Skip to content
2000
image of miRNAs: Promising Biomarkers for Alzheimer's Diagnosis and Treatment

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by amyloid-beta (Aβ) plaque deposition, neurofibrillary tangles of hyperphosphorylated tau protein, and chronic neuroinflammation, leading to synaptic dysfunction and cognitive decline. Current diagnostic methods rely on clinical symptoms and limited biomarkers, while available treatments only provide symptomatic relief without halting disease progression. MicroRNAs (miRNAs), small non-coding RNAs of 19-22 nucleotides, have emerged as crucial regulators of gene expression through post-transcriptional mechanisms and show distinct dysregulation patterns in AD patients' blood, cerebrospinal fluid (CSF), and brain tissues. Key miRNAs such as miR-132, miR-146a, miR-34a, and miR-125b demonstrate consistent alterations in expression levels, correlating with disease progression and offering potential as non-invasive diagnostic tools. This review comprehensively examines the dual role of miRNAs as diagnostic biomarkers and therapeutic targets for AD. We also provide an analysis of specific miRNA signatures in different biofluids (plasma, serum, CSF) and brain regions that correlate with disease stages, highlighting their potential for early and non-invasive diagnosis. Therapeutically, miRNAs modulate multiple AD-related pathways, including neuroinflammation NF-κB signaling, Aβ production through BACE1 inhibition, and tau phosphorylation GSK3β regulation. miRNAs also influence synaptic plasticity, mitochondrial function, and autophagy, presenting multifaceted opportunities for intervention. However, challenges, including miRNA heterogeneity, stability, and targeted delivery, remain critical impediments. Advances in nanocarriers, exosomal miRNAs, and viral vectors show promise in overcoming these obstacles, enabling precise miRNA modulation. In addition, we underscore the need for standardized protocols, further validation in clinical cohorts, and the development of cost-effective detection methods to translate miRNA-based approaches into practical diagnostics and therapies. By integrating miRNA biomarkers with existing diagnostic tools and exploring combinatorial therapeutic strategies, researchers can harness the potential of miRNAs to revolutionize AD intervention, paving the way for early detection and effective treatment of this devastating disease.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050427877251118111643
2026-01-02
2026-01-12
Loading full text...

Full text loading...

References

  1. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  2. Khan S. Barve K.H. Kumar M.S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2020 18 11 1106 1125 10.2174/1570159X18666200528142429 32484110
    [Google Scholar]
  3. Zhu C. Fu S. Chen Y. Advances in drug therapy for Alzheimer’s disease. Curr. Med. Sci. 2020 40 6 999 1008 10.1007/s11596‑020‑2281‑2 33428127
    [Google Scholar]
  4. Zhou Q. Wang W. Deng C. Advancements in proteolysis targeting chimeras for targeted therapeutic strategies in Alzheimer’s disease. Mol. Neurobiol. 2025 62 8 9686 9709 10.1007/s12035‑025‑04838‑0 40133753
    [Google Scholar]
  5. Savelieff M.G. Lee S. Liu Y. Lim M.H. Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem. Biol. 2013 8 5 856 865 10.1021/cb400080f 23506614
    [Google Scholar]
  6. Panza F. Lozupone M. Logroscino G. Imbimbo B.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2019 15 2 73 88 10.1038/s41582‑018‑0116‑6 30610216
    [Google Scholar]
  7. Calsolaro V. Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016 12 6 719 732 10.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  8. Minter M.R. Taylor J.M. Crack P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J. Neurochem. 2016 136 3 457 474 10.1111/jnc.13411 26509334
    [Google Scholar]
  9. Hampel H. Mesulam M.M. Cuello A.C. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018 141 7 1917 1933 10.1093/brain/awy132 29850777
    [Google Scholar]
  10. Pyun J.M. Park Y.H. Kang M.J. Kim S. Cholinesterase inhibitor use in amyloid PET-negative mild cognitive impairment and cognitive changes. Alzheimers Res. Ther. 2024 16 1 210 10.1186/s13195‑024‑01580‑y 39358798
    [Google Scholar]
  11. Poprac P. Jomova K. Simunkova M. Kollar V. Rhodes C.J. Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017 38 7 592 607 10.1016/j.tips.2017.04.005 28551354
    [Google Scholar]
  12. Valko M. Jomova K. Rhodes C.J. Kuča K. Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol. 2016 90 1 1 37 10.1007/s00204‑015‑1579‑5 26343967
    [Google Scholar]
  13. Marucci G. Buccioni M. Ben D.D. Lambertucci C. Volpini R. Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021 190 108352 10.1016/j.neuropharm.2020.108352 33035532
    [Google Scholar]
  14. Masson P. Lushchekina S.V. Slow-binding inhibition of cholinesterases, pharmacological and toxicological relevance. Arch. Biochem. Biophys. 2016 593 60 68 10.1016/j.abb.2016.02.010 26874196
    [Google Scholar]
  15. van Dyck C.H. Swanson C.J. Aisen P. Lecanemab in early alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  16. Lu T.X. Rothenberg M.E. MicroRNA. J. Allergy Clin. Immunol. 2018 141 4 1202 1207 10.1016/j.jaci.2017.08.034 29074454
    [Google Scholar]
  17. Ho P.T.B. Clark I.M. Le L.T.T. MicroRNA-based diagnosis and therapy. Int. J. Mol. Sci. 2022 23 13 7167 10.3390/ijms23137167 35806173
    [Google Scholar]
  18. Jain M. Agarwal S. Rana A. Tiwari A. Patil N. miRNA as an ultimate and emerging diagnostic approach for the detection of alzheimer’s disease. MicroRNA 2023 12 3 189 204 10.2174/0122115366243970230925061819 37859330
    [Google Scholar]
  19. Zhang H. Fu X. Yang M. Song X. Li M. Wang X. Research progress on humoral biomarkers of Alzheimer’s disease: A review. Medicine 2024 103 30 e38978 10.1097/MD.0000000000038978 39058878
    [Google Scholar]
  20. Zhang R. Su B. Small but influential: The role of microRNAs on gene regulatory network and 3′UTR evolution. J. Genet. Genomics 2009 36 1 1 6 10.1016/S1673‑8527(09)60001‑1 19161940
    [Google Scholar]
  21. Jaber V.R. Zhao Y. Sharfman N.M. Li W. Lukiw W.J. Addressing alzheimer’s disease (AD) neuropathology using anti-microRNA (AM) strategies. Mol. Neurobiol. 2019 56 12 8101 8108 10.1007/s12035‑019‑1632‑0 31183807
    [Google Scholar]
  22. Lukiw W.J. Vergallo A. Lista S. Hampel H. Zhao Y. Biomarkers for alzheimer’s disease (AD) and the application of precision medicine. J. Pers. Med. 2020 10 3 138 10.3390/jpm10030138 32967128
    [Google Scholar]
  23. Vishnoi A. Rani S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol. Biol. 2023 2595 1 12 10.1007/978‑1‑0716‑2823‑2_1 36441451
    [Google Scholar]
  24. McKhann G.M. Knopman D.S. Chertkow H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on aging‐Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 263 269 10.1016/j.jalz.2011.03.005 21514250
    [Google Scholar]
  25. Nakamura A. Kaneko N. Villemagne V.L. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018 554 7691 249 254 10.1038/nature25456 29420472
    [Google Scholar]
  26. Valotassiou V. Malamitsi J. Papatriantafyllou J. SPECT and PET imaging in Alzheimer’s disease. Ann. Nucl. Med. 2018 32 9 583 593 10.1007/s12149‑018‑1292‑6 30128693
    [Google Scholar]
  27. Gonzalez-Ortiz F. Turton M. Kac P.R. Brain-derived tau: A novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration. Brain 2023 146 3 1152 1165 10.1093/brain/awac407 36572122
    [Google Scholar]
  28. Gao Y. Tan L. Yu J.T. Tan L. Tau in Alzheimer’s disease: Mechanisms and therapeutic strategies. Curr. Alzheimer Res. 2018 15 3 283 300 10.2174/1567205014666170417111859 28413986
    [Google Scholar]
  29. Karikari T.K. Ashton N.J. Brinkmalm G. Blood phospho-tau in alzheimer disease: Analysis, interpretation, and clinical utility. Nat. Rev. Neurol. 2022 18 7 400 418 10.1038/s41582‑022‑00665‑2 35585226
    [Google Scholar]
  30. Kim D.H. Yeo S.H. Park J.M. Genetic markers for diagnosis and pathogenesis of Alzheimer’s disease. Gene 2014 545 2 185 193 10.1016/j.gene.2014.05.031 24838203
    [Google Scholar]
  31. Corder E.H. Saunders A.M. Strittmatter W.J. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993 261 5123 921 923 10.1126/science.8346443 8346443
    [Google Scholar]
  32. Wang J. Zhou Y. Yang Y. S100B gene polymorphisms are associated with the S100B level and Alzheimer’s disease risk by altering the miRNA binding capacity. Aging 2021 13 10 13954 13967 10.18632/aging.203005 33982673
    [Google Scholar]
  33. Zhao Y. Pogue A. Lukiw W. MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer’s disease (AD)-novel and unique pathological features. Int. J. Mol. Sci. 2015 16 12 30105 30116 10.3390/ijms161226223 26694372
    [Google Scholar]
  34. Chen L. Zhan F. Yang J. Lin S. miRNA-Based Signature to Predict the Development of Alzheimer’s Disease. Comb. Chem. High Throughput Screen. 2022 25 12 2103 2111 10.2174/1386207325666220208122911 35139786
    [Google Scholar]
  35. Candido S. Lupo G. Pennisi M. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s disease. Oncol. Rep. 2019 42 3 911 922 10.3892/or.2019.7215 31322245
    [Google Scholar]
  36. Wu H.Z.Y. Thalamuthu A. Cheng L. the Australian imaging biomarkers and lifestyle flagship study of ageing. Differential blood miRNA expression in brain amyloid imaging-defined Alzheimer’s disease and controls. Alzheimers Res. Ther. 2020 12 1 59 10.1186/s13195‑020‑00627‑0 32414413
    [Google Scholar]
  37. Gowda P. Reddy P.H. Kumar S. Deregulated mitochondrial microRNAs in Alzheimer’s disease: Focus on synapse and mitochondria. Ageing Res. Rev. 2022 73 101529 10.1016/j.arr.2021.101529 34813976
    [Google Scholar]
  38. Wang S. Xu Y. Li M. Tu J. Lu Z. Dysregulation of miRNA isoform level at 5ʹ end in Alzheimer’s disease. Gene 2016 584 2 167 172 10.1016/j.gene.2016.02.020 26899870
    [Google Scholar]
  39. Song Z. Qu Y. Xu Y. Microarray microRNA profiling of urinary exosomes in a 5XFAD mouse model of Alzheimer’s disease. Animal Model. Exp. Med. 2021 4 3 233 242 10.1002/ame2.12175 34557649
    [Google Scholar]
  40. Siedlecki-Wullich D. Miñano-Molina A.J. Rodríguez-Álvarez J. microRNAs as early biomarkers of alzheimer’s disease: A Synaptic Perspective. Cells 2021 10 1 113 10.3390/cells10010113 33435363
    [Google Scholar]
  41. Wu H.Z.Y. Ong K.L. Seeher K. Circulating microRNAs as Biomarkers of Alzheimer’s Disease: A systematic review. J. Alzheimers Dis. 2015 49 3 755 766 10.3233/JAD‑150619 26484928
    [Google Scholar]
  42. Wang Z. Shen L. Wang Y. Huang S. Integrated analysis of miRNA and mRNA expression in the blood of patients with Alzheimer’s disease. Mol. Med. Rep. 2020 22 2 1053 1062 10.3892/mmr.2020.11162 32468026
    [Google Scholar]
  43. Leidinger P. Backes C. Deutscher S. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013 14 7 R78 10.1186/gb‑2013‑14‑7‑r78 23895045
    [Google Scholar]
  44. Lee M. Woo J. Kim S.T. MicroRNA super-resolution imaging in blood for Alzheimer’s disease. BMB Rep. 2023 56 3 190 195 10.5483/BMBRep.2022‑0151 36404596
    [Google Scholar]
  45. Kumar S. Reddy P.H. Are circulating microRNAs peripheral biomarkers for Alzheimer’s disease? Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 9 1617 1627 10.1016/j.bbadis.2016.06.001 27264337
    [Google Scholar]
  46. Kumar P. Dezso Z. MacKenzie C. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 2013 8 7 e69807 10.1371/journal.pone.0069807 23922807
    [Google Scholar]
  47. Nagaraj S. Laskowska-Kaszub K. Dębski K.J. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget 2017 8 10 16122 16143 10.18632/oncotarget.15109 28179587
    [Google Scholar]
  48. Kiko T. Nakagawa K. Tsuduki T. Furukawa K. Arai H. Miyazawa T. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J. Alzheimers Dis. 2014 39 2 253 259 10.3233/JAD‑130932 24157723
    [Google Scholar]
  49. Guo R. Fan G. Zhang J. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of alzheimer’s disease. J. Alzheimers Dis. 2017 60 4 1365 1377 10.3233/JAD‑170343 29036818
    [Google Scholar]
  50. Swarbrick S. Wragg N. Ghosh S. Stolzing A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol. Neurobiol. 2019 56 9 6156 6167 10.1007/s12035‑019‑1500‑y 30734227
    [Google Scholar]
  51. Tan L. Yu J.T. Tan M.S. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 2014 40 4 1017 1027 10.3233/JAD‑132144 24577456
    [Google Scholar]
  52. Geekiyanage H. Jicha G.A. Nelson P.T. Chan C. Blood serum miRNA: Non-invasive biomarkers for Alzheimer’s disease. Exp. Neurol. 2012 235 2 491 496 10.1016/j.expneurol.2011.11.026 22155483
    [Google Scholar]
  53. Dong Z. Gu H. Guo Q. Profiling of Serum Exosome MiRNA reveals the potential of a MiRNA panel as diagnostic biomarker for Alzheimer’s disease. Mol. Neurobiol. 2021 58 7 3084 3094 10.1007/s12035‑021‑02323‑y 33629272
    [Google Scholar]
  54. Hara N. Kikuchi M. Miyashita A. Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol. Commun. 2017 5 1 10 10.1186/s40478‑017‑0414‑z 28137310
    [Google Scholar]
  55. Jain G. Stuendl A. Rao P. A combined miRNA–piRNA signature to detect Alzheimer’s disease. Transl. Psychiatry 2019 9 1 250 10.1038/s41398‑019‑0579‑2 31591382
    [Google Scholar]
  56. Takousis P. Sadlon A. Schulz J. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimers Dement. 2019 15 11 1468 1477 10.1016/j.jalz.2019.06.4952 31495604
    [Google Scholar]
  57. Garcia G. Pinto S. Ferreira S. Emerging role of miR-21-5p in neuron–glia dysregulation and exosome transfer using multiple models of alzheimer’s disease. Cells 2022 11 21 3377 10.3390/cells11213377 36359774
    [Google Scholar]
  58. Alexandrov P.N. Dua P. Hill J.M. Bhattacharjee S. Zhao Y. Lukiw W.J. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int. J. Biochem. Mol. Biol. 2012 3 4 365 373 10.3390/cells11213377 23301201
    [Google Scholar]
  59. Zhao Y. Lukiw W.J. Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Mol. Neurobiol. 2018 55 12 9100 9107 10.1007/s12035‑018‑1015‑y 29637444
    [Google Scholar]
  60. Zhao Y. Jaber V. Alexandrov P.N. microRNA-based biomarkers in alzheimer’s disease (AD). Front. Neurosci. 2020 14 585432 10.3389/fnins.2020.585432 33192270
    [Google Scholar]
  61. Waller R. Wyles M. Heath P.R. Small RNA sequencing of sporadic amyotrophic lateral sclerosis cerebrospinal fluid reveals differentially expressed miRNAs related to neural and glial activity. Front. Neurosci. 2018 11 731 10.3389/fnins.2017.00731 29375285
    [Google Scholar]
  62. Dangla-Valls A. Molinuevo J.L. Altirriba J. CSF microRNA profiling in alzheimer’s disease: A screening and validation study. Mol. Neurobiol. 2017 54 9 6647 6654 10.1007/s12035‑016‑0106‑x 27738874
    [Google Scholar]
  63. Millan M.J. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review. Prog. Neurobiol. 2017 156 1 68 10.1016/j.pneurobio.2017.03.004 28322921
    [Google Scholar]
  64. Zhu Y. Li C. Sun A. Wang Y. Zhou S. Quantification of microRNA-210 in the cerebrospinal fluid and serum: Implications for alzheimer’s disease. Exp. Ther. Med. 2015 9 3 1013 1017 10.3892/etm.2015.2179 25667669
    [Google Scholar]
  65. Ryu I.S. Kim D.H. Cho H.J. Ryu J.H. The role of microRNA-485 in neurodegenerative diseases. Rev. Neurosci. 2023 34 1 49 62 10.1515/revneuro‑2022‑0039 35793556
    [Google Scholar]
  66. Kao Y.C. Wang I.F. Tsai K.J. miRNA-34c overexpression causes dendritic loss and memory decline. Int. J. Mol. Sci. 2018 19 8 2323 10.3390/ijms19082323 30096777
    [Google Scholar]
  67. Lukiw W.J. MicroRNA (miRNA) complexity in alzheimer’s disease (AD). Biology 2023 12 6 788 10.3390/biology12060788 37372073
    [Google Scholar]
  68. Wang L. Shui X. Diao Y. Chen D. Zhou Y. Lee T.H. Potential implications of mirnas in the pathogenesis, diagnosis, and therapeutics of alzheimer’s disease. Int. J. Mol. Sci. 2023 24 22 16259 10.3390/ijms242216259 38003448
    [Google Scholar]
  69. Zidan E.F. El-Mezayen N.S. Elrewini S.H. Afify E.A. Ali M.A. Memantine/Rosuvastatin therapy abrogates cognitive and hippocampal injury in an experimental model of Alzheimer’s disease in rats: Role of TGF-β1/Smad signaling pathway and amyloid-β clearance. J. Neuroimmune Pharmacol. 2024 20 1 4 10.1007/s11481‑024‑10159‑1 39708240 PMC11663181
    [Google Scholar]
  70. Zheng K. Hu F. Zhou Y. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat. Commun. 2021 12 1 1903 10.1038/s41467‑021‑22196‑y 33771994
    [Google Scholar]
  71. Woo H.N. Park S. Kim H.L. miR-351-5p/Miro2 axis contributes to hippocampal neural progenitor cell death via unbalanced mitochondrial fission. Mol. Ther. Nucleic Acids 2021 23 643 656 10.1016/j.omtn.2020.12.014 33575111
    [Google Scholar]
  72. Wang L. Shui X. Zhang M. MiR-191-5p attenuates tau phosphorylation, Aβ generation, and neuronal cell death by regulating death-associated protein kinase 1. ACS Chem. Neurosci. 2022 13 24 3554 3566 10.1021/acschemneuro.2c00423 36454178
    [Google Scholar]
  73. Lee K. Kim H. An K. Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD mouse model of alzheimer’s disease. Sci. Rep. 2016 6 1 34433 10.1038/srep34433 27708404
    [Google Scholar]
  74. Mezache L. Mikhail M. Garofalo M. Nuovo G.J. Reduced miR-512 and the elevated expression of its targets cFLIP and MCL1 localize to neurons with hyperphosphorylated tau protein in alzheimer disease. Appl. Immunohistochem. Mol. Morphol. 2015 23 9 615 623 10.1097/PAI.0000000000000147 26258756
    [Google Scholar]
  75. Chua C.E.L. Tang B.L. miR-34a in neurophysiology and neuropathology. J. Mol. Neurosci. 2019 67 2 235 246 10.1007/s12031‑018‑1231‑y 30488149
    [Google Scholar]
  76. Aathira N.S. Kaur A. Kumar A. The genetic risk factors, molecular pathways, microRNAs, and the gut microbiome in Alzheimer’s disease. Neuroscience 2025 577 217 227 10.1016/j.neuroscience.2025.05.021 40374065
    [Google Scholar]
  77. Wang E. Lemos Duarte M. Rothman L.E. Cai D. Zhang B. Non-coding RNAs in Alzheimer’s disease: Perspectives from omics studies. Hum. Mol. Genet. 2022 31 R1 R54 R61 10.1093/hmg/ddac202 35994042
    [Google Scholar]
  78. Koh H. Lee S. Lee H. Targeting MicroRNA-485-3p blocks alzheimer’s disease progression. Int. J. Mol. Sci. 2021 22 23 13136 10.3390/ijms222313136 34884940
    [Google Scholar]
  79. Zhai L. Shen H. Sheng Y. Guan Q. ADMSC Exo‐MicroRNA‐22 improve neurological function and neuroinflammation in mice with alzheimer’s disease. J. Cell. Mol. Med. 2021 25 15 7513 7523 10.1111/jcmm.16787 34250722
    [Google Scholar]
  80. Liu Y. Cheng X. Li H. Non-Coding RNAs as novel regulators of neuroinflammation in alzheimer’s disease. Front. Immunol. 2022 13 908076 10.3389/fimmu.2022.908076 35720333
    [Google Scholar]
  81. Wang Y. Lv S. Zhou X. Identification of hsa-miR-365b-5p’s role in Alzheimer’s disease: A combined analysis of miRNA and mRNA microarrays. Neurosci. Lett. 2022 790 136892 10.1016/j.neulet.2022.136892 36181964
    [Google Scholar]
  82. Lukiw W.J. Alexandrov P.N. Zhao Y. Hill J.M. Bhattacharjee S. Spreading of Alzheimer’s disease inflammatory signaling through soluble micro-RNA. Neuroreport 2012 23 10 621 626 10.1097/WNR.0b013e32835542b0 22660168
    [Google Scholar]
  83. Li Y.Y. Cui J.G. Hill J.M. Bhattacharjee S. Zhao Y. Lukiw W.J. Increased expression of miRNA-146a in Alzheimer’s disease transgenic mouse models. Neurosci. Lett. 2011 487 1 94 98 10.1016/j.neulet.2010.09.079 20934487
    [Google Scholar]
  84. Shao P. MiR-216a-5p ameliorates learning-memory deficits and neuroinflammatory response of Alzheimer’s disease mice via regulation of HMGB1/NF-κB signaling. Brain Res. 2021 1766 147511 10.1016/j.brainres.2021.147511 33957091
    [Google Scholar]
  85. Qian Q. Zhang J. He F.P. Down‐regulated expression of microRNA‐338‐5p contributes to neuropathology in Alzheimer’s disease. FASEB J. 2019 33 3 4404 4417 10.1096/fj.201801846R 30576233
    [Google Scholar]
  86. Wu G.D. Li Z.H. Li X. Zheng T. Zhang D.K. microRNA-592 blockade inhibits oxidative stress injury in Alzheimer’s disease astrocytes via the KIAA0319-mediated Keap1/Nrf2/ARE signaling pathway. Exp. Neurol. 2020 324 113128 10.1016/j.expneurol.2019.113128 31759899
    [Google Scholar]
  87. Li X. Chen S.C. Ip J.P.K. Diverse and composite roles of miRNA in non-neuronal cells and neuronal synapses in Alzheimer’s disease. Biomolecules 2022 12 10 1505 10.3390/biom12101505 36291714
    [Google Scholar]
  88. Han C. Guo L. Yang Y. Mechanism of microRNA‐22 in regulating neuroinflammation in Alzheimer’s disease. Brain Behav. 2020 10 6 e01627 10.1002/brb3.1627 32307887
    [Google Scholar]
  89. Nassar A. Kodi T. Satarker S. Astrocytic MicroRNAs and transcription factors in Alzheimer’s disease and therapeutic interventions. Cells 2022 11 24 4111 10.3390/cells11244111 36552875
    [Google Scholar]
  90. Kim E. Otgontenger U. Jamsranjav A. Kim S.S. Deleterious alteration of glia in the brain of Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 18 6676 10.3390/ijms21186676 32932623
    [Google Scholar]
  91. Fahrenholz F. Gilbert S. Kojro E. Lammich S. Postina R. Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure. Ann. N. Y. Acad. Sci. 2000 920 1 215 222 10.1111/j.1749‑6632.2000.tb06925.x 11193153
    [Google Scholar]
  92. Zhao Y. Bhattacharjee S. Jones B.M. Hill J. Dua P. Lukiw W.J. Regulation of neurotropic signaling by the inducible, NF-kB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol. Neurobiol. 2014 50 1 97 106 10.1007/s12035‑013‑8595‑3 24293102
    [Google Scholar]
  93. Wang X. Zhou Y. Gao Q. The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2020 2020 1 17 10.1155/2020/3232869 33193999
    [Google Scholar]
  94. Wu B.W. Guo J.D. Wu M.S. Osteoblast-derived lipocalin-2 regulated by miRNA-96-5p/Foxo1 advances the progression of Alzheimer’s disease. Epigenomics 2020 12 17 1501 1513 10.2217/epi‑2019‑0215 32901506
    [Google Scholar]
  95. Wang X. Liu D. Huang H.Z. A novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in alzheimer’s disease. Biol. Psychiatry 2018 83 5 395 405 10.1016/j.biopsych.2017.07.023 28965984
    [Google Scholar]
  96. Miglione A. Raucci A. Amato J. Printed electrochemical strip for the detection of miRNA-29a: A possible biomarker related to alzheimer’s disease. Anal. Chem. 2022 94 45 15558 15563 10.1021/acs.analchem.2c03542 36318963
    [Google Scholar]
  97. Li S. Poon C.H. Zhang Z. MicroRNA ‐128 suppresses tau phosphorylation and reduces amyloid‐beta accumulation by inhibiting the expression of GSK3β, APPBP2, and mTOR in Alzheimer’s disease. CNS Neurosci. Ther. 2023 29 7 1848 1864 10.1111/cns.14143 36880288
    [Google Scholar]
  98. Lin L. Liu X. Cheng X. MicroRNA-650 Regulates the pathogenesis of Alzheimer’s disease through targeting cyclin-dependent kinase 5. Mol. Neurobiol. 2023 60 5 2426 2441 10.1007/s12035‑023‑03224‑y 36656459
    [Google Scholar]
  99. Jiang Y. Bian W. Chen J. miRNA ‐137‐5p improves spatial memory and cognition in Alzheimer’s mice by targeting ubiquitin‐specific peptidase 30. Animal Model. Exp. Med. 2023 6 6 526 536 10.1002/ame2.12368 38111333
    [Google Scholar]
  100. Ma N. Tie C. Yu B. Zhang W. Wan J. Identifying lncRNA–miRNA–mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging 2020 12 3 2897 2920 10.18632/aging.102785 32035423
    [Google Scholar]
  101. Weldon Furr J. Morales-Scheihing D. Manwani B. Lee J. McCullough L.D. Cerebral amyloid angiopathy, Alzheimer’s disease and MicroRNA: miRNA as diagnostic biomarkers and potential therapeutic targets. Neuromolecular Med. 2019 21 4 369 390 10.1007/s12017‑019‑08568‑0 31586276
    [Google Scholar]
  102. Aloi M.S. Prater K.E. Sánchez R.E.A. Microglia specific deletion of miR-155 in Alzheimer’s disease mouse models reduces amyloid-β pathology but causes hyperexcitability and seizures. J. Neuroinflammation 2023 20 1 60 10.1186/s12974‑023‑02745‑6 36879321
    [Google Scholar]
  103. Maoz R. Garfinkel B.P. Soreq H. Alzheimer’s disease and ncRNAs. Adv. Exp. Med. Biol. 2017 978 337 361 10.1007/978‑3‑319‑53889‑1_18 28523555
    [Google Scholar]
  104. Noureddine S. Saccon T. Rudeski-Rohr T. GH deficiency confers protective advantages against Alzheimer’s disease through rescued miRNA expression profile in APP/PS1 mice. Geroscience 2022 44 6 2885 2893 10.1007/s11357‑022‑00633‑0 35900661
    [Google Scholar]
  105. Xue B. Qu Y. Zhang X. Xu X.F. miRNA-126a-3p participates in hippocampal memory via Alzheimer’s disease-related proteins. Cereb. Cortex 2022 32 21 4763 4781 10.1093/cercor/bhab515 35059720
    [Google Scholar]
  106. Xia P. Chen J. Liu Y. MicroRNA-22-3p ameliorates Alzheimer’s disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus. J. Neuroinflammation 2022 19 1 180 10.1186/s12974‑022‑02548‑1 35821145
    [Google Scholar]
  107. Ji Y. Wang D. Zhang B. Lu H. MiR-361-3p inhibits β-amyloid accumulation and attenuates cognitive deficits through targeting BACE1 in Alzheimer’s disease. J. Integr. Neurosci. 2019 18 3 285 291 10.31083/j.jin.2019.03.1136 31601077
    [Google Scholar]
  108. Tan X. Luo Y. Pi D. Xia L. Li Z. Tu Q. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in alzheimer’s disease. Curr. Neurovasc. Res. 2020 17 1 86 92 10.2174/1567202617666200117103931 31957613
    [Google Scholar]
  109. Wei H. Xu Y. Chen Q. Chen H. Zhu X. Li Y. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis. Cell Death Dis. 2020 11 4 290 10.1038/s41419‑020‑2490‑4 32341353
    [Google Scholar]
  110. Elzayat E.M. Shahien S.A. El-Sherif A.A. Hosney M. miRNAs and stem cells as promising diagnostic and therapeutic targets for Alzheimer’s disease. J. Alzheimers Dis. 2023 94 s1 S203 S225 10.3233/JAD‑221298 37212107
    [Google Scholar]
  111. Zhang B. Wang L.L. Ren R.J. Micro RNA ‐146a represses LRP 2 translation and leads to cell apoptosis in Alzheimer’s disease. FEBS Lett. 2016 590 14 2190 2200 10.1002/1873‑3468.12229 27241555
    [Google Scholar]
  112. Valizadeh M. Derafsh E. Abdi Abyaneh F. Non-Coding RNAs and neurodegenerative diseases: information of their roles in apoptosis. Mol. Neurobiol. 2024 61 7 4508 4537 10.1007/s12035‑023‑03849‑z 38102518
    [Google Scholar]
  113. Li Q. Wang Y. Peng W. MicroRNA-101a Regulates Autophagy Phenomenon via the MAPK Pathway to Modulate Alzheimer’s-Associated Pathogenesis. Cell Transplant. 2019 28 8 1076 1084 10.1177/0963689719857085 31204500
    [Google Scholar]
  114. Arora T. Prashar V. Singh R. Dysregulated miRNAs in progression and pathogenesis of Alzheimer’s disease. Mol. Neurobiol. 2022 59 10 6107 6124 10.1007/s12035‑022‑02950‑z 35867206
    [Google Scholar]
  115. Kou X. Chen D. Chen N. The regulation of microRNAs in alzheimer’s disease. Front. Neurol. 2020 11 288 10.3389/fneur.2020.00288 32362867
    [Google Scholar]
  116. Zhang L. Fang Y. Zhao X. miR-204 silencing reduces mitochondrial autophagy and ROS production in a murine AD model via the TRPML1-activated STAT3 pathway. Mol. Ther. Nucleic Acids 2021 24 822 831 10.1016/j.omtn.2021.02.010 34026326
    [Google Scholar]
  117. Su L. Li R. Zhang Z. Liu J. Du J. Wei H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer’s disease. Ageing Res. Rev. 2022 73 101497 10.1016/j.arr.2021.101497 34710587
    [Google Scholar]
  118. Gao Z. Zhang R. Jiang L. Administration of miR-195 inhibitor enhances memory function through improving synaptic degradation and mitochondrial dysfunction of the hippocampal neurons in SAMP8 mice. J. Alzheimers Dis. 2022 85 4 1495 1509 10.3233/JAD‑215301 34924391
    [Google Scholar]
  119. Garcia G. Pinto S. Cunha M. Fernandes A. Koistinaho J. Brites D. Neuronal dynamics and miRNA signaling differ between SH-SY5Y APPSwe and PSEN1 Mutant iPSC-Derived AD models upon modulation with mir-124 mimic and inhibitor. Cells 2021 10 9 2424 10.3390/cells10092424 34572073
    [Google Scholar]
  120. Rupaimoole R. Slack F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017 16 3 203 222 10.1038/nrd.2016.246 28209991
    [Google Scholar]
  121. Samad A.F.A. Kamaroddin M.F. Innovative approaches in transforming microRNAs into therapeutic tools. Wiley Interdiscip. Rev. RNA 2023 14 1 e1768 10.1002/wrna.1768 36437633
    [Google Scholar]
  122. Kotowska-Zimmer A. Pewinska M. Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip. Rev. RNA 2021 12 4 e1640 10.1002/wrna.1640 33386705
    [Google Scholar]
  123. Fei X. Wang S. Li J. Zeng Q. Gao Y. Hu Y. Bibliometric analysis of research on Alzheimer’s disease and non-coding RNAs: Opportunities and challenges. Front. Aging Neurosci. 2022 14 1037068 10.3389/fnagi.2022.1037068 36329875
    [Google Scholar]
  124. Xu A. Kouznetsova V.L. Tsigelny I.F. Alzheimer’s disease diagnostics using mirna biomarkers and machine learning. J. Alzheimers Dis. 2022 86 2 841 859 10.3233/JAD‑215502 35147545
    [Google Scholar]
  125. Bhatnagar D. Ladhe S. Kumar D. Discerning the prospects of miRNAs as a multi-target therapeutic and diagnostic for alzheimer’s disease. Mol. Neurobiol. 2023 60 10 5954 5974 10.1007/s12035‑023‑03446‑0 37386272
    [Google Scholar]
  126. Li T. Zhu L. Zhu L. Wang P. Xu W. Huang J. Recent developments in delivery of micrornas utilizing nanosystems for metabolic syndrome therapy. Int. J. Mol. Sci. 2021 22 15 7855 10.3390/ijms22157855 34360621
    [Google Scholar]
  127. Zhang Y. Wang Z. Gemeinhart R.A. Progress in microRNA delivery. J. Control. Release 2013 172 3 962 974 10.1016/j.jconrel.2013.09.015 24075926
    [Google Scholar]
/content/journals/car/10.2174/0115672050427877251118111643
Loading
/content/journals/car/10.2174/0115672050427877251118111643
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test