Current Alzheimer Research - Volume 16, Issue 3, 2019
Volume 16, Issue 3, 2019
-
-
Synthesis of New Galanthamine-Peptide Derivatives Designed for Prevention and Treatment of Alzheimer’s Disease
More LessBackground: Although no effective treatment for the Alzheimer’s disease currently exist, some drugs acting as Acetylcholinesterase inhibitors, like galanthamine have positively affected such patients. β- and/or γ-secretase inhibitors are another type of potential drugs. Here we report synthesis of new peptide-galanthamine derivatives, with expected inhibitory activity against both Acetylcholinesterase and β-secretase. Objectives: The aim of this work is obtaining new peptide derivatives of galanthamine with decreased toxicity compared to galanthamine. Methods: Syntheses were conducted in solution using fragment condensation approach. The new derivatives were characterized by melting points, angle of optical rotation, NMR and Mass spectra. Acute toxicity was determined on mice, according to a Standard protocol. All new compounds were tested in vitro for cytotoxic activity in a panel of human (HEP-G2, BV-173) and murine (Neuro-2a) tumor cell lines via a standard MTT-based colorimetric method. Results: New derivatives of galanthamine containing shortened analogues of β-secretase inhibitor (Boc- Asn-Leu-Ala-Val-OH) and either nicotinic or isonicotinic residue, both connected with a linker (L-Asp) to position 11 of galanthamine were obtained. In vivo toxicity of some new compounds was found up to 1000 mg/kg. Cell toxicity screening against the tumor cell lines showed negligible growth-inhibiting properties of the galanthamine derivatives. Conclusion: Synthesis of new galanthamine derivatives comprising peptide moiety and nicotinic acid or isonicotinic acid is reported. Acute toxicity studies reveal they are about 100 times less toxic than galanthamine. This effect is due to the peptide fragment. Cytotoxicity studies show good correlation with low toxicity results. These results are encouraging for the application of this class compounds as medicines.
-
-
-
Identify Compounds' Target Against Alzheimer's Disease Based on In-Silico Approach
More LessAuthors: Yan Hu, Guangya Zhou, Chi Zhang, Mengying Zhang, Qin Chen, Linfeng Zheng and Bing NiuBackground: Alzheimer's disease swept every corner of the globe and the number of patients worldwide has been rising. At present, there are as many as 30 million people with Alzheimer's disease in the world, and it is expected to exceed 80 million people by 2050. Consequently, the study of Alzheimer’s drugs has become one of the most popular medical topics. Methods: In this study, in order to build a predicting model for Alzheimer’s drugs and targets, the attribute discriminators CfsSubsetEval, ConsistencySubsetEval and FilteredSubsetEval are combined with search methods such as BestFirst, GeneticSearch and Greedystepwise to filter the molecular descriptors. Then the machine learning algorithms such as BayesNet, SVM, KNN and C4.5 are used to construct the 2D-Structure Activity Relationship(2D-SAR) model. Its modeling results are utilized for Receiver Operating Characteristic curve(ROC) analysis. Results: The prediction rates of correctness using Randomforest for AChE, BChE, MAO-B, BACE1, Tau protein and Non-inhibitor are 77.0%, 79.1%, 100.0%, 94.2%, 93.2% and 94.9%, respectively, which are overwhelming as compared to those of BayesNet, BP, SVM, KNN, AdaBoost and C4.5. Conclusion: In this paper, we conclude that Random Forest is the best learner model for the prediction of Alzheimer’s drugs and targets. Besides, we set up an online server to predict whether a small molecule is the inhibitor of Alzheimer's target at http://47.106.158.30:8080/AD/. Furthermore, it can distinguish the target protein of a small molecule.
-
-
-
Inhibition of the PERK-Dependent Unfolded Protein Response Signaling Pathway Involved in the Pathogenesis of Alzheimer’s Disease
More LessObjectives: There is a body of evidence that neurodegenerative disease entities are directly correlated with the perturbations on the molecular level. Hence, the ER stress-mediated Unfolded Protein Response (UPR) is activated resulting in PERK-dependent phosphorylation of the Eukaryotic initiation factor 2 (eIF2α). Thus, the levels of ATF4 and CHOP proteins are significantly increased, which subsequently switches the pro-adaptive branch of the UPR into the pro-apoptotic directly leading to neuronal loss and initiation of the neurodegenerative process. The aim of the presented study was the evaluation of the biological activity of highly specific, small-molecule inhibitors of the PERKdependent UPR signaling pathway. Methods: The study was conducted on rat astrocytic DI TNC1 cell line. The level of p-eIF2α was measured by Western blot technique, the cytotoxicity of the investigated compound was assessed by the MTT assay and using the FITC-conjugated Annexin V (Annexin V-FITC) to indicate apoptosis and propidium iodide (PI) to indicate necrosis. The effect of tested compound on cell cycle progression was measured by flow cytometry, where the PI-labelled nuclei were analysed for DNA content. Results: As a result one of the investigated compound LDN-0060609 triggers a significant inhibition of the eIF2α phosphorylation in DI TNC1 cell line. Moreover, we showed that compound LDN-0060609 is non-cytotoxic and has no effect on cell cycle progression. Conclusion: In conclusion, LDN-0060609 may constitute a novel, targeted treatment approach against neurodegenerative diseases, including Alzheimer’s disease (AD), where pathogenesis and progression are closely associated with the overactivation of the PERK-dependent UPR signaling pathway.
-
-
-
Tph2 Genetic Ablation Contributes to Senile Plaque Load and Astrogliosis in APP/PS1 Mice
More LessAuthors: Chao-Jin Xu, Jun-Ling Wang, Jing-Pan and Min-LiaoBackground: Amyloid-β (Aβ) accumulation plays a critical role in the pathogenesis of Alzheimer’s disease (AD) lesions. Deficiency of Serotonin signaling recently has been linked to the increased Aβ level in transgenic mice and humans. In addition, tryptophan hydroxylase-2 (Tph2), a second tryptophan hydroxylase isoform, controls brain serotonin synthesis. However, it remains to be determined that whether Tph2 deficient APP/PS1mice affect the formation of Aβ plaques in vivo. Methods: Both quantitative and qualitative immunochemistry methods, as well as Congo red staining were used to evaluate the Aβ load and astrogliosis in these animals. Results: we studied alterations of cortex and hippocampus in astrocytes and senile plaques by Tph2 conditional knockout (Tph2 CKO) AD mice from 6-10 months of age. Using Congo red staining and immunostained with Aβ antibody, we showed that plaques load or plaques numbers significantly increased in Tph2 CKO experimental groups at 8 to 10 months old, compared to wild type (WT) group, respectively. Using GFAP+ astrocytes immunofluorescence method, we found that the density of GFAP+ astrocytes markedly enhanced in Tph2 CKO at 10 months. We showed Aβ plaques co-localized autophagic markers LC3 and p62. Nevertheless, we did not observe any co-localization between GFAP+ astrocytes and autophagic markers, but detected the co-localization between βIII-tubulin+ neurons and autophagic markers. Conclusion: Overall, our work provides the preliminary evidence in vivo that Tph2 plays a role in amyloid plaques generation.
-
-
-
Naturalistic Measurement of Sleep in Older Adults with Amnestic Mild Cognitive Impairment: Anxiety Symptoms Do Not Explain Sleep Disturbance
More LessAuthors: Marina G. Cavuoto, Glynda J. Kinsella, Ben Ong, Kerryn E. Pike and Christian L. NicholasBackground: Sleep disturbance is prevalent in Alzheimer’s disease (AD). In amnestic mild cognitive impairment (aMCI), the preclinical stage of AD, deterioration in sleep quality has also been reported. Consensus is lacking, however, regarding what aspects of sleep are characteristically affected, whether the setting of the sleep recordings impacts these findings, and whether anxiety may account for the differences. Objective: The current study aimed to address these knowledge gaps by obtaining comprehensive sleep measurement in aMCI within a naturalistic environment using in-home sleep recordings. Methods: 17 healthy older adults and twelve participants with aMCI wore an actiwatch for two weeks to objectively record habitual sleeping patterns and completed two nights of in-home polysomnography. Results: In aMCI, habitual sleep disturbances were evident on actigraphy including greater wake after sleep onset (p = .012, d = 0.99), fragmentation (p = .010, d = 1.03), and time in bed (p = .046, d = .76). Although not statistically significant, there was a large group effect on polysomnography with aMCI demonstrating less slow-wave-sleep than controls (p >.05, d = .0.83). Anxiety did not mediate the relationship between the group and sleep in this small study. Conclusions: The results indicate that people with aMCI have poorer quality sleep than healthy controls, as indicated by greater sleep disruption and less slow-wave sleep, even in naturalistic settings. Additionally, anxiety symptoms do not mediate the relationship. Therefore, this research supports the view that sleep disturbance is likely to be indicative of neuropathological changes in aMCI rather than being attributed to psychological factors.
-
-
-
Abnormal Sleep Behaviours Across the Spectrum of Alzheimer’s Disease Severity: Influence of APOE Genotypes and Lewy Bodies
More LessAuthors: Ka Yi G. Koo, Tom A. Schweizer, Corinne E. Fischer and David G. MunozBackground: The Apolipoprotein (APOE) 4 allele is a well-known risk factor for Alzheimer’s Disease (AD), and sleep disturbances are commonly associated with AD. However, few studies have investigated the relationship between APOE ε4 and abnormal sleep patterns (N+) in AD. Objective: To examine the relationship between APOE genotype, Lewy body pathology, and abnormal sleep patterns in a large group of subjects with known AD load evaluated upon autopsy. Method: Data from 2,368 cases obtained from the National Alzheimer’s Coordinating Centre database were categorized as follows: Braak Stage V/VI and CERAD frequent neuritic plaques as high load AD, Braak Stage III/IV and moderate CERAD as intermediate load AD, and Braak Stage 0/I/II and infrequent CERAD as no to low load AD. Cases discrepant between the two measures were discarded. Results: Disrupted sleep was more frequent in males (42.4%) compared to females (35.1%), and in carriers (42.3%) as opposed to non-carriers (36.5%) of ε4. Amongst female subjects with high AD load and Lewy body pathology, homozygous (ε4/ε4) carriers experienced disrupted sleep more often compared with heterozygous (ε4/x) or non-carriers of ε4. Such recessive, gender-specific, and Lewy body association is reminiscent of the ε4 effect on psychosis in AD. However, such association was lost after adjusting for covariates. In subjects with no to low AD pathology, female 4 carriers had significantly more nighttime disturbances than non-carriers; this effect is independent of the presence of Lewy body pathology. Conclusion: The influence of APOE ε4 on sleep disturbances is dependent on gender and severity of AD load.
-
-
-
Piper sarmentosum Roxb. Root Extracts Confer Neuroprotection by Attenuating Beta Amyloid-Induced Pro-Inflammatory Cytokines Released from Microglial Cells
More LessBackground: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments. Objective: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators. Method: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay. Results: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators. Conclusions: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer’s disease (AD).
-
-
-
Pharmacological Interventions to Attenuate Alzheimer’s Disease Progression: The Story So Far
More LessAuthors: Firas H. Bazzari, Dalaal M. Abdallah and Hanan S. El-AbharAlzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia in the elderly. Up to date, the available pharmacological options for AD are limited to cholinesterase inhibitors and memantine that may only provide modest symptomatic management with no significance in slowing down the disease progression. Over the past three decades, the increased interest in and the understanding of AD major pathological hallmarks have provided an insight into the mechanisms mediating its pathogenesis, which in turn introduced a number of hypotheses and novel targets for the treatment of AD. Initially, targeting amyloid-beta and tau protein was considered the most promising therapeutic approach. However, further investigations have identified other major players, such as neuroinflammation, impaired insulin signalling and defective autophagy, that may contribute to the disease progression. While some promising drugs are currently being investigated in human studies, the majority of the previously developed medical agents have come to an end in clinical trials, as they have failed to illustrate any beneficial outcome. This review aims to discuss the different introduced approaches to alleviate AD progression; in addition, provides a comprehensive overview of the drugs in the development phase as well as their mode of action and an update of their status in clinical trials.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Cognitive Reserve in Aging
Authors: A. M. Tucker and Y. Stern
-
- More Less