for nose to brain delivery of donepezil: Formulation, optimization by Box–Behnken design, in vitro and in vivo evaluation. Artif. Cells Nanomed. Biotechnol. 2018 46 8 1838 1851
    [Google Scholar]
  68. Ashrafi H. Azadi A. Mohammadi-Samani S. Hamidi M. New candidate delivery system for Alzheimer’s disease: Deferoxamine nanogels. Biointerface Res. Appl. Chem. 2020 10 6 7106 7119 10.33263/BRIAC106.71067119
    [Google Scholar]
  69. Iqubal A. Iqubal M.K. Fazal S.A. Pottoo F.H. Haque S.E. Nutraceuticals and their derived nano-formulations for the prevention and treatment of Alzheimer’s disease. Curr. Mol. Pharmacol. 2022 15 1 23 50 33687906
    [Google Scholar]
  70. Mir Najib Ullah S.N. Afzal O. Altamimi A.S.A. Ather H. Sultana S. Almalki W.H. Bharti P. Sahoo A. Dwivedi K. Khan G. Sultana S. Alzahrani A. Rahman M. Nanomedicine in the management of alzheimer’s disease: State-of-the-art. Biomedicines 2023 11 6 1752 10.3390/biomedicines11061752 37371847
    [Google Scholar]
  71. Bhia M. Motallebi M. Abadi B. Zarepour A. Pereira-Silva M. Saremnejad F. Santos A.C. Zarrabi A. Melero A. Jafari S.M. Shakibaei M. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics 2021 13 2 291 10.3390/pharmaceutics13020291 33672366
    [Google Scholar]
  72. Fakhri S. Abdian S. Zarneshan S.N. Moradi S.Z. Farzaei M.H. Abdollahi M. Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. Int. J. Nanomedicine 2022 17 299 331 10.2147/IJN.S347187 35095273
    [Google Scholar]
  73. Wang Z. Tang L. Yan H. Wang Y. Tang X. Effects of huperzine A on memory deficits and neurotrophic factors production after transient cerebral ischemia and reperfusion in mice. Pharmacol. Biochem. Behav. 2006 83 4 603 611 10.1016/j.pbb.2006.03.027 16687166
    [Google Scholar]
  74. Dykes G.M. Dendrimers: A review of their appeal and applications. J. Chem. Technol. Biotechnol. 2001 76 9 903 918 10.1002/jctb.464
    [Google Scholar]
  75. Arbez-Gindre C. Steele B.R. Micha-Screttas M. Dendrimers in Alzheimer’s disease: Recent approaches in multi-targeting strategies. Pharmaceutics 2023 15 3 898 10.3390/pharmaceutics15030898 36986759
    [Google Scholar]
  76. Benseny-Cases N. Klementieva O. Cladera J. Dendrimers antiamyloidogenic potential in neurodegenerative diseases. New J. Chem. 2012 36 2 211 216 10.1039/C1NJ20469F
    [Google Scholar]
  77. Spuch C. Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and parkinson’s disease). J. Drug Deliv. 2011 2011 1 1 12 10.1155/2011/469679 22203906
    [Google Scholar]
  78. Ross C. Taylor M. Fullwood N. Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 2018 13 8507 8522 10.2147/IJN.S183117 30587974
    [Google Scholar]
  79. Ballabh P. Braun A. Nedergaard M. The blood–brain barrier: An overview. Neurobiol. Dis. 2004 16 1 1 13 10.1016/j.nbd.2003.12.016 15207256
    [Google Scholar]
  80. Benz F Liebner S Structure and function of the blood–brain barrier (BBB). Physiology, Pharmacology and Pathology of the Blood-Brain Barrier Cham Springer International Publishing 2020 3 31
    [Google Scholar]
  81. Garcia-Garcia E. Andrieux K. Gil S. Couvreur P. Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm. 2005 298 2 274 292 10.1016/j.ijpharm.2005.03.031 15896933
    [Google Scholar]
  82. Ayaz M Ovais M Ahmad I Sadiq A Khalil AT Ullah F Biosynthesized metal nanoparticles as potential Alzheimer’s disease therapeutics. Metal nanoparticles for drug delivery and diagnostic applications Amsterdam, Netherlands Elsevier 2020 31 42 10.1016/B978‑0‑12‑816960‑5.00003‑3
    [Google Scholar]
  83. Gul R. Jan H. Lalay G. Andleeb A. Usman H. Zainab R. Qamar Z. Hano C. Abbasi B.H. Medicinal plants and biogenic metal oxide nanoparticles: A paradigm shift to treat Alzheimer’s disease. Coatings 2021 11 6 717 10.3390/coatings11060717
    [Google Scholar]
  84. Shim S.Y. Lim D.K. Nam J.M. Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. Nanomedicine 2008 3 2 215 232 10.2217/17435889.3.2.215 18373427
    [Google Scholar]
  85. Fransquet P.D. Ryan J. The current status of blood epigenetic biomarkers for dementia. Crit. Rev. Clin. Lab. Sci. 2019 56 7 435 457 10.1080/10408363.2019.1639129 31328605
    [Google Scholar]
  86. Maloney B. Lahiri D.K. Epigenetics of dementia: Understanding the disease as a transformation rather than a state. Lancet Neurol. 2016 15 7 760 774 10.1016/S1474‑4422(16)00065‑X 27302240
    [Google Scholar]
  87. Fransquet P.D. Lacaze P. Saffery R. McNeil J. Woods R. Ryan J. Blood DNA methylation as a potential biomarker of dementia: A systematic review. Alzheimers Dement. 2018 14 1 81 103 10.1016/j.jalz.2017.10.002 29127806
    [Google Scholar]
  88. Chouliaras L. Kumar G.S. Thomas A.J. Lunnon K. Chinnery P.F. O’Brien J.T. Epigenetic regulation in the pathophysiology of Lewy body dementia. Prog. Neurobiol. 2020 192 101822 10.1016/j.pneurobio.2020.101822 32407744
    [Google Scholar]
  89. Moorthy H. Govindaraju T. Dendrimer architectonics to treat cancer and neurodegenerative diseases with implications in theranostics and personalized medicine. ACS Appl. Bio Mater. 2021 4 2 1115 1139 10.1021/acsabm.0c01319 35014470
    [Google Scholar]
  90. Aliev G. Ashraf G.M. Tarasov V.V. Chubarev V.N. Leszek J. Gasiorowski K. Makhmutovа A. Baeesa S.S. Avila-Rodriguez M. Ustyugov A.A. Bachurin S.O. Alzheimer’s disease–future therapy based on dendrimers. Curr. Neuropharmacol. 2019 17 3 288 294 10.2174/1570159X16666180918164623 30227819
    [Google Scholar]
  91. Mroziak M. Kozłowski G. Kołodziejczyk W. Pszczołowska M. Walczak K. Beszłej J.A. Leszek J. Dendrimers—novel therapeutic approaches for alzheimer’s disease. Biomedicines 2024 12 8 1899 10.3390/biomedicines12081899 39200363
    [Google Scholar]
  92. Moreira D.A. Santos S.D. Leiro V. Pêgo A.P. Dendrimers and derivatives as multifunctional nanotherapeutics for Alzheimer’s disease. Pharmaceutics 2023 15 4 1054 10.3390/pharmaceutics15041054 37111540
    [Google Scholar]
  93. Kumari S Bhardwaj JS Kharavtekar SS Grewal D Ray SG Bhardwaj A Dubey SK Kesharwani P Arora T Taliyan R Futuristic aspect of nanocarriers on targeted delivery for dementia. Nanomedicine-Based Approaches for the Treatment of Dementia United States Academic Press 2023 265 294 10.1016/B978‑0‑12‑824331‑2.00005‑4
    [Google Scholar]
  94. Leiro V. Duque Santos S. Lopes C.D.F. Paula Pêgo A. Dendrimers as powerful building blocks in central nervous system disease: Headed for successful nanomedicine. Adv. Funct. Mater. 2018 28 12 1700313 10.1002/adfm.201700313
    [Google Scholar]
  95. Ortega M.Á. Guzmán Merino A. Fraile-Martínez O. Recio-Ruiz J. Pekarek L. G Guijarro L. García-Honduvilla N. Álvarez-Mon M. Buján J. García-Gallego S. Dendrimers and dendritic materials: From laboratory to medical practice in infectious diseases. Pharmaceutics 2020 12 9 874 10.3390/pharmaceutics12090874 32937793
    [Google Scholar]
/content/journals/cas/10.2174/0118746098343913250818112618
Loading
/content/journals/cas/10.2174/0118746098343913250818112618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test