Skip to content
2000
Volume 18, Issue 2
  • ISSN: 1874-6098
  • E-ISSN: 1874-6128

Abstract

Aging-related alteration of mitochondrial morphology, impairment in metabolic capacity, bioenergetics, and biogenesis are closely associated with loss of muscle mass and function. Mitochondrial Reactive Oxygen Species (ROS) stimulate muscular redox signaling mechanisms. Bioenergetic integrity of mitochondria and redox signaling dynamics deteriorates in aged skeletal muscle. Mitochondrial bioenergetic impairment leads to excessive ROS levels and induces the generation of defective mitochondria. Higher ROS levels may induce senescence or apoptosis. It is not a resolved issue that mitochondrial dysfunction is either the sole reason or a consequence of muscle loss (or both). However, Increasing evidence emphasizes that dysregulated mitochondrial redox signaling has a central role in age-related muscle loss. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates redox signaling pathways with the expression of antioxidant genes. As the aberrant redox signaling mechanisms in aging skeletal muscle become clearer, new natural and synthetic Nrf2-modulating substances and integrated daily physical activity alternatives are coming into view for preventing muscle loss in the elderly. A comprehensive understanding of the relationship between redox signaling pathways and age-related sarcopenia can help us to prevent sarcopenia and its frailty effects with an optimized exercise program as an innovative non-pharmacological therapeutic approach. A further aspect is necessary to consider both individualized physical training options and alternative Nrf2 signaling modulators. Ameliorating the redox signaling with physical activity and pharmacological interventions may help to prevent sarcopenia and its frailty effects.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098315667240606052523
2024-06-12
2025-09-15
Loading full text...

Full text loading...

References

  1. EvansW.J. What is sarcopenia?J. Gerontol. A Biol. Sci. Med. Sci.199550ASpecial5810.1093/gerona/50A.Special_Issue.57493218
    [Google Scholar]
  2. LandiF. Cruz-JentoftA.J. LiperotiR. RussoA. GiovanniniS. TosatoM. CapoluongoE. BernabeiR. OnderG. Sarcopenia and mortality risk in frail older persons aged 80 years and older: Results from ilSIRENTE study.Age Ageing201342220320910.1093/ageing/afs19423321202
    [Google Scholar]
  3. RoubenoffR. CastanedaC. Sarcopenia-understanding the dynamics of aging muscle.JAMA2001286101230123110.1001/jama.286.10.123011559270
    [Google Scholar]
  4. MarzettiE. CalvaniR. CesariM. BufordT.W. LorenziM. BehnkeB.J. LeeuwenburghC. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials.Int. J. Biochem. Cell Biol.201345102288230110.1016/j.biocel.2013.06.02423845738
    [Google Scholar]
  5. SeoD.Y. LeeS.R. KimN. KoK.S. RheeB.D. HanJ. Age-related changes in skeletal muscle mitochondria: The role of exercise.Integr. Med. Res.20165318218610.1016/j.imr.2016.07.00328462116
    [Google Scholar]
  6. ShortK.R. BigelowM.L. KahlJ. Decline in skeletal muscle mitochondrial function with aging in humans.Proc Natl Acad Sci U S A.2005102155618562310.1073/pnas.0501559102
    [Google Scholar]
  7. ÇakatayU. Protein redox-regulation mechanisms in aging.Aging and Age-Related Disorders. BondyS. MaieseK. Totowa, NJHumana Press325
    [Google Scholar]
  8. NybergM. MortensenS.P. CaboH. Gomez-CabreraM.C. ViñaJ. HellstenY. Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle.Free Radic. Biol. Med.20147316617310.1016/j.freeradbiomed.2014.05.00824858720
    [Google Scholar]
  9. Sanchez-RomanI. GómezA. PérezI. SanchezC. SuarezH. NaudíA. JovéM. Lopez-TorresM. PamplonaR. BarjaG. Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria.Biogerontology201213439941110.1007/s10522‑012‑9384‑522580750
    [Google Scholar]
  10. YanarK. SimsekB. AtukerenP. AydinS. CakatayU. Is D -galactose a useful agent for accelerated aging model of gastrocnemius and soleus muscle of sprague-dawley rats?Rejuvenation Res.201922652152810.1089/rej.2019.218531131732
    [Google Scholar]
  11. AtayikM.C. ÇakatayU. Redox signaling and modulation in ageing.Biogerontology202324560360810.1007/s10522‑023‑10055‑w37535201
    [Google Scholar]
  12. JiL.L. KangC. ZhangY. Exercise-induced hormesis and skeletal muscle health.Free Radic. Biol. Med.20169811312210.1016/j.freeradbiomed.2016.02.02526916558
    [Google Scholar]
  13. RadakZ. IshiharaK. TekusE. VargaC. PosaA. BaloghL. BoldoghI. KoltaiE. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.Redox Biol.20171228529010.1016/j.redox.2017.02.01528285189
    [Google Scholar]
  14. RadakZ. ChungH.Y. GotoS. Exercise and hormesis: Oxidative stress-related adaptation for successful aging.Biogerontology200561717510.1007/s10522‑004‑7386‑715834665
    [Google Scholar]
  15. ThirupathiA. PinhoR.A. GuY. Redox homeostasis in skeletal muscle aging.Redox Signaling and Biomarkers in Ageing. ÇakatayU. ChamSpringer International Publishing8796
    [Google Scholar]
  16. ÇakatayU. A\uga\cscio\uglu EA, Thirupathi A. Aging and exercise-induced reactive oxygen species.Redox Signaling and Biomarkers in Ageing.ChamSpringer International Publishing97114
    [Google Scholar]
  17. AtayikM.C. YanarK. ÇakatayU. Redox proteostasis in subcellular aging.Redox Signaling and Biomarkers in Ageing. ÇakatayU. ChamSpringer International Publishing209228
    [Google Scholar]
  18. GroenewoudM.J. ZwartkruisF.J.T. Rheb and mammalian target of rapamycin in mitochondrial homoeostasis.Open Biol.201331213018510.1098/rsob.13018524352740
    [Google Scholar]
  19. BárcenaC. MayoralP. QuirósP.M. Mitohormesis, an antiaging paradigm.Int Rev Cell Mol Biol2018340357710.1016/bs.ircmb.2018.05.002
    [Google Scholar]
  20. YoonT.K. LeeC.H. KwonO. KimM.S. Exercise, mitohormesis, and mitochondrial ORF of the 12S rRNA type-C (MOTS-c).Diabetes Metab. J.202246340241310.4093/dmj.2022.009235656563
    [Google Scholar]
  21. González-BlancoL. BermúdezM. Bermejo-MilloJ.C. Gutiérrez-RodríguezJ. SolanoJ.J. AntuñaE. Menéndez-ValleI. CaballeroB. Vega-NaredoI. PotesY. Coto-MontesA. Cell interactome in sarcopenia during aging.J. Cachexia Sarcopenia Muscle202213291993110.1002/jcsm.1293735178901
    [Google Scholar]
  22. ZhangY. OliveiraA.N. HoodD.A. The intersection of exercise and aging on mitochondrial protein quality control.Exp. Gerontol.202013111082410.1016/j.exger.2019.11082431911185
    [Google Scholar]
  23. JacksonM.J. Redox regulation of adaptive responses in skeletal muscle to contractile activity.Free Radic. Biol. Med.20094791267127510.1016/j.freeradbiomed.2009.09.00519748570
    [Google Scholar]
  24. JacksonM.J. PollockN. StauntonC. Redox control of signalling responses to contractile activity and ageing in skeletal muscle.Cells 2022111698
    [Google Scholar]
  25. Escriche-EscuderA. Fuentes-AbolafioI.J. Roldán-JiménezC. Cuesta-VargasA.I. Effects of exercise on muscle mass, strength, and physical performance in older adults with sarcopenia: A systematic review and meta-analysis according to the EWGSOP criteria.Exp. Gerontol.202115111142010.1016/j.exger.2021.11142034029642
    [Google Scholar]
  26. ZhouL. PinhoR. GuY. RadakZ. The role of SIRT3 in exercise and aging.Cells20221116259610.3390/cells1116259636010672
    [Google Scholar]
  27. AnguloJ. El AssarM. Álvarez-BustosA. Rodríguez-MañasL. Physical activity and exercise: Strategies to manage frailty.Redox Biol.20203510151310.1016/j.redox.2020.10151332234291
    [Google Scholar]
  28. HuangD.D. FanS.D. ChenX.Y. YanX.L. ZhangX.Z. MaB.W. YuD.Y. XiaoW.Y. ZhuangC.L. YuZ. Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner.Exp. Gerontol.2019119617310.1016/j.exger.2019.01.02230690066
    [Google Scholar]
  29. ShallyA McDonaghB The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy.Biogerontology 2020214461473
    [Google Scholar]
  30. LiangH. WardW.F. PGC-1α: A key regulator of energy metabolism.Adv. Physiol. Educ.200630414515110.1152/advan.00052.200617108241
    [Google Scholar]
  31. ZhouY ZhangX BakerJS Redox signaling and skeletal muscle adaptation during aerobic exercise.iScience202427510964310.1016/j.isci.2024.109643
    [Google Scholar]
  32. BouviereJ. FortunatoR.S. DupuyC. Werneck-de-CastroJ.P. CarvalhoD.P. LouzadaR.A. Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle.Antioxidants202110453710.3390/antiox1004053733808211
    [Google Scholar]
  33. CombesA. DekerleJ. WebbornN. WattP. BougaultV. DaussinF.N. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle.Physiol. Rep.201539e1246210.14814/phy2.1246226359238
    [Google Scholar]
  34. JežekP. HolendováB. Plecitá-HlavatáL. Redox signaling from mitochondria: Signal propagation and its targets.Biomolecules20201019310.3390/biom1001009331935965
    [Google Scholar]
  35. KangC. Li JiL. Role of PGC-1α signaling in skeletal muscle health and disease.Ann. N. Y. Acad. Sci.20121271111011710.1111/j.1749‑6632.2012.06738.x23050972
    [Google Scholar]
  36. Gonzalez-FreireM. de CaboR. BernierM. SollottS.J. FabbriE. NavasP. FerrucciL. Reconsidering the role of mitochondria in aging.J. Gerontol. A Biol. Sci. Med. Sci.201570111334134210.1093/gerona/glv07025995290
    [Google Scholar]
  37. WenzT. Mitochondria and PGC-1α in aging and age-associated diseases.J. Aging Res.2011201111210.4061/2011/81061921629705
    [Google Scholar]
  38. ChenB. LuY. ChenY. ChengJ. The role of Nrf2 in oxidative stress-induced endothelial injuries.J. Endocrinol.20152253R83R9910.1530/JOE‑14‑066225918130
    [Google Scholar]
  39. MaQ. Role of Nrf2 in oxidative stress and toxicity.Annu Rev Pharmacol Toxicol.20135340142610.1146/annurev‑pharmtox‑011112‑140320
    [Google Scholar]
  40. NegiC.K. JenaG. Nrf2, a novel molecular target to reduce type 1 diabetes associated secondary complications: The basic considerations.Eur. J. Pharmacol.2019843122610.1016/j.ejphar.2018.10.02630359563
    [Google Scholar]
  41. MalhotraD. Portales-CasamarE. SinghA. SrivastavaS. ArenillasD. HappelC. ShyrC. WakabayashiN. KenslerT.W. WassermanW.W. BiswalS. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis.Nucleic Acids Res.201038175718573410.1093/nar/gkq21220460467
    [Google Scholar]
  42. TonelliC. ChioI.I.C. TuvesonD.A. Transcriptional regulation by Nrf2.Antioxid. Redox Signal.201829171727174510.1089/ars.2017.734228899199
    [Google Scholar]
  43. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules2522547433238435
    [Google Scholar]
  44. PowersS.K. HamiltonK. Antioxidants and exercise.Clin. Sports Med.199918352553610.1016/S0278‑5919(05)70166‑610410839
    [Google Scholar]
  45. SteinbacherP. EcklP. Impact of oxidative stress on exercising skeletal muscle.Biomolecules20155235637710.3390/biom502035625866921
    [Google Scholar]
  46. YamamotoM. KenslerT.W. MotohashiH. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis.Physiol. Rev.20189831169120310.1152/physrev.00023.201729717933
    [Google Scholar]
  47. BrunsDR DrakeJC BielaLM Nrf2 signaling and the slowed aging phenotype: Evidence from long-lived models.Oxid Med Cell Longev2015201573259610.1155/2015/732596
    [Google Scholar]
  48. WangP. LiC.G. QiZ. CuiD. DingS. Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle.Exp. Physiol.2016101341042010.1113/EP08549326682532
    [Google Scholar]
  49. WangZ.Z. XuH.C. ZhouH.X. ZhangC.K. LiB.M. HeJ.H. NiP.S. YuX.M. LiuY.Q. LiF.H. Long-term detraining reverses the improvement of lifelong exercise on skeletal muscle ferroptosis and inflammation in aging rats: Fiber-type dependence of the Keap1/Nrf2 pathway.Biogerontology202324575376910.1007/s10522‑023‑10042‑137289374
    [Google Scholar]
  50. CalabreseE.J. KozumboW.J. The hormetic dose-response mechanism: Nrf2 activation.Pharmacol. Res.202116710552610.1016/j.phrs.2021.10552633667690
    [Google Scholar]
  51. RossnerovaA. IzzottiA. PullieroA. BastA. RattanS.I.S. RossnerP. The molecular mechanisms of adaptive response related to environmental stress.Int. J. Mol. Sci.20202119705310.3390/ijms2119705332992730
    [Google Scholar]
  52. OnokiT. IzumiY. TakahashiM. MurakamiS. MatsumaruD. OhtaN. WatiS.M. HatanakaN. KatsuokaF. OkutsuM. YabeY. HagiwaraY. KanzakiM. BambaT. ItoiE. MotohashiH. Skeletal muscle-specific Keap1 disruption modulates fatty acid utilization and enhances exercise capacity in female mice.Redox Biol.20214310196610.1016/j.redox.2021.10196633857757
    [Google Scholar]
  53. AhnB. PharaohG. PremkumarP. HusemanK. RanjitR. KinterM. SzwedaL. KissT. FulopG. TarantiniS. CsiszarA. UngvariZ. Van RemmenH. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass.Redox Biol.201817475810.1016/j.redox.2018.04.00429673700
    [Google Scholar]
  54. YanX. ShenZ. YuD. ZhaoC. ZouH. MaB. DongW. ChenW. HuangD. YuZ. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission.Free Radic. Biol. Med.2022178597510.1016/j.freeradbiomed.2021.11.03034823019
    [Google Scholar]
  55. SiragoG. PiccaA. CalvaniR. Coelho-JúniorH.J. MarzettiE. Mammalian target of rapamycin (mTOR) signaling at the crossroad of muscle fiber fate in sarcopenia.Int. J. Mol. Sci.202223221382310.3390/ijms23221382336430301
    [Google Scholar]
  56. DrummondM.J. DreyerH.C. PenningsB. FryC.S. DhananiS. DillonE.L. Sheffield-MooreM. VolpiE. RasmussenB.B. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging.J. Appl. Physiol.200810451452146110.1152/japplphysiol.00021.200818323467
    [Google Scholar]
  57. PaturiS. GuttaA.K. KattaA. KakarlaS.K. ArvapalliR.K. GaddeM.K. NalabotuS.K. RiceK.M. WuM. BloughE. Effects of aging and gender on muscle mass and regulation of Akt-mTOR-p70s6k related signaling in the F344BN rat model.Mech. Ageing Dev.2010131320220910.1016/j.mad.2010.01.00820153766
    [Google Scholar]
  58. WhiteZ. WhiteR.B. McMahonC. GroundsM.D. ShavlakadzeT. High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state.Int. J. Biochem. Cell Biol.201678102110.1016/j.biocel.2016.06.01227343428
    [Google Scholar]
  59. MarabitaM. BaraldoM. SolagnaF. CeelenJ.J.M. SartoriR. NolteH. NemazanyyI. PyronnetS. KrugerM. PendeM. BlaauwB. S6K1 is required for increasing skeletal muscle force during hypertrophy.Cell Rep.201617250151310.1016/j.celrep.2016.09.02027705797
    [Google Scholar]
  60. ZengZ. LiangJ. WuL. ZhangH. LvJ. ChenN. Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and ampk-mediated mitochondrial quality control.Front. Physiol.20201158347810.3389/fphys.2020.58347833224037
    [Google Scholar]
  61. AoiW. IwasaM. AisoC. TabataY. GotohY. KosakaH. SuzukiT. Lactococcus cremoris subsp. cremoris FC-fermented milk activates protein synthesis and increases skeletal muscle mass in middle-aged mice.Biochem. Biophys. Res. Commun.202261217618010.1016/j.bbrc.2022.04.09735550504
    [Google Scholar]
  62. GharahdaghiN. RudrappaS. BrookM.S. IdrisI. CrosslandH. HamrockC. Abdul AzizM.H. KadiF. TarumJ. GreenhaffP.L. Constantin-TeodosiuD. CegielskiJ. PhillipsB.E. WilkinsonD.J. SzewczykN.J. SmithK. AthertonP.J. Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men.J. Cachexia Sarcopenia Muscle20191061276129410.1002/jcsm.1247231568675
    [Google Scholar]
  63. KimJ.E. KwonE.Y. HanY. A collagen hydrolysate containing tripeptides ameliorates sarcopenia in middle-aged mice.Molecules2022279271810.3390/molecules2709271835566067
    [Google Scholar]
  64. JacksonM.J. StrettonC. McArdleA. Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: What do concentrations tell us about potential mechanisms?Redox Biol.20203510148410.1016/j.redox.2020.10148432184060
    [Google Scholar]
  65. Furukawa-HibiY. KobayashiY. ChenC. MotoyamaN. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress.Antioxid. Redox Signal.200575-675276010.1089/ars.2005.7.75215890021
    [Google Scholar]
  66. GiorgioM. MigliaccioE. OrsiniF. PaolucciD. MoroniM. ContursiC. PellicciaG. LuziL. MinucciS. MarcaccioM. PintonP. RizzutoR. BernardiP. PaolucciF. PelicciP.G. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis.Cell2005122222123310.1016/j.cell.2005.05.01116051147
    [Google Scholar]
  67. RheeS.G. KangS.W. JeongW. ChangT.S. YangK.S. WooH.A. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins.Curr. Opin. Cell Biol.200517218318910.1016/j.ceb.2005.02.00415780595
    [Google Scholar]
  68. AhnB. RanjitR. KneisP. XuH. PiekarzK.M. FreemanW.M. KinterM. RichardsonA. RanQ. BrooksS.V. Van RemmenH. Scavenging mitochondrial hydrogen peroxide by peroxiredoxin 3 overexpression attenuates contractile dysfunction and muscle atrophy in a murine model of accelerated sarcopenia.Aging Cell2022213e1356910.1111/acel.1356935199907
    [Google Scholar]
  69. LeeK.P. ShinY.J. ChoS.C. LeeS.M. BahnY.J. KimJ.Y. KwonE.S. JeongD.Y. ParkS.C. RheeS.G. WooH.A. KwonK.S. Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis.Free Radic. Biol. Med.20147729830610.1016/j.freeradbiomed.2014.09.01025224038
    [Google Scholar]
  70. RheeS.G. WooH.A. Multiple functions of 2-Cys peroxiredoxins, I and II, and their regulations via post-translational modifications.Free Radic. Biol. Med.202015210711510.1016/j.freeradbiomed.2020.02.02832151745
    [Google Scholar]
  71. SavinoC PelicciP GiorgioM. The P66Shc/mitochondrial permeability transition pore pathway determines neurodegeneration.Oxid Med Cell Longev2013201371940710.1155/2013/719407
    [Google Scholar]
  72. WangP LiCG QiZ Acute exercise induced mitochondrial H2O2 production in mouse skeletal muscle: Association with p(66Shc) and FOXO3a signaling and antioxidant enzymes.Oxid Med Cell Longev2015201553645610.1155/2015/536456
    [Google Scholar]
  73. SanchezA.M.J. FoxO transcription factors and endurance training: A role for FoxO1 and FoxO3 in exercise-induced angiogenesis.J. Physiol.2015593236336410.1113/jphysiol.2014.28599925630258
    [Google Scholar]
  74. MigliaccioE. GiorgioM. PelicciP.G. Apoptosis and aging: Role of p66Shc redox protein.Antioxid. Redox Signal.200683-460060810.1089/ars.2006.8.60016677103
    [Google Scholar]
  75. JacksonM.J. On the mechanisms underlying attenuated redox responses to exercise in older individuals: A hypothesis.Free Radic. Biol. Med.202016132633810.1016/j.freeradbiomed.2020.10.02633099002
    [Google Scholar]
  76. Gómez-GarcíaE.F. del CampoF.M. Cortés-SanabriaL. Mendoza-CarreraF. AvesaniC.M. StenvinkelP. LindholmB. Cueto-ManzanoA.M. Transcription factor NRF2 as potential therapeutic target for preventing muscle wasting in aging chronic kidney disease patients.J. Nephrol.20223592215222510.1007/s40620‑022‑01484‑w36322291
    [Google Scholar]
  77. ZhangM. WangS. MaoL. LeakR.K. ShiY. ZhangW. HuX. SunB. CaoG. GaoY. XuY. ChenJ. ZhangF. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1.J. Neurosci.20143451903191510.1523/JNEUROSCI.4043‑13.201424478369
    [Google Scholar]
  78. KropatC. MuellerD. BoettlerU. ZimmermannK. HeissE.H. DirschV.M. RogollD. MelcherR. RichlingE. MarkoD. Modulation of NRF2-dependent gene transcription by bilberry anthocyanins in vivo.Mol. Nutr. Food Res.201357354555010.1002/mnfr.20120050423349102
    [Google Scholar]
  79. KitaokaY. The role of Nrf2 in skeletal muscle on exercise capacity.Antioxidants20211011171210.3390/antiox1011171234829582
    [Google Scholar]
  80. Robledinos-AntónN Fernández-GinésR MandaG Activators and inhibitors of NRF2: A review of their potential for clinical development.Oxid Med Cell Longev20192019937218210.1155/2019/9372182
    [Google Scholar]
  81. MoonJ.Y. KimD.J. KimH.S. Sulforaphane ameliorates serum starvation-induced muscle atrophy via activation of the Nrf2 pathway in cultured C2C12 cells.Cell Biol. Int.20204491831183910.1002/cbin.1137732401383
    [Google Scholar]
  82. OhS. KomineS. WarabiE. AkiyamaK. IshiiA. IshigeK. MizokamiY. KugaK. HorieM. MiwaY. IwawakiT. YamamotoM. ShodaJ. Nuclear factor (erythroid derived 2)-like 2 activation increases exercise endurance capacity via redox modulation in skeletal muscles.Sci. Rep.2017711290210.1038/s41598‑017‑12926‑y29018242
    [Google Scholar]
  83. AshrafizadehM. AhmadiZ. MohammadinejadR. FarkhondehT. SamarghandianS. Curcumin activates the Nrf2 pathway and induces cellular protection against oxidative injury.Curr. Mol. Med.202020211613310.2174/18755666MTAxyNTQkx31622191
    [Google Scholar]
  84. RecenoC. LiangC. KorolD. AtalayM. HeffernanK. BrutsaertT. DeRuisseauK. Effects of prolonged dietary curcumin exposure on skeletal muscle biochemical and functional responses of aged male rats.Int. J. Mol. Sci.2019205117810.3390/ijms2005117830866573
    [Google Scholar]
  85. JuturuV. SahinK. PalaR. TuzcuM. OzdemirO. OrhanC. SahinN. Curcumin prevents muscle damage by regulating NF-kB and Nrf2 pathways and improves performance: An in vivo model.J. Inflamm. Res.2016914715410.2147/JIR.S11087327621662
    [Google Scholar]
  86. UngvariZ CsiszarA. Resveratrol confers endothelial protection in insulin-dependent diabetes mellitus: Editorial to: "Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits" by F. Akar et al. Cardiovasc Drugs Ther.201125211111310.1007/s10557‑010‑6267‑3
    [Google Scholar]
  87. HaoE. LangF. ChenY. ZhangH. CongX. ShenX. SuG. Resveratrol alleviates endotoxin-induced myocardial toxicity via the Nrf2 transcription factor.PLoS One201387e6945210.1371/journal.pone.006945223894482
    [Google Scholar]
  88. SilerU HerzogA SpitzerV Tomato supplementation and cancer prevention.
    [Google Scholar]
  89. MagbanuaM.J.M. RoyR. SosaE.V. WeinbergV. FedermanS. MattieM.D. Hughes-FulfordM. SimkoJ. ShinoharaK. HaqqC.M. CarrollP.R. ChanJ.M. Gene expression and biological pathways in tissue of men with prostate cancer in a randomized clinical trial of lycopene and fish oil supplementation.PLoS One201169e2400410.1371/journal.pone.002400421912659
    [Google Scholar]
  90. SunY YangT LeakRK Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases.CNS Neurol Disord Drug Targets.201716332633810.2174/1871527316666170102120211
    [Google Scholar]
  91. JoungE.J. LiM.H. LeeH.G. Capsaicin induces heme oxygenase-1 expression in hepg2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H: Quinone oxidoreductase as a potential target.Antioxid Redox Signal.200791220872098
    [Google Scholar]
  92. MuthusamyV.R. KannanS. SadhaasivamK. GounderS.S. DavidsonC.J. BoehemeC. HoidalJ.R. WangL. RajasekaranN.S. Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium.Free Radic. Biol. Med.201252236637610.1016/j.freeradbiomed.2011.10.44022051043
    [Google Scholar]
  93. DoneA.J. TraustadóttirT. Nrf2 mediates redox adaptations to exercise.Redox Biol.20161019119910.1016/j.redox.2016.10.00327770706
    [Google Scholar]
  94. PiantadosiC.A. CarrawayM.S. BabikerA. SulimanH.B. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1.Circ. Res.2008103111232124010.1161/01.RES.0000338597.71702.ad18845810
    [Google Scholar]
  95. MiottoP.M. HollowayG.P. Exercise-induced reductions in mitochondrial ADP sensitivity contribute to the induction of gene expression and mitochondrial biogenesis through enhanced mitochondrial H2O2 emission.Mitochondrion20194611612210.1016/j.mito.2018.03.00329588219
    [Google Scholar]
  96. LeeH.C. YinP.H. LuC.Y. ChiC.W. WeiY.H. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells.Biochem. J.2000348242543210.1042/bj348042510816438
    [Google Scholar]
  97. HandyD.E. LoscalzoJ. Redox regulation of mitochondrial function.Antioxid. Redox Signal.201216111323136710.1089/ars.2011.412322146081
    [Google Scholar]
  98. MerryT.L. RistowM. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.J. Physiol.2016594185195520710.1113/JP27195727094017
    [Google Scholar]
  99. RobinsonM.M. DasariS. KonopkaA.R. JohnsonM.L. ManjunathaS. EspondaR.R. CarterR.E. LanzaI.R. NairK.S. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans.Cell Metab.201725358159210.1016/j.cmet.2017.02.00928273480
    [Google Scholar]
  100. MusciR.V. HamiltonK.L. MillerB.F. Targeting mitochondrial function and proteostasis to mitigate dynapenia.Eur. J. Appl. Physiol.201811811910.1007/s00421‑017‑3730‑x28986697
    [Google Scholar]
  101. HarberM.P. KonopkaA.R. UndemM.K. HinkleyJ.M. MinchevK. KaminskyL.A. TrappeT.A. TrappeS. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men.J. Appl. Physiol.201211391495150410.1152/japplphysiol.00786.201222984247
    [Google Scholar]
  102. HarberM.P. KonopkaA.R. DouglassM.D. MinchevK. KaminskyL.A. TrappeT.A. TrappeS. Aerobic exercise training improves whole muscle and single myofiber size and function in older women.Am. J. Physiol. Regul. Integr. Comp. Physiol.20092975R1452R145910.1152/ajpregu.00354.200919692660
    [Google Scholar]
  103. KołodziejM. SebastjanA. IgnasiakZ. Appendicular skeletal muscle mass and quality estimated by bioelectrical impedance analysis in the assessment of frailty syndrome risk in older individuals.Aging Clin. Exp. Res.20213492081208810.1007/s40520‑021‑01879‑y34118025
    [Google Scholar]
  104. PereraS. PatelK.V. RosanoC. RubinS.M. SatterfieldS. HarrisT. EnsrudK. OrwollE. LeeC.G. ChandlerJ.M. NewmanA.B. CauleyJ.A. GuralnikJ.M. FerrucciL. StudenskiS.A. Gait speed predicts incident disability: A pooled analysis.J. Gerontol. A Biol. Sci. Med. Sci.2016711637110.1093/gerona/glv12626297942
    [Google Scholar]
  105. CeciR. Beltran VallsM.R. DurantiG. DimauroI. QuarantaF. PittalugaM. SabatiniS. CaserottiP. ParisiP. ParisiA. CaporossiD. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training.Redox Biol.20142657210.1016/j.redox.2013.12.00425460722
    [Google Scholar]
  106. PetersonM.D. RheaM.R. SenA. GordonP.M. Resistance exercise for muscular strength in older adults: A meta-analysis.Ageing Res. Rev.20109322623710.1016/j.arr.2010.03.00420385254
    [Google Scholar]
  107. NevesR.V.P. RosaT.S. SouzaM.K. OliveiraA.J.C. GomesG.N.S. BrixiB. SouzaL.H.R. DeusL.A. SimõesH.G. StoneW.J. PrestesJ. MoraesM.R. Dynamic, not isometric resistance training improves muscle inflammation, oxidative stress and hypertrophy in rats.Front. Physiol.201910410.3389/fphys.2019.0000430723416
    [Google Scholar]
  108. JohnsonM.L. IrvingB.A. LanzaI.R. VendelboM.H. KonopkaA.R. RobinsonM.M. HendersonG.C. KlausK.A. MorseD.M. HeppelmannC. BergenH.R.III DasariS. SchimkeJ.M. JakaitisD.R. NairK.S. Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging.J. Gerontol. A Biol. Sci. Med. Sci.201570111386139310.1093/gerona/glu22125504576
    [Google Scholar]
  109. LuL. MaoL. FengY. AinsworthB.E. LiuY. ChenN. Effects of different exercise training modes on muscle strength and physical performance in older people with sarcopenia: A systematic review and meta-analysis.BMC Geriatr.202121170810.1186/s12877‑021‑02642‑834911483
    [Google Scholar]
  110. MileM BaloghL PappG Effects of functional training on sarcopenia in elderly women in the presence or absence of ACE inhibitors.Int. J. Environ. Res. Public Health.2021186594
    [Google Scholar]
  111. ShenY. ShiQ. NongK. LiS. YueJ. HuangJ. DongB. BeauchampM. HaoQ. Exercise for sarcopenia in older people: A systematic review and network meta‐analysis.J. Cachexia Sarcopenia Muscle20231431199121110.1002/jcsm.1322537057640
    [Google Scholar]
/content/journals/cas/10.2174/0118746098315667240606052523
Loading
/content/journals/cas/10.2174/0118746098315667240606052523
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Aging; exercise; mitochondria; reactive oxygen species; redox signaling; sarcopenia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test