Current Alzheimer Research - Volume 9, Issue 5, 2012
Volume 9, Issue 5, 2012
-
-
PSEN1 Promoter Demethylation in Hyperhomocysteinemic TgCRND8 Mice is the Culprit, not the Consequence
Authors: Andrea Fuso, Rosaria A. Cavallaroa, Vincenzina Nicolia and Sigfrido ScarpaIn recent years, in parallel with the growing awareness of the multifactorial nature of Late Onset Alzheimer's Disease, the possibility that epigenetic mechanisms could be involved in the onset and/or progression of the pathology assumed an increasingly intriguing and leading role in Alzheimer's research. Today, many scientific reports indicate the existence of an epigenetic drift during ageing, in particular in Alzheimer's subjects. At the same time, experimental evidences are provided with the aim to demonstrate the causative or consequential role of epigenetic mechanisms. Our research group was involved in the last ten years in studying DNA methylation, the main epigenetic modification, in relationship to altered one-carbon metabolism (namely high homocysteine and low B vitamins levels), in Alzheimer's experimental models. Our previous findings about the demethylation of Presenilin1 gene promoter in nutritionally-induced hyperhomocysteinemia in a transgenic mouse model clearly demonstrated that Presenilin1 is regulated by DNA methylation. One of the open questions raised by our studies was if the observed demethylation was solely due to the induced imbalance of one-carbon metabolism or could be a response to the massive deposition of amyloid plaques in transgenic mice. Here we analyzed old (10 months) mice under standard diet in order to evidence possible changes in Presenilin1 promoter methylation in transgenic (TgCRND8 mice, carrying a double-mutated human APP transgene) vs. wt mice (129Sv) after prolonged exposure to amyloid. We found no differences in Presenilin1 methylation despite a slight increase in gene expression; these results suggest that amyloid production is not responsible for Presenilin1 demethylation in TgCRND8 mice brain.
-
-
-
Age-Related Increase in Levels of 5-Hydroxymethylcytosine in Mouse Hippocampus is Prevented by Caloric Restriction
Aberrations in epigenetic marks have been associated with aging of the brain while caloric restriction (CR) and upregulation of endogenous antioxidants have been suggested as tools to attenuate the aging process. We have recently observed age-related increases in levels of 5-methylcytidine (5-mC) and DNA methyltransferase 3a (Dnmt3a) in the mouse hippocampus. Most of those age-related changes in these epigenetically relevant markers were prevented by CR but not by transgenic overexpression of the endogenous antioxidant superoxide dismutase 1 (SOD1). As recent work has suggested a distinct role for hydroxymethylation in epigenetic regulation of gene expression in the brain, the current study investigated age-related changes of 5-hydroxymethylcytosine (5-hmC) in the mouse hippocampus, and furthermore tested whether CR and transgenic upregulation of SOD1 affected any age-related changes in 5-hmC. Immunohistochemical analyses of 5-hmC in 12- and 24-month-old wild-type and transgenic mice overexpressing SOD1, which were kept under either a control or a calorie restricted diet, revealed an increase of 5-hmC immunoreactivity occurring with aging in the hippocampal dentate gyrus, CA3 and CA1-2 regions. Moreover, CR, but not overexpression of SOD1, prevented the agerelated increase in the CA3 region. These findings indicate that the aging process in mice is connected with changes in epigenetic machinery in the hippocampus and suggest that CR acts by influencing epigenetic regulation.
-
-
-
The Role of 5-Hydroxymethylcytosine in Aging and Alzheimer's Disease: Current Status and Prospects for Future Studies
Authors: Daniel L.A. van den Hove, Leonidas Chouliaras and Bart P.F. RuttenEpigenetic modifications have been proposed to underlie age-related dysfunction and associated disorders. 5- hydroxymethylcytosine (5-hmC) is a newly described epigenetic modification. It is generated by the oxidation of 5- methylcytosine (5-mC) by the ten-eleven translocation (TET) family of enzymes. Various studies have shown that 5-hmC is present in high levels in the brain. Its lower affinity to methyl-binding proteins as compared to 5-mC suggests that it might have a different role in the regulation of gene expression, while it is also implicated in the DNA demethylation process. Interestingly, various widely used methods for DNA methylation detection fail to discriminate between 5-hmC and 5-mC, while numerous specific techniques are currently being developed. Recent studies have indicated an increase of 5-hmC with age in the mouse brain as well as an age- and gene-expression-level–related enrichment of 5-hmC in genes implicated in neurodegeneration. These findings suggest that 5-hmC may play an important role in the etiology and course of age-related neurodegenerative disorders. The present perspective summarizes the current knowledge on 5-hmC, discusses methodological challenges related to its detection, and suggests future strategies for examining the functional role of this epigenetic modification and its possible implication in aging and Alzheimer's disease.
-
-
-
DNMT3B Promoter Polymorphisms and Risk of Late Onset Alzheimer's Disease
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the contribution of genetic, environmental, and stochastic factors, superimposed on a physiologically age-related decline of neuronal functions. Increasing evidence indicates epigenetic modifications in LOAD brains, and many of the environmental factors associated with AD risk, such as heavy metals and dietary factors, are able to modify the epigenome. There is also indication that environmentally-induced early life modifications of the genome during embryogenesis and brain development could contribute to the development of the disease later in life. DNA methyltransferase 3b (DNMT3b) is an enzyme involved in de novo methylation of the genome during embryogenesis, expressed in progenitor cells during neurogenesis. In the present study we evaluated two functional DNMT3B promoter polymorphisms, namely -149 C>T (rs2424913) and - 579 G>T (rs1569686), as candidate LOAD risk factors. Our analysis of 376 Italian LOAD patients and 308 matched controls revealed no difference in allele frequencies between the case an the control group (OR = 1.10 (0.88-1.39) for rs2424913, and OR = 1.02 (0.81-1.28) for rs1569686). Also the genotype distributions of both polymorphisms were closely similar between groups, and no significant effect on disease age at onset was observed. Overall, present results do not support a major role for rs2424913 or rs1569686 in LOAD pathogenesis.
-
-
-
Alzheimer's Disease Biomarkers and Epigenetic Intermediates Following Exposure to Pb In Vitro
Authors: Syed Waseem Bihaqi and Nasser H. ZawiaLate onset Alzheimer's disease (LOAD) is typical of the majority of Alzheimer's disease (AD) cases (∼90%), and has no clear genetic association. Previous studies from our lab suggest that an epigenetic component could be involved. Developmental exposure of primates and rodents to lead (Pb) predetermined the expression of AD-related genes, such as the amyloid-β precursor protein (AβPP), later in life. In addition to AβPP, the preponderance of genes that were reprogrammed was rich in CpG dinucleotides implicating DNA methylation and chromatin restructuring in their regulation. To examine the involvement of epigenetic intermediates in Pb-induced alterations in gene expression, differentiated SH-SY5Y cells were exposed to a series of Pb concentrations (5-100 μM) for 48 h and were analyzed for the protein expression of AβPP, β-site amyloid precursor protein cleaving enzyme 1 (BACE1), specificity protein 1 and 3 (Sp1, Sp3) and epigenetic intermediates like DNA methyltransferase 1, 3a (Dnmt1, Dnmt3a) and methyl CpG binding protein 2 (MeCP2) involved in DNA methylation six days after the exposure had ceased. Western blot analysis indicated a significant latent elevation in AD biomarkers as well as the transcription factors Sp1 and Sp3, accompanied by a significant reduction in the protein levels of DNA methylating enzymes. RT-PCR analysis of Dnmt1, Dnmt3a and MeCP2 indicated a significant down-regulation of the mRNA levels. These data suggest that Pb interferes with DNA methylating capacity in these cells, thus altering the expression of AD-related genes.
-
-
-
Alzheimer's Disease and Environmental Exposure to Lead: The Epidemiologic Evidence and Potential Role of Epigenetics
Authors: Kelly M. Bakulski, Laura S. Rozek, Dana C. Dolinoy, Henry L. Paulson and Howard HuSeveral lines of evidence indicate that the etiology of late-onset Alzheimer's disease (LOAD) is complex, with significant contributions from both genes and environmental factors. Recent research suggests the importance of epigenetic mechanisms in defining the relationship between environmental exposures and LOAD. In epidemiologic studies of adults, cumulative lifetime lead (Pb) exposure has been associated with accelerated declines in cognition. In addition, research in animal models suggests a causal association between Pb exposure during early life, epigenetics, and LOAD. There are multiple challenges to human epidemiologic research evaluating the relationship between epigenetics, LOAD, and Pb exposure. Epidemiologic studies are not well-suited to accommodate the long latency period between exposures during early life and onset of Alzheimer's disease. There is also a lack of validated circulating epigenetics biomarkers and retrospective biomarkers of Pb exposure. Members of our research group have shown bone Pb is an accurate measurement of historical Pb exposure in adults, offering an avenue for future epidemiologic studies. However, this would not address the risk of LOAD attributable to early-life Pb exposures. Future studies that use a cohort design to measure both Pb exposure and validated epigenetic biomarkers of LOAD will be useful to clarify this important relationship.
-
-
-
Do Epigenetic Pathways Initiate Late Onset Alzheimer Disease (LOAD): Towards a New Paradigm
Authors: Syed Waseem Bihaqi, Axel Schumacher, Bryan Maloney, Debomoy K. Lahiri and Nasser H. ZawiaLate onset Alzheimer's disease (LOAD) is a non-familial, progressive neurodegenerative disease and the most prominent form of dementia in the elderly. Accumulating evidence suggests that LOAD not only results from the combined effects of variation in a number of genes and environmental factors, but also from epigenetic abnormalities such as histone modifications or DNA methylation. In comparison to monogenic diseases, LOAD exhibits numerous anomalies that suggest an epigenetic component in disease etiology. Evidence against a monogenic course and for an epigenetic component include: 1) the dominance of sporadic cases over familial ones and the low estimated concordance rates for monozygotic twins; 2) gender specific susceptibility and course of disease; 3) parent–of–origin effects, and late age of onset; 4) brain chromatin abnormalities, non–Mendelian inheritance patterns, and atypical levels of folate and homocysteine; and 5) monoallelic expression patterns of susceptibility genes [1]. The epigenome is particularly susceptible to deregulation during early embryonic and neonatal periods and thus disturbances during these periods can have latent lasting effects. The Latent Early-life Associated Regulation (LEARn) model attempts to explain these consequences from a brain specific point of view. In the present review we present the evidence that support the role of epigenetics in the development of AD and explore the potential pathways and mechanisms that may be involved.
-
-
-
Applying Epigenetics to Alzheimer's Disease via the Latent Early–life Associated Regulation (LEARn) Model
Authors: Bryan Maloney, Kumar Sambamurti, Nasser Zawia and Debomoy K. LahiriAlzheimer's disease (AD) is a leading cause of aging related dementia and has been extensively studied by several groups around the world. A general consensus, based on neuropathology, genetics and cellular and animal models, is that the 4 kDa amyloid β protein (A&bgr) triggers a toxic cascade that induces microtubule–associated protein τ (MAPT) hyperphosphorylation and deposition. Together, these lesions lead to neuronal dysfunction and neurodegeneration, modeled in animals, that ultimately causes dementia. Genetic studies show that a simple duplication of the Aβ precursor (APP) gene, as occurs in Down syndrome (trisomy 21), with a 1.5–fold increase in expression, can cause dementia with the complete AD associated neuropathology. The most fully characterized form of AD is early onset familial AD (FAD). Unfortunately, by far the most common form of AD is late onset AD (LOAD). FAD has well–identified autosomally dominant genetic causes, absent in LOAD. It is reasonable to hypothesize that environmental influences play a much stronger role in etiology of LOAD than of FAD. Since AD pathology in LOAD closely resembles FAD with accumulation of both Aβ and MAPT, it is likely that the environmental factors foster accumulation of these proteins in a manner similar to FAD mutations. Therefore, it is important to identify environmentally driven changes that “phenocopy” FAD in order to find ways to prevent LOAD. Epigenetic changes in expression are complex but stable determinants of many complex traits. Some aspects are regulated by prenatal and early post–natal development, others punctuate specific periods of maturation, and still others occur throughout life, mediating predictable changes that take place during various developmental stages. Environmental agents such as mercury, lead, and pesticides can disrupt the natural epigenetic program and lead to developmental deficits, mental retardation, feminization, and other complex syndromes. In this review we discuss latent early– life associated regulation (LEARn), where apparently temporary changes, induced by environmental agents, become latent and present themselves again at maturity or senescence to increase production of Aβ that may cause AD. The model provides us with a novel direction for identifying potentially harmful agents that may induce neurodegeneration and dementia later in life and provides hope that we may be able to prevent age–related neurodegenerative disease by “detoxifying” our environment.
-
-
-
Galantamine-based Hybrid Molecules with Acetylcholinesterase, Butyrylcholinesterase and γ-Secretase Inhibition Activities
Authors: L. Vezenkov, J. Sevalle, D. Danalev, T. Ivanov, A. Bakalova, M. Georgieva and F. CheclerWe previously designed novel peptides-containing galantamine analogues. These compounds we analyzed for their putative inhibitory effect towards acetylcholinesterase, butyrylcholinesterase and γ-secretase, three activities of which could be central to various neurodegenerative pathologies including Alzheimer's disease. These pharmacological agents were virtually equipotent on acetylcholinesterase activity but display drastically higher inhibitory activities towards butyrylcholinesterase with several compounds displaying an about 100-fold higher activity than that harboured by galantamine. Strikingly, two of the galantamine amides that displayed low activity towards acetylcholinesterase exhibited the highest inhibitory potency towards butyrylcholinesterase (106 to 133 times more active than galantamine). Interestingly, five compounds show a rather good γ-secretase inhibitory potency while they retain their ability to inhibit AChE and/or BuChE activity. Thus, we have been able to design novel compounds with significant inhibitory activity against several of the enzymes responsible for key dysfunctions taking place in several neurodegenerative diseases. These mixed inhibitors could therefore be envisioned as potential pharmacological tools aimed at circumventing the degenerative processes taking place in these major pathologies.
-
-
-
Lys203 and Lys382 are Essential for the Proteasomal Degradation of BACE1
Authors: Rong Wang, Zhengxin Ying, Juan Zhao, Yanyan Zhang, Ran Wang, Hong Lu, Yulin Deng, Weihong Song and Hong QingAmyloid β protein (Aβ) is the primary component of senile plaques in Alzheimer's disease brains and its aggregate form is neurotoxic. Aβ is generated through proteolysis of β-amyloid precursor protein (APP) by two proteases: β-secretase and γ-secretase. BACE1, the β-secretase in vivo and the key rate-limiting enzyme that initiates the formation of Aβ, is an attractive drug target for AD therapy. Our previous study demonstrated that BACE1 is ubiquitinated and its degradation and effect on APP cleaving process are mediated by the ubiquitin-proteasome pathway. However, the specific underlying mechanism is still not well defined. In present study, we determined the specific binding sites responsible for the proteasomal degradation of BACE1. Ten fragments of human BACE1 cDNA with each of them containing 1 to 3 Lys codons were cloned, and HEK293 cells transfected with these recombinant plasmids were treated with specific proteasome inhibitor lactacystin. The protein levels of fragment-3 (Pro149-Leu180), -4 (IIe179-Ser230) and -8 (Met349-Arg400) were significantly increased by lactacystin treatment, and immunocytochemical staining results showed that fragment-3, -4 and -8 proteins were colocalized with ubiquitin. Site-directed mutagenesis at Lys203 and Lys382 of BACE1 abolished the proteasomal degradation of BACE1 and affected APP processing at β site and Aβ production. Taken together, our study demonstrated that BACE1 Lys203 and Lys382 are essential for its proteasomal degradation, and the results may advance our understanding of regulation of BACE1 and APP processing by the ubiquitin proteasome system in AD pathogenesis and shed new insights on its pharmaceutical potential.
-
-
-
Erratum
More LessDue to an oversight the name of an author was published wrong in article entitled “Involvement of rat hippocampal astrocytes in β-amyloid-induced angiogenesis and neuroinflammation” in journal “Current Alzheimer Research, 2010, Vol. 7, no. 7. pp. 591-601.” The correct names of authors are given below: Fioravanzo L, Venturini M, Di Liddo R, Marchi F, Grandi C, Parnigotto PP, Folin M
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Cognitive Reserve in Aging
Authors: A. M. Tucker and Y. Stern
-
- More Less