Current Alzheimer Research - Volume 16, Issue 9, 2019
Volume 16, Issue 9, 2019
-
-
Donepezil Derivatives Targeting Amyloid-β Cascade in Alzheimer's Disease
Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.
-
-
-
Biological Evaluation of 8-Hydroxyquinolines as Multi-Target Directed Ligands for Treating Alzheimer’s Disease
Authors: Damijan Knez, Izidor Sosič, Anja Pišlar, Ana Mitrović, Marko Jukič, Janko Kos and Stanislav GobecBackground: Accumulating evidence suggests that multi-target directed ligands have great potential for the treatment of complex diseases such as Alzheimer’s Disease (AD). Objective: To evaluate novel chimeric 8-hydroxyquinoline ligands with merged pharmacophores as potential multifunctional ligands for AD. Methods: Nitroxoline, PBT2 and compounds 2-4 were evaluated in-vitro for their inhibitory potencies on cathepsin B, cholinesterases, and monoamine oxidases. Furthermore, chelation, antioxidative properties and the permeability of Blood-Brain Barrier (BBB) were evaluated by spectroscopy-based assays and the inhibition of Amyloid β (Aβ) aggregation was determined in immunoassay. Cell-based assays were performed to determine cytotoxicity, neuroprotection against toxic Aβ species, and the effects of compound 2 on apoptotic cascade. Results: Compounds 2-4 competitively inhibited cathepsin B β-secretase activity, chelated metal ions and were weak antioxidants. All of the compounds inhibited Aβ aggregation, whereas only compound 2 had a good BBB permeability according to the parallel artificial membrane permeability assay. Tested ligands 2 and 3 were not cytotoxic to SH-SY5Y and HepG2 cells at 10 μM. Compound 2 exerted neuroprotective effects towards Aβ toxicity, reduced the activation of caspase-3/7 and diminished the apoptosis of cells treated with Aβ1-42. Conclusion: Taken together, our data suggest that compound 2 holds a promise to be used as a multifunctional ligand for AD.
-
-
-
Synthesis and Biological Evaluation of Novel Chromone+Donepezil Hybrids for Alzheimer’s Disease Therapy
Background: Many factors are involved in Alzheimer’s Disease (AD) such as amyloid plaques, neurofibrillary tangles, cholinergic deficit and oxidative stress. To counter the complexity of the disease the new approach for drug development is to create a single molecule able to act simultaneously on different targets. Objective: We conceived eight drug likeliness compounds targeting the inhibition of cholinesterases and the scavenging of radicals. Methods: We synthesised the new molecules by the Passerini multicomponent reaction and evaluated their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) as well as their antioxidant activities by the Oxygen Radical Absorbance Capacity (ORAC) assay. The lipinski’s rule for drug likeness and in silico ADME prediction was also performed. Results: Compounds 4f [IC50 (EeAChE) = 0.30 μM; IC50 (eqBuChE) = 0.09 μM; ORAC = 0.64 TE] and 4h [IC50 (EeAChE) = 1 μM; IC50 (eqBuChE) = 0.03 μM; ORAC = 0.50 TE] were identified as hits for further development. Conclusion: The Passerini reaction allowed us the facile synthesis of ditarget molecules of interest for the treatment of AD.
-
-
-
Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer’s Disease
Background: Alzheimer’s disease (AD) is the most common form of dementia in the elderly. It is characterized as a multi-factorial disorder with a prevalent genetic component. Due to the unknown etiology, current treatment based on acetylcholinesterase (AChE) inhibitors and N–methyl-D-aspartate receptors (NMDAR) antagonist is effective only temporary. It seems that curative treatment will necessarily be complex due to the multifactorial nature of the disease. In this context, the so-called “multi-targeting" approach has been established. Objectives: The aim of this study was to develop a multi-target-directed ligand (MTDL) combining the support for the cholinergic system by inhibition of AChE and at the same time ameliorating the burden caused by glutamate excitotoxicity mediated by the NMDAR receptors. Methods: We have applied common approaches of organic chemistry to prepare a hybrid of 6-chlorotacrine and memantine. Then, we investigated its blocking ability towards AChE and NMDRS in vitro, as well as its neuroprotective efficacy in vivo in the model of NMDA-induced lessions. We also studied cytotoxic potential of the compound and predicted the ability to cross the blood-brain barrier. Results: A novel molecule formed by combination of 6-chlorotacrine and memantine proved to be a promising multipotent hybrid capable of blocking the action of AChE as well as NMDARs. The presented hybrid surpassed the AChE inhibitory activity of the parent compound 6-Cl-THA twofold. According to results it has been revealed that our novel hybrid blocks NMDARs in the same manner as memantine, potently inhibits AChE and is predicted to cross the blood-brain barrier via passive diffusion. Finally, the MTDL design strategy was indicated by in vivo results which showed that the novel 6-Cl-THA-memantine hybrid displayed a quantitatively better neuroprotective effect than the parent compound memantine. Conclusion: We conclude that the combination of two pharmacophores with a synergistic mechanism of action into a single molecule offers great potential for the treatment of CNS disorders associated with cognitive decline and/or excitotoxicity mediated by NMDARs.
-
-
-
Alzheimer’s Disease: Erythrocyte 2,3-diphosphoglycerate Content and Circulating Erythropoietin
Authors: Petter Järemo, Alenka Jejcic, Vesna Jelic, Tasmin Shahnaz, Homira Behbahani, Magnus Oweling and Bengt WinbladBackground: Alzheimer’s Disease (AD) features the accumulation of β-amyloid in erythrocytes. The subsequent red cell damage may well affect their oxygen-carrying capabilities. 2,3- diphosphoglycerate (2,3-DPG) binds to the hemoglobin thereby promoting oxygen release. It is theorized that 2,3-DPG is reduced in AD and that the resulting hypoxia triggers erythropoietin (EPO) release. Methods & Objective: To explore this theory, we analyzed red cell 2,3-DPG content and EPO in AD, mild cognitive impairment, and the control group, subjective cognitive impairment. Results: We studied (i) 2,3-DPG in red cells, and (ii) circulating EPO in AD, and both markers were unaffected by dementia. Disturbances of these oxygen-regulatory pathways do not appear to participate in brain hypoxia in AD.
-
-
-
Amyloid-β Aggregation Inhibitory and Neuroprotective Effects of Xanthohumol and its Derivatives for Alzheimer’s Diseases
Authors: Xueli Wang, See-Lok Ho, Chung-Yan Poon, Ting Yan, Hung-Wing Li and Man S. WongBackground: Xanthohumol has been reported to have cytoprotection through activation of Nrf2−ARE signaling pathway and; it has capability of scavenging free radicals, suggesting its potential for the prevention of neurodegeneration. However, the bio-incompatibility and blood-brain barrier impermeability of xanthohumol hindered its in vivo efficacy potential for treating Alzheimer’s disease (AD). Objective: We designed and prepared a series of xanthohumol derivatives to enhance the desirable physical, biological and pharmacological properties in particular the blood-brain barrier permeability for intervention of AD. Methods: We designed and synthesized a novel series of 9 xanthohumol derivatives. Their inhibitory effect on amyloid-β (1-42), Aβ1-42, oligomerization and fibrillation as well as neuroprotection against amyloid-β induced toxicities, were explored. Results: Among the 9 xanthohumol derivatives, some of them exhibited a moderate to high inhibitory effect on Aβ1-42 oligomerization and fibrillation. They were biocompatible and neuroprotective to the SH-SY5Y cells by reducing the ROS generation and calcium uploading that were induced by the amyloid- β. Importantly, two of the derivatives were found to be blood-brain barrier permeable showing promising potential for AD treatment. Conclusion: Two derivatives have been identified to be biocompatible, non-toxic, neuroprotective against Aβ-induced toxicities and blood-brain barrier permeable highlighting their promising potential as AD drug candidates for future clinical use.
-
-
-
HMPAO-SPECT Can Discriminate between Patients with Subjective Cognitive Complaints with and without Cognitive Deficits and those with Mild Cognitive Impairment
Authors: F. Rossini, H. Zauner, J. Bergmann, M. Kronbichler, I. Spindler, S. Golaszewski, E. Trinka and W. StaffenBackground: Growing evidence suggests that pathological processes leading to Alzheimer’s disease occurs gradually and begins to develop decades before the earliest clinical symptoms occur. The use of biomarkers has been proposed to detect evidence of preclinical Alzheimer’s pathologic change in asymptomatic subjects. Subjective cognitive complaints (SCC) i.e. self-reported cognitive decline with normal cognition have been reported as an indicator of future cognitive decline, however, this condition is unspecific. Objective: In the present study we used the regional brain perfusion measured by HMPAO-SPECT as Biomarker of neurodegeneration to compare the regional brain perfusion of patient with subjective cognitive complaints with and without minimal cognitive dysfunction (SCC+ and SCC- respectively) in respect to patients with mild cognitive impairment (MCI). Methods: We retrospectively examined 736 Patients who referred to our Memory Clinic because of suspected cognitive dysfunction. After exclusion of patients with overt dementia, automated, quantitatively assessed relative cerebral blood flow of 10 forebrain regions (thalamus, parietotemporal, medial temporal, posterior temporal, posterior cingulate gyrus, each region left hemispheric and right hemispheric) and neuropsychological assessment of 64 SCC (32 SCC+; 32 SCC-) and 28 MCI subjects were analysed. Results:.The most relevant differences between groups in cognitive performance concerned verbal memory. Left hemispheric medial temporal region could significantly discriminate between all three groups, with a progressive decrease n perfusion from SCC towards MCI. Area under the curve of left medial temporal region showed a sensitivity of 0,61 and a specificity of 0,78 for discriminating MCI from SCC. Conclusion: Automated analysis of HMPAO-SPECT data of MCI and SCC+ patients showed significant perfusion differences in medial temporal region and impaired verbal memory, both of which are known features of Alzheimer’s disease. Perfusion patterns and verbal memory performance in SCC+ are more similar to MCI than SCC-. Thus, SPECT analysis could distinguish those subjects whose perfusion pattern resembles that of an MCI from those who do not. In our opinion, this could identify two populations with a different risk of progression to AD, with SCC+ subjects needing further diagnostic examination and repeated follow-up.
-
-
-
Relationship Between the Japanese Version of the Montreal Cognitive Assessment and PET Imaging in Subjects with Mild Cognitive Impairment
Background: The Montreal Cognitive Assessment (MoCA) test has high sensitivity and specificity for detecting mild cognitive impairment or early dementia. How the MoCA score relates to findings of positron emission tomography imaging, however, remains unclear. Objective: This prospective study examined the relationship between the Japanese version of the MoCA (MoCA-J) test and brain amyloid deposition or cerebral glucose metabolism among subjects with mild cognitive impairment. Methods: A total of 125 subjects with mild cognitive impairment underwent the MoCA-J test, and amyloid- and 18F-fluorodeoxyglucose- positron emission tomography. Linear correlation analysis and multiple linear regression analysis were conducted to investigate the relationship between the MoCA-J score and demographic characteristics, amyloid deposition, and cerebral glucose metabolism. Moreover, Statistical Parametric Mapping 8 was used for a voxel-wise regression analysis of the MoCA-J score and cerebral glucose metabolism. Results: The MoCA-J score significantly correlated with age, years of education, and the Mini-Mental State Examination score. After adjusting for age, sex, and education, the MoCA-J score significantly correlated negatively with amyloid retention (β= -0.174, p= 0.031) and positively with cerebral glucose metabolism (β= 0.183, p= 0.044). Statistical Parametric Mapping showed that Japanese version of MoCA score correlated with glucose metabolism in the bilateral frontal and parietal lobes, and the left precuneus. Conclusion: The total MoCA-J score correlated with amyloid deposition and frontal and parietal glucose metabolism in subjects with mild cognitive impairment. Our findings support the usefulness of the MoCA-J test for screening subjects at high risk for Alzheimer’s disease.
-
-
-
Active Amyloid-β Vaccination Results in Epigenetic Changes in the Hippocampus of an Alzheimer’s Disease-Like Mouse Model
Background: While evidence accumulates for a role of epigenetic modifications in the pathophysiological cascade of Alzheimer’s disease (AD), amyloid-β (Aβ)-targeted active immunotherapy approaches are under investigation to prevent or slow the progression of AD. The impact of Aβ active vaccines on epigenetic markers has not been studied thus far. Objective: The current study aims to establish the relationship between active immunotherapy with a MER5101-based vaccine (consisting of Aβ1-15 copies conjugated with a 7 aa spacer to the diphtheria toxoid carrier protein, formulated in a Th2-biased adjuvant) and epigenetic DNA modifications in the hippocampus of APPswe/PS1dE9 mice. Methods: As we previously reported, immunotherapy started when the mice were 10 months of age and behavioral testing occurred at 14 months of age, after which the mice were sacrificed for further analysis of their brains. In this add-on study, global levels of DNA methylation and hydroxymethylation, and DNA methyltransferase 3A (DNMT3A) were determined using quantitative immunohistochemistry, and compared to our previously analyzed immunization-induced changes in AD-related neuropathology and cognition. Results: Active immunization did not affect global DNA methylation levels but instead, resulted in decreased DNA hydroxymethylation and DNMT3A levels. Independent of immunization, inverse correlations with behavioral performance were observed for levels of DNA methylation and hydroxymethylation, as well as DNMT3A, while Aβ pathology and synaptic markers did not correlate with DNA methylation levels but did positively correlate with DNA hydroxymethylation and levels of DNMT3A. Conclusion: Our results indicate that active Aβ vaccination has significant effects on the epigenome in the hippocampus of APPswe/PS1dE9 mice, and suggest that DNA methylation and hydroxymethylation may be involved in cognitive functioning.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Cognitive Reserve in Aging
Authors: A. M. Tucker and Y. Stern
-
- More Less