Current Alzheimer Research - Volume 13, Issue 2, 2016
Volume 13, Issue 2, 2016
-
-
Autoantibodies Profile in Matching CSF and Serum from AD and aMCI patients: Potential Pathogenic Role and Link to Oxidative Damage
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Amyloid-ß-peptide (Aß) forms senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles, are the hallmarks of AD neuropathology. Evidence support the involvement of immune system in AD progression and current concepts regarding its pathogenesis include the participation of inflammatory and autoimmune components in the neurodegenerative process. Pathologically, immune system components have been detected in the brain, cerebrospinal fluid (CSF) and in serum of AD subjects and their trend of variation correlates with disease progression. However, patients with AD present significantly lower levels of antibody immunoreactivity against Aß in serum and CSF than healthy controls suggesting that a depletion of such patrolling system is involved in the deposition of toxic aggregates in AD. Within this frame, incomplete and often controversial results are reported about CNS immune/ autoimmune responses during AD, and a better comprehension of such processes is needed. Our research will aim to shed light on the nature and potential role of autoantibodies in CSF and serum from AD and amnestic mild cognitive impairment (aMCI) patients compared to healthy subjects by using an immunoproteomics approach. Our method allows recognition of natural occurring antibodies by the identification of brain antigen targeted by human IgGs. Overall our data reveal that the alterations of autoantibodies profile both in CSF and serum follow disease staging and progression. However, we demonstrate a fair overlap between CSF and serum suggesting the existence of different immunogenic events. Interestingly, CSF autoantibodies recognized, among others, key players of energy metabolic pathway, including glycolysis and TCA cycle, found oxidatively modified in AD brain studies. These data suggest a potential casual sequence between oxidative damage at brain level, autoantibodies presence in CSF and reduced energy metabolism of AD patients.
-
-
-
Reduction of Oxidative/Nitrosative Stress in Brain and its Involvement in the Neuroprotective Effect of n-3 PUFA in Alzheimer’s Disease
Authors: Simona Serini and Gabriella CalvielloPlenty of evidence has shown that an enhanced oxidative or nitrosative stress may play a central role in the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease (AD). The suppressive effect of n-3 polyunsaturated fatty acids (n-3 PUFA) against oxidative/nitrosative stressinduced injury in nervous tissues has recently received increasing interest. A number of human experimental studies have concurred to demonstrate that they may exert a substantial preventive role, especially in the very early phase of mild cognitive impairment (MCI) preceding AD. It has been suggested that they may exert an indirect antioxidant/anti-nitrosative role by modulating the expression/ activity of several proteins involved in the modulation of oxidative stress in nervous tissues. In particular, recent data have supported the hypothesis that in the early phase of MCI the light to moderate oxidative stress triggered by not cytotoxic doses of n-3 PUFA can positively regulate the transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2). This may result in the induced expression of heme oxygenase-1 (HO-1) and other antioxidant proteins transcriptionally regulated by Nrf2. Alternatively, the anti-inflammatory and antioxidant/anti-nitrosative effects of n-3 PUFA have been lately related to their ability to blunt microglia persistent activation occurring during chronic inflammation involved in the pathogenesis of neurodegenerative diseases. Evidences have been presented that n-3 PUFA may convert microglia from the macrophage M1 to an M2 phenotype showing lower production of neurotoxicoxidative factors and enhanced phagocytic activity toward Aβ peptide, or even to a further phenotype with neurotrophic/ protective properties.
-
-
-
Nitric Oxide Homeostasis in Neurodegenerative Diseases
More LessThe role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson’s and Alzheimer’s diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer’s disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases.
-
-
-
PERK-opathies: An Endoplasmic Reticulum Stress Mechanism Underlying Neurodegeneration
Authors: Michelle C. Bell, Shelby E. Meier, Alexandria L. Ingram and Jose F. AbisambraThe unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress. Chronic UPR activation in systemic and neurodegenerative diseases has been identified as an early sign of cellular dyshomeostasis. The Protein Kinase R-like ER Kinase (PERK) pathway is one of three major branches in the UPR, and it is the only one to modulate protein synthesis as an adaptive response. The specific identification of prolonged PERK activity has been correlated with the progression of disorders such as diabetes, Alzheimer’s disease, and cancer, suggesting that PERK plays a role in the pathology of these disorders. For the first time, the term “PERK-opathies” is used to group these diseases in which PERK mediates detriment to the cell culminating in chronic disorders. This article reviews the literature documenting links between systemic disorders with the UPR, but with a specific emphasis on the PERK pathway. Then, articles reporting links between the UPR, and more specifically PERK, and neurodegenerative disorders are presented. Finally, a therapeutic perspective is discussed, where PERK interventions could be potential remedies for cellular dysfunction in chronic neurodegenerative disorders.
-
-
-
Role of Mitochondrial Protein Quality Control in Oxidative Stress-induced Neurodegenerative Diseases
Authors: Giovanna Cenini and Wolfgang VoosProteins are constantly exposed to environmental stressors such as free radicals and heat shock leading to their misfolding and later to aggregation. In particular mitochondrial proteins are challenged by reactive oxygen species (ROS) due to the oxidative metabolism of the organelle. Protein aggregation has been associated with a wide variety of pathological conditions called proteopathies. However, for the maintenance of protein and cellular homeostasis, mitochondria have developed an elaborate protein quality control system consisting of chaperones and ATP-dependent proteases, specifically employed to rescue this organelle from damage due to the accumulation of misfolded proteins and toxic aggregates. Aging is characterized by a general decline of mitochondrial functions, correlating with a decrease in mitochondrial protein quality control activity and an increase of free radical production. In particular in age-related diseases like neurodegeneration, a correlation between mitochondrial damage and disease onset has been established. In this review we summarize the current knowledge about mitochondrial protein quality control mechanisms in mammalian cells, with a special emphasis on the role in oxidative stress and in neurodegenerative diseases.
-
-
-
The Pathophysiology of Heme in the Brain
More LessHeme is essential for the survival of most organisms, despite the fact of being potentially toxic. This dual effect is due to the ability of the iron (Fe) atom contained within the protoporphyrin ring of the heme molecule to participate in redox reactions and exchange electrons with a variety of substrates. Therefore, the pro-oxidant reactivity of heme needs to be kept under control, an effect achieved by its incorporation into the heme pockets of hemoproteins, i.e. proteins required to exert vital biological functions in which heme acts as prosthetic group. The release of heme from hemoproteins and the participation of Fe in the Fenton reaction lead to the generation of unfettered oxidative stress and programmed cell death. Although further investigations would be required to elucidate the regulation of heme in the brain, this molecule appears to be critically involved in the pathogenesis of different neurodegenerative diseases, as heme accumulation or deficiency is associated with impaired brain activity and neuronal death. Thus, the aim of this review is to provide an overview on the importance of heme in the brain and the pathophysiologic consequences associated with its accumulation.
-
-
-
Glutamate and Mitochondria: Two Prominent Players in the Oxidative Stress-Induced Neurodegeneration
The aetiology of major neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) is still unknown, but increasing evidences suggest that glutamate and mitochondria are two prominent players in the oxidative stress (OS) process that underlie these illnesses. Although AD and PD have distinct pathological and clinical features, OS is a common mechanism contributing to neuronal damage. Glutamate is an important neurotransmitter in neurons and glial cells and is strongly dependent on calcium homeostasis and on mitochondrial function. In the present work we focused on glutamate- induced calcium signaling and its relation to the mitochondrial dysfunction with cell death processes. In addition, we have discussed how alterations in this pathway may lead or aggravate the neurodegenerative diseases. Finally, this review aims to stimulate further studies on this issue and thereby engage a new perspective regarding the design of possible therapeutic agents or the identification of biomarkers.
-
-
-
The Role of Brain Cholesterol and its Oxidized Products in Alzheimer's Disease
Authors: Anna Maria Giudetti, Adele Romano, Angelo Michele Lavecchia and Silvana GaetaniThe human brain is the most cholesterol-rich organ harboring 25% of the total cholesterol pool of the whole body. Cholesterol present in the central nervous system (CNS) comes, almost entirely, from the endogenous synthesis, being circulating cholesterol unable to cross the blood-brain barrier (BBB). Astrocytes seem to be more active than neurons in this process. Neurons mostly depend on cholesterol delivery from nearby cells for axonal regeneration, neurite extension and synaptogenesis. Within the brain, cholesterol is transported by HDL-like lipoproteins associated to apoE which represents the main apolipoprotein in the CNS. Although CNS cholesterol content is largely independent of dietary intake or hepatic synthesis, a relationship between plasma cholesterol level and neurodegenerative disorders, such as Alzheimer’s disease (AD), has often been reported. To this regard, alterations of cholesterol metabolism were suggested to be implicated in the etiology of AD and amyloid production in the brain. Therefore a special attention was dedicated to the study of the main factors controlling cholesterol metabolism in the brain. Brain cholesterol levels are tightly controlled: its excessive amount can be reduced through the conversion into the oxidized form of 24-S-hydroxycholesetrol (24-OH-C), which can reach the blood stream. In fact, the BBB is permeable to 24-OH-C as well as to 27-OH-C, another oxidized form of cholesterol mainly synthesized by non- neural cells. In this review, we summarize the main mechanisms regulating cholesterol homeostasis and review the recent advances on the role played by cholesterol and cholesterol oxidized products in AD. Moreover, we delineate possible pharmacological strategies to control AD progression by affecting cholesterol homeostasis.
-
-
-
Reductive Stress: A New Concept in Alzheimer’s Disease
Authors: A. Lloret, T. Fuchsberger, E. Giraldo and J. VinaReactive oxygen species play a physiological role in cell signaling and also a pathological role in diseases, when antioxidant defenses are overwhelmed causing oxidative stress. However, in this review we will focus on reductive stress that may be defined as a pathophysiological situation in which the cell becomes more reduced than in the normal, resting state. This may occur in hypoxia and also in several diseases in which a small but persistent generation of oxidants results in a hormetic overexpression of antioxidant enzymes that leads to a reduction in cell compartments. This is the case of Alzheimer’s disease. Individuals at high risk of Alzheimer’s (because they carry the ApoE4 allele) suffer reductive stress long before the onset of the disease and even before the occurrence of mild cognitive impairment. Reductive stress can also be found in animal models of Alzheimer’s disease (APP/PS1 transgenic mice), when their redox state is determined at a young age, i.e. before the onset of the disease. Later in their lives they develop oxidative stress. The importance of understanding the occurrence of reductive stress before any signs or symptoms of Alzheimer’s has theoretical and also practical importance as it may be a very early marker of the disease.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Cognitive Reserve in Aging
Authors: A. M. Tucker and Y. Stern
-
- More Less