Current Alzheimer Research - Volume 16, Issue 13, 2019
Volume 16, Issue 13, 2019
- 
- 
Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer’s DiseaseMore LessBackground: The etiology of Alzheimer’s disease remains poorly understood at the mechanistic level, and genome-wide network-based genetics have the potential to provide new insights into the disease mechanisms. Objective: The study aimed to explore the collective effects of multiple genetic association signals on an AV-45 PET measure, which is a well-known Alzheimer’s disease biomarker, by employing a network assisted strategy. Methods: First, we took advantage of a dense module search algorithm to identify modules enriched by genetic association signals in a protein-protein interaction network. Next, we performed statistical evaluation to the modules identified by dense module search, including a normalization process to adjust the topological bias in the network, a replication test to ensure the modules were not found randomly , and a permutation test to evaluate unbiased associations between the modules and amyloid imaging phenotype. Finally, topological analysis, module similarity tests and functional enrichment analysis were performed for the identified modules. Results: We identified 24 consensus modules enriched by robust genetic signals in a genome-wide association analysis. The results not only validated several previously reported AD genes (APOE, APP, TOMM40, DDAH1, PARK2, ATP5C1, PVRL2, ELAVL1, ACTN1 and NRF1), but also nominated a few novel genes (ABL1, ABLIM2) that have not been studied in Alzheimer’s disease but have shown associations with other neurodegenerative diseases. Conclusion: The identified genes, consensus modules and enriched pathways may provide important clues to future research on the neurobiology of Alzheimer’s disease and suggest potential therapeutic targets. 
 
- 
- 
- 
A Qualitative Analysis Based on Relative Expression Orderings Identifies Transcriptional Subgroups for Alzheimer’s DiseaseMore LessAuthors: Guini Hong, Pengming Zeng, Na Li, Hao Cai, You Guo, Xiaopeng Li, Keshen Li and Hongdong LiBackground: Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease. However, few studies have investigated the heterogeneous gene expression patterns in AD. Objective and Methods: We examined the gene expression patterns in four brain regions of AD based on the within-sample relative expression orderings (REOs). Gene pairs with significantly reversed REOs in AD samples compared to non-AD controls were identified for each brain region using Fisher’s exact test, and filtered according to their transcriptional differences between AD samples. Subgroups of AD were classified by cluster analysis. Results: REO-based gene expression profiling analyses revealed that transcriptional differences, as well as distinct disease subsets, existed within AD patients. For each brain region, two main subgroups were classified: one subgroup reported differentially expressed genes overlapped with the age-related genes, and the other was related to neuroinflammation. Conclusion: AD transcriptional subgroups might help understand the underlying pathogenesis of AD, and lend support to a personalized approach to AD management. 
 
- 
- 
- 
Metabolic Alterations in the Outer Membrane Vesicles of Patients with Alzheimer’s Disease: An LC-MS/MS-based Metabolomics AnalysisMore LessAuthors: Shou-Chao Wei, Wei Wei, Wan-Juan Peng, Zhou Liu, Zhi-You Cai and Bin ZhaoObjective: To characterize the specific metabolomics profiles in the outer membrane vesicles (OMVs) of patients with Alzheimer’s Disease (AD) and to explore potential metabolic biomarkers and their diagnostic roles. Methods: Nine AD patients and age- and sex-matched healthy controls were enrolled, and feces were collected. OMVs were extracted, purified, and then analyzed using liquid chromatography-tandem mass chromatography (LC-MS/MS) method coupled with a series of multivariate statistical analyses. Results: Remarkable differences were found between the OMVs from AD patients and those from healthy controls. A number of differential metabolites and several top-altered metabolic pathways were identified. The levels of aspartate, L-aspartate, imidazole-4-acetate and L-glutamate were confirmed to be highly upregulated in AD-OMVs. Other differential metabolites, such as arachidic acid, prostaglandin G2, and leukotriene B4, were also identified. Furthermore, the differential metabolites possessed higher areas under the ROC curve (AUCs). Conclusion: Metabolic activity is significantly altered in the OMVs from AD patients. This data might be helpful for identifying novel biomarkers and their diagnostic roles in AD. Furthermore, OMVs metabolomics analysis combined with GWAS could enrich our understanding of the genetic spectrum of AD and lead to early predictions and diagnosis and clinical applications of better AD treatments. 
 
- 
- 
- 
Association of PICALM Gene Polymorphisms with Alzheimer's Disease: Evidence from an Updated Meta-AnalysisMore LessAuthors: Fang-Fang Zeng, Jun Liu, Hong He, Xu-Ping Gao, Min-Qi Liao, Xiao-Xuan Yu, Yan-Hua Liu, Sui Zhu and Chun-Xia JingBackground: Previous studies have examined the roles of three polymorphisms (rs3851179, rs541458, and rs592297) of the PICALM gene in susceptibility to Alzheimer's disease (AD) with inconclusive findings. Objective: We performed a meta-analysis to explore whether these three polymorphisms in the PICALM gene were associated with susceptibility to AD. Methods: Bibliographical searches were conducted in the PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI) databases. Summary Odds Ratios (ORs) with 95% Confidence Intervals (CIs) were used to assess the strength of association in a random effects model. Potential sources of heterogeneity were identified by subgroup and meta-regression analyses. Results: Twenty studies (9,017 cases and 15,448 controls) on rs3851179, 12 studies (8,077 cases and 12,022 controls) on rs541458, and 4 studies (2,106 cases and 2,234 controls) on rs592297 were considered eligible for meta-analyses. For both rs3851179 and rs541458, the overall ORs were significant under all genetic models with mild heterogeneity. Compared with G carriers, A carriers of rs3851179 were associated with a decreased risk of AD (OR = 0.88; 95% CI 0.84, 0.91, P for Z-test <0.001, I2 = 0.0%). Compared with T carriers, C carriers of rs541458 were inversely associated with AD risk (OR = 0.86; 95% CI 0.81, 0.92, P for Z-test <0.001, I2 = 39.5%). No association was observed for rs592297. Subgroup and meta-regression analyses indicated that the protective effect of the rs541458 C allele was observed only among Caucasians, not among Asians (P for interaction: 0.021~<0.001). Conclusion: rs3851179 and rs541458 appear to be associated with decreased AD risk. The null associations for rs592297 with AD risk need further confirmation with a larger number of participants. 
 
- 
- 
- 
Role of Cdk5 in Amyloid-beta Pathology of Alzheimer’s DiseaseMore LessAuthors: Tao-Tao Lu, Chengqun Wan, Wenming Yang and Zhiyou CaiAlzheimer’s Disease (AD) is a progressive neurodegenerative disease with irreversible cognitive impairment. So far, successful treatment and prevention for this disease are deficient in spite of delaying the progression of cognitive impairment and dementia. Cyclin dependent kinase 5 (Cdk5), a unique member of the cyclin-dependent kinase family, is involved in AD pathogenesis and may be a pathophysiological mediator that links the major pathological features of AD. Cdk5 dysregulation interferes with the proteolytic processing of Amyloid-beta Protein Precursor (APP) and modulates amyloidbeta (Aβ) by affecting three enzymes called α-, β- and γ-secretase, which are critical for the hydrolysis of APP. Given that the accumulation and deposition of Aβ derived from APP are a common hinge point in the numerous pathogenic hypotheses of AD, figuring out that influence of specific mechanisms of Cdk5 on Aβ pathology will deepen our understanding of AD. 
 
- 
- 
- 
Role of TREM2 in Alzheimer's Disease and its Consequences on β- Amyloid, Tau and Neurofibrillary TanglesMore LessAlzheimer's Disease (AD) is age-related neurodegenerative disorder recognized by a steadily gradual cognitive decline that has devastating personal and socioeconomic implications. Recently, some genetic factors for AD have been identified which attracted wide attention of researchers in different areas of AD biology and possible new therapeutic targets. Alternative forms of triggering receptor expressed on myeloid cells 2 (TREM2) genes are examples of such risk factors, which contribute higher risk for developing AD. Comprehending TREM2 function pledge to provide salient insight into how neuroinflammation contributes to AD pathology. The dearth of microglial TREM2 shepherd to augmented tau pathology is couple with frequent enhancement of activated neuronal stress kinases. The involvement of TREM2 in the regulation of tau-associated innate immune response of the CNS has clearly demonstrated through these findings. However, whether decrease level of TREM2 assists pathology of tau through changed clearance and pathological escalation of tau or through direct contact between microglia and neuron and any alternative possible mechanisms need to examine. This review briefly summarizes distinct functional roles of TREM2 in AD pathology and highlights the TREM2 gene regulation. We have also addressed the impact of TREM2 on β-amyloid plaques and tau pathology in Alzheimer’s disease. 
 
- 
- 
- 
Dual Inhibition of DPP-4 and Cholinesterase Enzymes by the Phytoconstituents of the Ethanolic Extract of Prosopis cineraria Pods: Therapeutic Implications for the Treatment of Diabetes-associated Neurological ImpairmentsMore LessBackground: Insulin resistance causes decreased uptake of glucose which promotes the susceptibility of type 2 associated neurological impairments. Methods: The study was aimed to evaluate the inhibition potential of the ethanolic extract of Prosopis cineraria (EPC) pods against DPP-4 and cholinesterase enzymes by in-vitro, in-vivo and in-silico assessments. The present study consists of in vivo studies on a diabetes-induced rat model by HOMA (Homeostasis model assessment) and related parameters, in vitro studies through the DPP-4 enzyme assay and cholinesterase assays using Ellman’s reaction. The in-silico studies were conducted by the molecular docking of Cinerin C with targeted enzymes. The phytochemical characterization of the extract was demonstrated through LCMS studies. The antioxidant studies on the extract were performed by FRAP and TEAC assays. Results: The extract showed 64.8% maximum inhibition of DPP-4, 34.91% inhibition of AChE and 74.35% inhibition of BuChE. The antioxidant capacity of the extract was observed to be 847.81±16.25μM Fe2+ equivalent in the FRAP assay and 0.40 ± 0.08 mmol/l of Trolox equivalent in the TEAC assay. The in vivo study showed competent glycaemic control against significant HOMA IR (1.5), HOMA % β (26.5) and HOMA % S (68.8) as well as pancreatic cell mass proliferation. The insilico analysis also revealed positive interactions of Cinerin C with targeted enzymes (DPP4 and cholinesterase). Conclusion: It can be concluded that the phytoconstituents of Prosopis cineraria pod extract can be significantly considered in neuropharmacology to resolve insulin resistance-induced neurological complications as it showed inhibition against DPP-4, AChE and BuChE target enzymes. 
 
- 
Volumes & issues
- 
Volume 22 (2025)
- 
Volume 21 (2024)
- 
Volume 20 (2023)
- 
Volume 19 (2022)
- 
Volume 18 (2021)
- 
Volume 17 (2020)
- 
Volume 16 (2019)
- 
Volume 15 (2018)
- 
Volume 14 (2017)
- 
Volume 13 (2016)
- 
Volume 12 (2015)
- 
Volume 11 (2014)
- 
Volume 10 (2013)
- 
Volume 9 (2012)
- 
Volume 8 (2011)
- 
Volume 7 (2010)
- 
Volume 6 (2009)
- 
Volume 5 (2008)
- 
Volume 4 (2007)
- 
Volume 3 (2006)
- 
Volume 2 (2005)
- 
Volume 1 (2004)
Most Read This Month
 
Most Cited Most Cited RSS feed
- 
- 
Cognitive Reserve in AgingAuthors: A. M. Tucker and Y. Stern
 
- 
- More Less
