Current Alzheimer Research - Volume 15, Issue 12, 2018
Volume 15, Issue 12, 2018
-
-
Ezrin Expression is Increased During Disease Progression in a Tauopathy Mouse Model and Alzheimer's Disease
Authors: Irving E. Vega, Andrew Umstead, Cassandra M. Wygant, John S. Beck and Scott E. CountsBackground: The lack of diagnostic tools and disease-modifying treatments against Alzheimer's disease (AD) and related disorders, collectively known as tauopathies, has led to a socioeconomic burden of epidemic proportion. Proteomics approaches can be used to identify novel proteome changes that could help us understand the pathogenesis of tau-related pathological hallmarks and/or cellular stress responses associated with tauopathy. These studies, however, need to be conducted taking into consideration brain region specificity and stage of neurodegeneration in order to provide insights about the pathological role of the identified proteins. Methods: We used a tauopathy mouse model (JNPL3) that expresses human tau bearing a P301L mutation and develops motor impairment, the severity of which correlates with the increased accumulation of pathological tau. Tissue was dissected from asymptomatic and severely motor impaired JNPL3 mice as well as non-transgenic littermate controls and subjected to two-dimensional gel electrophoresis. Differentially abundant protein spots were identified by tandem mass spectrometry. Postmortem mild cognitive impairment (MCI), AD and normal aging controls were used to validate the pathological significance of the identified protein. Results: Ezrin was identified as a protein that is upregulated in tau-mediated neurodegeneration. We demonstrate that Ezrin protein abundance increased in JNPL3 mice preceded motor impairment and was sustained in severely motor impaired mice. Ezrin expression was also increased in the temporal cortex of MCI and AD patients. Conclusion: The results demonstrate that increased Ezrin protein abundance changes are associated with the early stages of neurodegeneration in tauopathy models and human disease. Understanding the role of Ezrin in tauopathies such as AD may provide new insights for targeting tau-mediated neurodegeneration.
-
-
-
Tacrine-coumarin and Tacrine-7-chloroquinoline Hybrids with Thiourea Linkers: Cholinesterase Inhibition Properties, Kinetic Study, Molecular Docking and Permeability Assay for Blood-brain Barrier
Background: The design of new heterodimeric dual binding site acetylcholinesterase inhibitors constitutes the main goal-directed to the development of new anticholinesterase agents with the expanded pharmacological profile. Multi-target compounds are usually designed by combining in a hybrid molecule with two or more pharmacophoric moieties that are known to enable interaction with the selected molecular targets. Methods: All compounds were tested for their inhibitory activity on human AChE/BChE. The Ellman´s method was used to determine inhibition kinetics and IC50 values. In order to predict passive bloodbrain penetration of novel compounds, modification of the parallel artificial membrane permeation assay has been used. Docking studies were performed in order to predict the binding modes of new hybrids with hAChE/ hBChE respectively. Results: In this study, we described the design, synthesis, and evaluation of series tacrine-coumarin and tacrine-quinoline compounds which were found to show potential inhibition of ChEs and penetration of the blood-brain barrier. Conclusion: Tacrine-quinoline hybrids 7a exhibited the highest activity towards hBChE (IC50 = 0.97 μmol) and 7d towards hAChE (IC50 = 0.32 μmol). Kinetic and molecular modelling studies revealed that 7d was a mixed-type AChE inhibitor (Ki = 1.69 μmol) and 7a was a mixed-type BChE inhibitor (Ki = 1.09 μmol). Moreover, hybrid 5d and 7c could penetrate the CNS.
-
-
-
Probiotic Supplementation in Patients with Alzheimer's Dementia - An Explorative Intervention Study
Authors: Friedrich Leblhuber, Kostja Steiner, Burkhard Schuetz, Dietmar Fuchs and Johanna M. GostnerBackground: Dysbiosis of intestinal microbiota in the elderly can cause a leaky gut, which may result in silent systemic inflammation and promote neuroinflammation - a relevant pathomechanism in the early course of Alzheimer's disease. Objective: The rebalancing of the microbiome could benefically impact on gut inflammation and immune activation. Methods: In this study, routine laboratory tests in twenty outpatients (9 females, 11 males, aged 76.7 ± 9.6 years) with Alzheimer's disease were investigated. The mean Mini Mental State Examination score was 18.5 ± 7.7. Biomarkers of immune activation – serum neopterin and tryptophan breakdown - as well as gut inflammation markers and microbiota composition in fecal specimens were analyzed in 18 patients before and after probiotic supplementation for 4 weeks. Results: After treatment a decline of fecal zonulin concentrations and an increase in Faecalibacterium prausnitzii compared to baseline were observed. At the same time, serum kynurenine concentrations increased (p <0.05). Delta values (before - after) of neopterin and the kynurenine to tryptophan ratios (Kyn/Trp) correlated significantly (p <0.05). Conclusion: Results show that the supplementation of Alzheimer's disease patients with a multispecies probiotic influences gut bacteria composition as well as tryptophan metabolism in serum. The correlation between Kyn/Trp and neopterin concentrations points to the activation of macrophages and/or dendritic cells. Further studies are warranted to dissect the potential consequences of Probiotic supplementation in the course of Alzheimer's disease.
-
-
-
Influence of Early Life Lead (Pb) Exposure on α-Synuclein, GSK-3β and Caspase-3 Mediated Tauopathy: Implications on Alzheimer's Disease
Authors: Syed W. Bihaqi, Bothaina Alansi, Anwar M. Masoud, Foqia Mushtaq, Gehad M. Subaiea and Nasser H. ZawiaBackground: Previously we have shown that developmental exposure to the heavy metal lead (Pb) resulted in latent cognitive impairment, upregulation of biomarkers and pathology associated with both the tau and amyloid pathways, however, the impact on Alpha Synuclein (α-Syn) and its relationship to these pathways and their connection to cognitive performance warrant further elucidation. Objective: The present study determined the impact of developmental Pb exposure on the α-Syn pathways in a mouse model knock-out (KO) for murine tau gene and in differentiated human neuroblastoma SHSY5Y cell line exposed to a series of Pb concentrations. Methods: Western blot analysis and RT-PCR were used to assess the levels of intermediates in the tau and α-Syn pathways following postnatal Pb exposure on aged mice lacking tau gene and in differentiated SHSY5Y cells on day 3 and day 6 after the Pb exposure had ceased. Result: Early life Pb exposure is accompanied by latent up-regulation in α-Syn in these mice. Furthermore, prior exposure to Pb in-vitro also resulted in an increase in α-Syn, its phosphorylated forms, as well as an increase in glycogen synthase kinase 3β (GSK-3β) and Caspase-3. Conclusion: An environmental agent can act as a latent inducer of both α-Syn and associated kinases that are involved in tau hyperphosphorylation and may allude to the interactive nature of these two neurodegenerative pathways.
-
-
-
Anti-α4β1 Integrin Antibodies Attenuated Brain Inflammatory Changes in a Mouse Model of Alzheimer's Disease
Authors: Gunjan Manocha, Atreyi Ghatak, Kendra Puig and Colin CombsBackground: Alzheimer's disease (AD) is associated with age-associated central nervous system degeneration and dementia. This decline in the function correlates with deposition of Aβ peptide containing plaques and associated reactive gliosis. The inflammatory phenotype of microglia, in particular, is often considered detrimental to cognitive function in AD. In addition to the changes in the CNS, altered immune changes in the periphery have recently been observed in AD suggesting a critical immune- related communication between the periphery and the brain. Objective: We hypothesized that modulating the peripheral immune system may alter the proinflammatory gliosis associated with AD. Therapeutic antibodies against the α4β1 integrin receptor have been used clinically to attenuate the ability of various immune cells to adhere to endothelium and migrate into target tissues such as the intestines (Crohn's disease) or brain (multiple sclerosis). We hypothesized that a similar peripheral antibody-based therapy would attenuate gliosis by altering immune cell infiltration or phenotype in peripheral organs and the brain using an APP/PS1 mouse model of Alzheimer's disease. Method: Littermate control wild-type and APP/PS1 mice were tail vein injected with either saline, isotype control (IgG2b), or an antibody recognizing α4-integrin, anti-CD49d, once a week for 4 consecutive weeks. To understand CNS and peripheral immune changes, brains and spleen were used. Results/Conclusion: Our data suggests that the antibody therapy was able to reduce microgliosis, astrogliosis, and synaptic changes in the APP/PS1 mice compared to isotype control injections without changing amyloid-β plaque load. Interestingly, both isotype control and antibody therapy also reduced the number of proinflammatory cytokines in the spleen although changes in the brain were less robust. The anti-CD49d and isotype control treatments also reduced CD4 immunoreactivity in the brains, suggesting a possible mechanism for attenuation of inflammation in the brain. This data suggests that it is indeed feasible to alter the immune component of AD brain changes using a clinically feasible strategy of delivering a particular subtype of IgG or epitope selective antibodies that target infiltration of the peripheral immune system.
-
-
-
Improving Cognition through Dance in Older Filipinos with Mild Cognitive Impairment
Background: People with mild cognitive impairment (MCI) are considered a high-risk population for developing dementia and therefore potential targets for preventive interventions. So far, no pharmacological interventions have proven to be effective. Latest evidence has laid the groundwork for the hypothesis that dancing can have beneficial effect on cognition by improving neuroplasticity. Objective: This study aimed to examine whether a structured modular ballroom dance intervention (INDAK) could improve cognition among Filipino older persons with MCI. Methods: A two-armed, single-blinded, quasi-experimental study was conducted in a community-based population at Marikina City, Philippines. Two hundred and seven participants older than 60 years old with MCI participated through self-assigned allocation to dance (N=101) and control (N=106) groups. The intervention group received INDAK consisting eight types of ballroom dances with increasing complexity lasting one hour, twice a week for 48 weeks. Neurologists and psychologists blinded to the group allocation administered baseline and post intervention assessments using Alzheimer's Disease Assessment Scale – Cognitive (ADAS-Cog), Filipino version of the Montreal Cognitive Assessment (MoCA-P), Boston Naming Test (BNT), Geriatric Depression Scale (GDS), Instrumental Activities of Daily Living (IADL) and Disability Assessment for Dementia (DAD). Results: Baseline sociodemographic and clinical characteristics did not differ between groups. The mean differences between baseline and 48-week assessments were compared between dancers and controls, showing that the intervention group improved in ADAS-Cog, MoCA-P, BNT and GDS. Conclusion: INDAK is potentially a novel, ecological and inexpensive non-pharmacological intervention that can improve cognition among older Filipinos with MCI.
-
-
-
Oral and Written Naming in Alzheimer's Disease: A Longitudinal Study
Authors: Maria Gonzalez-Nosti, Fernando Cuetos and Carmen MartinezBackground: The expressive difficulties in patients with Alzheimer's dementia have been extensively studied, mainly in oral language. However, the deterioration of their writing processes has received much less attention. Objective: The present study aims to examine the decline of the performance of patients with Alzheimer's disease in both oral and written picture-naming tasks. Method: Sixty-four participants (half with Alzheimer's disease and half healthy elderly) were compared in the oral and written versions of a picture-naming task. Follow-up lasted two and a half years and patients were evaluated every six months. Results: Cross-sectional data indicate that the controls performed better than the patients, and both groups showed a different pattern of errors. In terms of longitudinal data, the results show a similar pattern of deterioration in both tasks. In terms of errors, lexical-semantics were the most numerous at the beginning and their number remained constant throughout all evaluations. In the case of non-responses, there was a significant increase in the last session, both in oral and written naming. Conclusion: These results replicate those found in previous studies and highlight the utility of the naming task to detect minimal changes in the evolution of patients with Alzheimer's disease.
-
-
-
Deformation-based Statistical Shape Analysis of the Corpus Callosum in Mild Cognitive Impairment and Alzheimer's Disease
Authors: Zihan Jiang, Huilin Yang and Xiaoying TangObjective: In this study, we investigated the influence that the pathology of Alzheimer's disease (AD) exerts upon the corpus callosum (CC) using a total of 325 mild cognitive impairment (MCI) subjects, 155 AD subjects, and 185 healthy control (HC) subjects. Method: Regionally-specific morphological CC abnormalities, as induced by AD, were quantified using a large deformation diffeomorphic metric curve mapping based statistical shape analysis pipeline. We also quantified the association between the CC shape phenotype and two cognitive measures; the Mini Mental State Examination (MMSE) and the Alzheimer's Disease Assessment Scale-Cognitive Behavior Section (ADAS-cog). To identify AD-relevant areas, CC was sub-divided into three subregions; the genu, body, and splenium (gCC, bCC, and sCC). Results: We observed significant shape compressions in AD relative to that in HC, mainly concentrated on the superior part of CC, across all three sub-regions. The HC-vs-MCI shape abnormalities were also concentrated on the superior part, but mainly occurred on bCC and sCC. The significant MCI-vs-AD shape differences, however, were only detected in part of sCC. In the shape-cognition association, significant negative correlations to ADAS-cog were detected for shape deformations at regions belonging to gCC and sCC and significant positive correlations to MMSE at regions mainly belonging to sCC. Conclusion: Our results suggest that the callosal shape deformation patterns, especially those of sCC, linked tightly to the cognitive decline in AD, and are potentially a powerful biomarker for monitoring the progression of AD.
-
-
-
Insights into the Drug Repositioning Applied to the Alzheimer's Disease Treatment and Future Perspectives
Introduction: Alzheimer's disease is known to be a chronic disease, with an estimated prevalence of about 10-30%, considering the population over 60 years of age. Most patients with this disorder (> 95%) present the sporadic form, being characterized by a late onset (80-90 years of age), and it is the consequence of the failure to clear the amyloid-β (Aβ) peptide from the interstices of the brain. Significant numbers of genetic risk factors for the sporadic disease have been researched. Some existing drugs for Alzheimer's disease provide symptomatic benefit for up to 12 months, but there are no approved disease- modifying therapies. In this line, a complementary strategy based on repositioning drugs which are approved for the treatment of other disorders could be interesting. It is noteworthy the fact that some clinical trials indicate that several classes of drugs own potent and beneficial effects on the Alzheimer's disease treatment. In this present work, we present the details and evaluation of these alternative treatments. It has highlighted several compounds with relevant evidence for this purpose, which deserves further investigation to clarify optimal treatment conditions in the clinical trials of patients with Alzheimer's disease.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Cognitive Reserve in Aging
Authors: A. M. Tucker and Y. Stern
-
- More Less