Skip to content
2000
image of Low-Dimensional Nanomaterials in Alzheimer's Disease: Current Applications

Abstract

Introduction

Alzheimer's Disease (AD) is a common neurodegenerative disorder (NDD) driven by multifaceted pathologies, including β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, oxidative stress, metal ion dyshomeostasis, and neuroinflammation. Current therapeutic strategies remain limited by insufficient Blood-Brain Barrier (BBB) penetration, single-target approaches, and inefficacy against nanoscale pathological aggregates. This review highlights the emerging potential of low-dimensional nanomaterials (LDNMs) as multi-target therapeutic platforms for AD.

Methods

We systematically evaluate zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanostructures and establish a “nano-nano” interaction paradigm that demonstrates how LDNMs interact with AD core pathological factors. Supporting tables summarize experimental data quantifying the effects of LDNMs on Aβ and tau pathologies, oxidative stress, metal ion homeostasis, neuroinflammation, and the delivery of BBB-penetrant drugs.

Results

LDNMs exhibit significant potential in mitigating core AD pathologies. They effectively inhibit Aβ aggregation and tau hyperphosphorylation, attenuate oxidative damage, restore metal ion homeostasis, reduce neuroinflammatory activity, and enable targeted drug delivery to the brain.

Discussion

The multi-target functionality of LDNMs overcomes major limitations of single-target therapies. Their nanoscale dimensions and modifiable surfaces enable synergistic interactions with pathological factors, offering a holistic intervention strategy. Limitations and translational challenges are discussed for future research directions for clinical application.

Conclusion

This review links the structure and drug loading of LDNMs to multi-targeted efficacy against core AD pathology. It establishes a mechanistic connection between nanomaterial size and multi-pathway efficacy that transcends the limitations of single-target strategies. Moreover, it also provides a comprehensive framework for designing LDNMs-based nanotherapeutics, highlighting their potential as multi-target platforms for AD therapy.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050413838251014045255
2025-10-24
2025-12-24
Loading full text...

Full text loading...

References

  1. Nelson P.T. Braak H. Markesbery W.R. Neuropathology and cognitive impairment in Alzheimer disease: A complex but coherent relationship. J. Neuropathol. Exp. Neurol. 2009 68 1 1 14 10.1097/NEN.0b013e3181919a48 19104448
    [Google Scholar]
  2. Scheltens P. De Strooper B. Kivipelto M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  3. Jia J. Wei C. Chen S. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide. Alzheimers Dement. 2018 14 4 483 491 10.1016/j.jalz.2017.12.006 29433981
    [Google Scholar]
  4. Srivastava S. Ahmad R. Khare S.K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem. 2021 216 113320 10.1016/j.ejmech.2021.113320 33652356
    [Google Scholar]
  5. Shi Y. Yamada K. Liddelow S.A. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 2017 549 7673 523 527 10.1038/nature24016 28959956
    [Google Scholar]
  6. Mullard A. Alzheimer amyloid hypothesis lives on. Nat. Rev. Drug Discov. 2017 16 1 3 5 10.1038/nrd.2016.281 28031570
    [Google Scholar]
  7. Arnsten A.F.T. Datta D. Del Tredici K. Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement. 2021 17 1 115 124 10.1002/alz.12192 33075193
    [Google Scholar]
  8. Bai R. Guo J. Ye X.Y. Xie Y. Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022 77 101619 10.1016/j.arr.2022.101619 35395415
    [Google Scholar]
  9. Thakur S. Dhapola R. Sarma P. Medhi B. Reddy D.H. Neuroinflammation in Alzheimer’s Disease: Current progress in molecular signaling and therapeutics. Inflammation 2023 46 1 1 17 10.1007/s10753‑022‑01721‑1 35986874
    [Google Scholar]
  10. Nasb M. Tao W. Chen N. Alzheimer’s disease puzzle: Delving into pathogenesis hypotheses. Aging Dis. 2024 15 1 43 73 37450931
    [Google Scholar]
  11. Singh B. Day C.M. Abdella S. Garg S. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. J. Control. Release 2024 367 402 424 10.1016/j.jconrel.2024.01.047 38286338
    [Google Scholar]
  12. Formicola B. Cox A. dal Magro R. Masserini M. Re F. Nanomedicine for the treatment of Alzheimer’s disease. J. Biomed. Nanotechnol. 2019 15 10 1997 2024 10.1166/jbn.2019.2837 31462368
    [Google Scholar]
  13. Hu Y. Guo H. Cheng S. Functionalized cerium dioxide nanoparticles with antioxidative neuroprotection for Alzheimer’s disease. Int. J. Nanomedicine 2023 18 6797 6812 10.2147/IJN.S434873 38026525
    [Google Scholar]
  14. Guo X. Lie Q. Liu Y. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl. Mater. Interfaces 2021 13 26 30261 30273 10.1021/acsami.1c00690 34169710
    [Google Scholar]
  15. Ruff J. Hassan N. Morales-Zavala F. CLPFFD-PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. J. Mater. Chem. B Mater. Biol. Med. 2018 6 16 2432 2443 10.1039/C8TB00655E 32254460
    [Google Scholar]
  16. Chen W. Ouyang J. Yi X. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 2018 30 3 1703458 10.1002/adma.201703458 29194780
    [Google Scholar]
  17. Li M. Yang X. Ren J. Qu K. Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv. Mater. 2012 24 13 1722 1728 10.1002/adma.201104864 22407491
    [Google Scholar]
  18. Li Y. Du Z. Liu X. Near‐infrared activated black phosphorus as a nontoxic photo‐oxidant for Alzheimer’s amyloid β peptide. Small 2019 15 24 1901116 10.1002/smll.201901116 31069962
    [Google Scholar]
  19. Summer M. Ashraf R. Ali S. Bach H. Noor S. Noor Q. Inflammatory response of nanoparticles: Mechanisms, consequences, and strategies for mitigation. Chemosphere 2024 363 10.1016/j.chemosphere.2024.142826
    [Google Scholar]
  20. D’Costa A.H. Shaikh S. Kundaikar G. Furtado S. Toxicological aspects of nanomaterials in biomedical research. Advances in Nano and Biochemistry. United States Academic Press 2023 369 391 10.1016/B978‑0‑323‑95253‑8.00013‑9
    [Google Scholar]
  21. Chen S. Su Y. Zhang M. Insights into the toxicological effects of nanomaterials on atherosclerosis: Mechanisms involved and influence factors. J. Nanobiotechnology 2023 21 1 140 10.1186/s12951‑023‑01899‑y 37118804
    [Google Scholar]
  22. Prattichizzo F. Ceriello A. Pellegrini V. Micro-nanoplastics and cardiovascular diseases: Evidence and perspectives. Eur. Heart J. 2024 45 38 4099 4110 10.1093/eurheartj/ehae552 39240674
    [Google Scholar]
  23. Poon W. Zhang Y.N. Ouyang B. Elimination pathways of nanoparticles. ACS Nano 2019 13 5 5785 5798 10.1021/acsnano.9b01383 30990673
    [Google Scholar]
  24. Elgrabli D. Dachraoui W. Marmier H. Intracellular degradation of functionalized carbon nanotube/iron oxide hybrids is modulated by iron via Nrf2 pathway. Sci. Rep. 2017 7 1 40997 10.1038/srep40997 28120861
    [Google Scholar]
  25. Stanciu G.D. Luca A. Rusu R.N. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules 2019 10 1 40 10.3390/biom10010040 31888102
    [Google Scholar]
  26. Hardy J. Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991 12 10 383 388 10.1016/0165‑6147(91)90609‑V 1763432
    [Google Scholar]
  27. Frost B. Jacks R.L. Diamond M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 2009 284 19 12845 12852 10.1074/jbc.M808759200 19282288
    [Google Scholar]
  28. Liu G. Yang C. Wang X. Chen X. Wang Y. Le W. Oxygen metabolism abnormality and Alzheimer’s disease: An update. Redox Biol. 2023 68 102955 10.1016/j.redox.2023.102955
    [Google Scholar]
  29. Tönnies E. Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 2017 57 4 1105 1121 10.3233/JAD‑161088 28059794
    [Google Scholar]
  30. Bush A. Pettingell W. Multhaup G. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 1994 265 5177 1464 1467 10.1126/science.8073293 8073293
    [Google Scholar]
  31. Song M. Fan X. Systemic metabolism and mitochondria in the mechanism of Alzheimer’s disease: Finding potential therapeutic targets. Int. J. Mol. Sci. 2023 24 9 8398 10.3390/ijms24098398 37176104
    [Google Scholar]
  32. McGeer P.L. Rogers J. Anti‐inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 1992 42 2 447 449 10.1212/WNL.42.2.447 1736183
    [Google Scholar]
  33. Twarowski B. Herbet M. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review. Int. J. Mol. Sci. 2023 24 7 6518 10.3390/ijms24076518 37047492
    [Google Scholar]
  34. Osborn G.G. Saunders A.V. Current treatments for patients with Alzheimer disease. J. Am. Osteopath. Assoc. 2010 110 9 S16 S26 20926739
    [Google Scholar]
  35. Anand P. Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013 36 4 375 399 10.1007/s12272‑013‑0036‑3 23435942
    [Google Scholar]
  36. Liu P.P. Xie Y. Meng X.Y. Kang J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 2019 4 1 29 10.1038/s41392‑019‑0063‑8
    [Google Scholar]
  37. Spinney L. Alzheimer’s disease: The forgetting gene. Nature 2014 510 7503 26 28 10.1038/510026a 24899289
    [Google Scholar]
  38. Walsh D.M. Selkoe D.J. Aβ Oligomers - a decade of discovery. J. Neurochem. 2007 101 5 1172 1184 10.1111/j.1471‑4159.2006.04426.x 17286590
    [Google Scholar]
  39. Walsh D.M. Townsend M. Podlisny M.B. Certain inhibitors of synthetic amyloid β-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J. Neurosci. 2005 25 10 2455 2462 10.1523/JNEUROSCI.4391‑04.2005 15758153
    [Google Scholar]
  40. Su Q. Guo J-H. Zhang Y.L. Wang J. Zhang Z-N. The relationship between amyloid-beta and brain capillary endothelial cells in Alzheimer’s disease. Neural Regen. Res. 2022 17 11 2355 2363 10.4103/1673‑5374.335829 35535871
    [Google Scholar]
  41. Yamazaki Y. Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci. 2017 18 9 1965 10.3390/ijms18091965 28902142
    [Google Scholar]
  42. Cai Z. Qiao P.F. Wan C.Q. Cai M. Zhou N.K. Li Q. Role of blood-brain barrier in Alzheimer’s disease. J. Alzheimers Dis. 2018 63 4 1223 1234 10.3233/JAD‑180098 29782323
    [Google Scholar]
  43. Yamazaki Y. Zhao N. Caulfield T.R. Liu C.C. Bu G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019 15 9 501 518 10.1038/s41582‑019‑0228‑7 31367008
    [Google Scholar]
  44. Li Z. Shue F. Zhao N. Shinohara M. Bu G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 63 10.1186/s13024‑020‑00413‑4 33148290
    [Google Scholar]
  45. Grothe M.J. Villeneuve S. Dyrba M. Bartrés-Faz D. Wirth M. Multimodal characterization of older APOE2 carriers reveals selective reduction of amyloid load. Neurology 2017 88 6 569 576 10.1212/WNL.0000000000003585 28062720
    [Google Scholar]
  46. Neu S.C. Pa J. Kukull W. Apolipoprotein E genotype and sex risk factors for alzheimer disease. JAMA Neurol. 2017 74 10 1178 1189 10.1001/jamaneurol.2017.2188 28846757
    [Google Scholar]
  47. Genin E. Hannequin D. Wallon D. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Mol. Psychiatry 2011 16 9 903 907 10.1038/mp.2011.52 21556001
    [Google Scholar]
  48. Montagne A. Nation D.A. Sagare A.P. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 2020 581 7806 71 76 10.1038/s41586‑020‑2247‑3 32376954
    [Google Scholar]
  49. Christensen D.Z. Schneider-Axmann T. Lucassen P.J. Bayer T.A. Wirths O. Accumulation of intraneuronal Aβ correlates with ApoE4 genotype. Acta Neuropathol. 2010 119 5 555 566 10.1007/s00401‑010‑0666‑1 20217101
    [Google Scholar]
  50. Schmechel D.E. Saunders A.M. Strittmatter W.J. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 1993 90 20 9649 9653 10.1073/pnas.90.20.9649 8415756
    [Google Scholar]
  51. Koffie R.M. Hashimoto T. Tai H.C. Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-β. Brain 2012 135 7 2155 2168 10.1093/brain/aws127 22637583
    [Google Scholar]
  52. Shinohara M. Murray M.E. Frank R.D. Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer’s disease. Acta Neuropathol. 2016 132 2 225 234 10.1007/s00401‑016‑1580‑y 27179972
    [Google Scholar]
  53. Laurent C. Buée L. Blum D. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies? Biomed. J. 2018 41 1 21 33 10.1016/j.bj.2018.01.003 29673549
    [Google Scholar]
  54. Chong F.P. Ng K.Y. Koh R.Y. Chye S.M. Tau proteins and tauopathies in Alzheimer’s disease. Cell. Mol. Neurobiol. 2018 38 5 965 980 10.1007/s10571‑017‑0574‑1 29299792
    [Google Scholar]
  55. Sajjad R. Arif R. Shah A.A. Manzoor I. Mustafa G. Pathogenesis of Alzheimer’s disease: Role of amyloid-beta and hyperphosphorylated tau protein. Indian J. Pharm. Sci. 2018 80 4 10.4172/pharmaceutical‑sciences.1000397
    [Google Scholar]
  56. Duan A.R. Jonasson E.M. Alberico E.O. Interactions between tau and different conformations of tubulin: Implications for tau function and mechanism. J. Mol. Biol. 2017 429 9 1424 1438 10.1016/j.jmb.2017.03.018 28322917
    [Google Scholar]
  57. Khatoon S. Grundke-Iqbal I. Iqbal K. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett. 1994 351 1 80 84 10.1016/0014‑5793(94)00829‑9 8076698
    [Google Scholar]
  58. Gong C.X. Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease. Curr. Med. Chem. 2008 15 23 2321 2328 10.2174/092986708785909111 18855662
    [Google Scholar]
  59. Chu D. Liu F. Pathological changes of tau related to Alzheimer’s disease. ACS Chem. Neurosci. 2019 10 2 931 944 10.1021/acschemneuro.8b00457 30346708
    [Google Scholar]
  60. Liu M. Dexheimer T. Sui D. Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer’s disease and cognitive functions. Sci. Rep. 2020 10 1 16551 10.1038/s41598‑020‑73680‑2 33024171
    [Google Scholar]
  61. Praticò D. Uryu K. Leight S. Trojanoswki J.Q. Lee V.M.Y. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 2001 21 12 4183 4187 10.1523/JNEUROSCI.21‑12‑04183.2001 11404403
    [Google Scholar]
  62. Moreira P.I. Carvalho C. Zhu X. Smith M.A. Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 2 10 10.1016/j.bbadis.2009.10.006 19853658
    [Google Scholar]
  63. Mangialasche F. Polidori M.C. Monastero R. Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res. Rev. 2009 8 4 285 305 10.1016/j.arr.2009.04.002 19376275
    [Google Scholar]
  64. Cioffi F. Adam R.H.I. Broersen K. Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J. Alzheimers Dis. 2019 72 4 981 1017 10.3233/JAD‑190863 31744008
    [Google Scholar]
  65. Kumari A. Electron transport chain. in sweet biochemistry. Chapter 3 2nd ed Kumari A. Academic Press 2023 17 23 10.1016/B978‑0‑443‑15348‑8.00025‑9
    [Google Scholar]
  66. Ward R.J. Zucca F.A. Duyn J.H. Crichton R.R. Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014 13 10 1045 1060 10.1016/S1474‑4422(14)70117‑6 25231526
    [Google Scholar]
  67. Kim H. Harrison F.E. Aschner M. Bowman A.B. Exposing the role of metals in neurological disorders: A focus on manganese. Trends Mol. Med. 2022 28 7 555 568 10.1016/j.molmed.2022.04.011 35610122
    [Google Scholar]
  68. Kumar V. Kumar A. Singh K. Avasthi K. Kim J.J. Neurobiology of zinc and its role in neurogenesis. Eur. J. Nutr. 2021 60 1 55 64 10.1007/s00394‑020‑02454‑3 33399973
    [Google Scholar]
  69. Zhong G. Wang X. Li J. Insights into the role of copper in neurodegenerative diseases and the therapeutic potential of natural compounds. Curr. Neuropharmacol. 2024 22 10 1650 1671 10.2174/1570159X22666231103085859 38037913
    [Google Scholar]
  70. Kepp K.P. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 2012 112 10 5193 5239 10.1021/cr300009x 22793492
    [Google Scholar]
  71. Hureau C. Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 1: An overview. Coord. Chem. Rev. 2012 256 19-20 2164 2174 10.1016/j.ccr.2012.03.037
    [Google Scholar]
  72. Zheng W. Monnot A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther. 2012 133 2 177 188 10.1016/j.pharmthera.2011.10.006 22115751
    [Google Scholar]
  73. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  74. Tõugu V. Karafin A. Zovo K. Zn(II)‐ and Cu(II)‐induced non‐fibrillar aggregates of amyloid‐β (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. J. Neurochem. 2009 110 6 1784 1795 10.1111/j.1471‑4159.2009.06269.x 19619132
    [Google Scholar]
  75. Voss K. Harris C. Ralle M. Duffy M. Murchison C. Quinn J.F. Modulation of tau phosphorylation by environmental copper. Transl. Neurodegener. 2014 3 1 24 10.1186/2047‑9158‑3‑24 25671100
    [Google Scholar]
  76. Chen L. Min J. Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022 7 1 378 10.1038/s41392‑022‑01229‑y 36414625
    [Google Scholar]
  77. Sensi S.L. Paoletti P. Bush A.I. Sekler I. Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 2009 10 11 780 791 10.1038/nrn2734 19826435
    [Google Scholar]
  78. Rink L. Haase H. Zinc homeostasis and immunity. Trends Immunol. 2007 28 1 1 4 10.1016/j.it.2006.11.005 17126599
    [Google Scholar]
  79. Mehri A. Trace elements in human nutrition (ii) - An update. Int. J. Prev. Med. 2020 11 1 2 10.4103/ijpvm.IJPVM_48_19 32042399
    [Google Scholar]
  80. Morcillo P. Cordero H. Ijomone O.M. Defective mitochondrial dynamics underlie manganese-induced neurotoxicity. Mol. Neurobiol. 2021 58 7 3270 3289 10.1007/s12035‑021‑02341‑w 33666854
    [Google Scholar]
  81. Werner E. Gokhale A. Ackert M. The mitochondrial RNA granule modulates manganese-dependent cell toxicity. Mol. Biol. Cell 2022 33 12 ar108 10.1091/mbc.E22‑03‑0096 35921164
    [Google Scholar]
  82. Yin L. Dai Q. Jiang P. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. Neurotoxicology 2018 64 195 203 10.1016/j.neuro.2017.04.001 28385490
    [Google Scholar]
  83. Sarkar S. Rokad D. Malovic E. Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci. Signal. 2019 12 563 eaat9900 10.1126/scisignal.aat9900 30622196
    [Google Scholar]
  84. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  85. Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflammation 2022 19 1 206 10.1186/s12974‑022‑02565‑0 35978311
    [Google Scholar]
  86. Heneka M.T. van der Flier W.M. Jessen F. Hoozemanns J. Thal D.R. Boche D. Neuroinflammation in Alzheimer disease. Nat. Rev. Immunol. 2024 39653749
    [Google Scholar]
  87. Novoa C. Salazar P. Cisternas P. Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biol. Res. 2022 55 1 39 10.1186/s40659‑022‑00404‑3 36550479
    [Google Scholar]
  88. Albrecht D.S. Sagare A. Pachicano M. Early neuroinflammation is associated with lower amyloid and tau levels in cognitively normal older adults. Brain Behav. Immun. 2021 94 299 307 10.1016/j.bbi.2021.01.010 33486003
    [Google Scholar]
  89. Lucena B.P. Heneka M.T. Inflammatory aspects of Alzheimer’s disease. Acta Neuropathol. 2024 148 1 31 10.1007/s00401‑024‑02790‑2 39196440
    [Google Scholar]
  90. Javed I. Peng G. Xing Y. Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nat. Commun. 2019 10 1 3780 10.1038/s41467‑019‑11762‑0 31439844
    [Google Scholar]
  91. Hou K. Zhao J. Wang H. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 2020 11 1 4790 10.1038/s41467‑020‑18525‑2 32963242
    [Google Scholar]
  92. Ge K. Mu Y. Liu M. Gold nanorods with spatial separation of CeO 2 deposition for plasmonic-enhanced antioxidant stress and photothermal therapy of Alzheimer’s disease. ACS Appl. Mater. Interfaces 2022 14 3 3662 3674 10.1021/acsami.1c17861 35023712
    [Google Scholar]
  93. Yan C. Wang Y. Ma Y. Liu H. Tang S. Li Y. A multifunctional carbon quantum dot overcoming the BBB for modulating amyloid aggregation and scavenging reactive oxygen species. Mater. Today Chem. 2024 40 102222 10.1016/j.mtchem.2024.102222
    [Google Scholar]
  94. Wei Z. Dong X. Sun Y. Quercetin-derived red emission carbon dots: A multifunctional theranostic nano-agent against Alzheimer’s β-amyloid fibrillogenesis. Colloids Surf. B Biointerfaces 2024 238 113907 10.1016/j.colsurfb.2024.113907 38608464
    [Google Scholar]
  95. Zhou X. Hu S. Wang S. Pang Y. Lin Y. Li M. Large amino acid mimicking selenium-doped carbon quantum dots for multi-target therapy of Alzheimer’s disease. Front. Pharmacol. 2021 12 778613 10.3389/fphar.2021.778613 34776988
    [Google Scholar]
  96. Li H. Zhang Y. Ding J. Synthesis of carbon quantum dots for application of alleviating amyloid-β mediated neurotoxicity. Colloids Surf. B Biointerfaces 2022 212 112373 10.1016/j.colsurfb.2022.112373 35101826
    [Google Scholar]
  97. Liu H. Guo H. Fang Y. Wang L. Li P. Rational design of nitrogen-doped carbon dots for inhibiting β-Amyloid aggregation. Molecules 2023 28 3 1451 10.3390/molecules28031451 36771112
    [Google Scholar]
  98. Zhang W. Kandel N. Zhou Y. Drug delivery of memantine with carbon dots for Alzheimer’s disease: Blood-brain barrier penetration and inhibition of tau aggregation. J. Colloid Interface Sci. 2022 617 20 31 10.1016/j.jcis.2022.02.124 35255395
    [Google Scholar]
  99. Kim D. Kwon H.J. Hyeon T. Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid‐β in Alzheimer’s disease. Adv. Mater. 2019 31 19 1807965 10.1002/adma.201807965 30920695
    [Google Scholar]
  100. Chung Y.J. Lee B.I. Ko J.W. Park C.B. Photoactive g‐C 3 N 4 nanosheets for light‐induced suppression of Alzheimer’s β‐amyloid aggregation and toxicity. Adv. Healthc. Mater. 2016 5 13 1560 1565 10.1002/adhm.201500964 27111552
    [Google Scholar]
  101. Abdel Gaber S.A. Hamza A.H. Tantawy M.A. Toraih E.A. Ahmed H.H. Germanium dioxide nanoparticles mitigate biochemical and molecular changes characterizing Alzheimer’s disease in rats. Pharmaceutics 2023 15 5 1386 10.3390/pharmaceutics15051386 37242628
    [Google Scholar]
  102. Wang K. Wang L. Chen L. Intranasal administration of dauricine loaded on graphene oxide: Multi-target therapy for Alzheimer’s disease. Drug Deliv. 2021 28 1 580 593 10.1080/10717544.2021.1895909 33729067
    [Google Scholar]
  103. Wang L. Liu X. Fu J. Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to modulate functions of neural progenitor cells. Acta Biomater. 2019 88 346 356 10.1016/j.actbio.2019.02.036 30822551
    [Google Scholar]
  104. Liu Y. Xu L.P. Wang Q. Yang B. Zhang X. Synergistic inhibitory effect of gqds-tramiprosate covalent binding on amyloid aggregation. ACS Chem. Neurosci. 2018 9 4 817 823 10.1021/acschemneuro.7b00439 29244487
    [Google Scholar]
  105. Liu C. Huang H. Ma L. Fang X. Wang C. Yang Y. Modulation of β-amyloid aggregation by graphene quantum dots. R. Soc. Open Sci. 2019 6 6 190271 10.1098/rsos.190271 31312493
    [Google Scholar]
  106. Liu Y. Xu L.P. Dai W. Dong H. Wen Y. Zhang X. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale 2015 7 45 19060 19065 10.1039/C5NR06282A 26515666
    [Google Scholar]
  107. Pérez G Jénnifer I Petra K Anna D. Multifunctional graphene quantum dots: A therapeutic strategy for neurodegenerative diseases by regulating calcium influx, crossing the blood-brain barrier and inhibiting Aβ-protein aggregation. 2024 36 102072 10.1016/j.apmt.2024.102072
  108. Li Y. Tang H. Zhu H. Ultrasmall molybdenum disulfide quantum dots cage Alzheimer’s amyloid beta to restore membrane fluidity. ACS Appl. Mater. Interfaces 2021 13 25 29936 29948 10.1021/acsami.1c06478 34143617
    [Google Scholar]
  109. Qi X. Li L. Ye P. Xie M. Macrophage membrane‐modified MoS2 quantum dots as a nanodrug for combined multi‐targeting of Alzheimer’s disease. Adv. Healthc. Mater. 2024 13 6 2303211 10.1002/adhm.202303211 37947289
    [Google Scholar]
  110. Qi X. Ye P. Xie M. MoS2 quantum dots based on lipid drug delivery system for combined therapy against Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2023 82 104324 10.1016/j.jddst.2023.104324
    [Google Scholar]
  111. Ren C. Li D. Zhou Q. Hu X. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model. Biomaterials 2020 232 119752 10.1016/j.biomaterials.2019.119752 31923845
    [Google Scholar]
  112. Zhao X. Mou C. Xu J. Protection of si nanowires against aβ toxicity by the inhibition of Aβ aggregation. Molecules 2024 29 9 1980 10.3390/molecules29091980 38731472
    [Google Scholar]
  113. Liang X. Wang Y. Song J. Xia D. Li Q. Dong M. Nontoxic silicene photothermal agents with high near-infrared absorption for disassembly of Alzheimer’s amyloid β fibrils. Colloids Surf. B Biointerfaces 2022 216 112575 10.1016/j.colsurfb.2022.112575 35636323
    [Google Scholar]
  114. Li M. Zhao A. Dong K. Li W. Ren J. Qu X. Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer’s disease. Nano Res. 2015 8 10 3216 3227 10.1007/s12274‑015‑0821‑z
    [Google Scholar]
  115. Baran M.F. Keskin C. Baran A. Green synthesis of silver nanoparticles from Allium cepa L. peel extract, their antioxidant, antipathogenic, and anticholinesterase activity. Molecules 2023 28 5 2310 10.3390/molecules28052310 36903556
    [Google Scholar]
  116. Kwon H.J. Cha M.Y. Kim D. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 2016 10 2 2860 2870 10.1021/acsnano.5b08045 26844592
    [Google Scholar]
  117. Fang L. Song Y. Jin H. Liu Y. Gou S. An approach to apply BDNF Targeting Fe3O4‐based nanoparticles as multifunctional anti‐alzheimer agents. Small 2024 20 48 2403625 10.1002/smll.202403625 39240076
    [Google Scholar]
  118. Lohan S. Raza K. Mehta S.K. Bhatti G.K. Saini S. Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm. 2017 530 1-2 263 278 10.1016/j.ijpharm.2017.07.080 28774853
    [Google Scholar]
  119. Du C. Feng W. Dai X. Cu 2+ ‐Chelatable and ROS‐scavenging mXenzyme as NIR‐II‐triggered blood-brain barrier‐crossing nanocatalyst against Alzheimer’s disease. Small 2022 18 39 2203031 10.1002/smll.202203031 36008124
    [Google Scholar]
  120. Sabu A. Huang Y.C. Sharmila R. Sun C.Y. Shen M.Y. Chiu H.C. Magnetic stirring with iron oxide nanospinners accretes neurotoxic Aβ42 oligomers into phagocytic clearable plaques for Alzheimer’s disease treatment. Mater. Today Bio 2024 28 101213 10.1016/j.mtbio.2024.101213 39280110
    [Google Scholar]
  121. Feng W. Han X. Hu H. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021 12 1 2203 10.1038/s41467‑021‑22278‑x 33850133
    [Google Scholar]
  122. Zhou B. Sheng X. Xie H. Zhou S. Zhong M. Liu A. Inhibition of Alzheimer’s Aβ 1‐42 fibrillogenesis and removal of copper ions by polypeptides modified gold nanoparticles. Chem. Biodivers. 2022 19 11 202200342 10.1002/cbdv.202200342 36082494
    [Google Scholar]
  123. Kim M.J. Rehman S.U. Amin F.U. Kim M.O. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomedicine 2017 13 8 2533 2544 10.1016/j.nano.2017.06.022 28736294
    [Google Scholar]
  124. Xiao S. Zhou D. Luan P. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 2016 106 98 110 10.1016/j.biomaterials.2016.08.021 27552320
    [Google Scholar]
  125. Huang D. Liao W. Li J. Alzheimer’s disease: Status of low‐dimensional nanotherapeutic materials. Adv. Funct. Mater. 2024 34 4 2302015 10.1002/adfm.202302015
    [Google Scholar]
  126. Bilal M. Barani M. Sabir F. Rahdar A. Kyzas G.Z. Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview. NanoImpact 2020 20 100251 10.1016/j.impact.2020.100251
    [Google Scholar]
  127. Guerrero E.D. Lopez-Velazquez A.M. Ahlawat J. Narayan M. Carbon quantum dots for treatment of amyloid disorders. ACS Appl. Nano Mater. 2021 4 3 2423 2433 10.1021/acsanm.0c02792 33969279
    [Google Scholar]
  128. Koppel K. Tang H. Javed I. Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. Nanoscale 2020 12 23 12317 12328 10.1039/D0NR02710C 32490863
    [Google Scholar]
  129. Tak K. Sharma R. Dave V. Jain S. Sharma S. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of Alzheimer’s disease. ACS Chem. Neurosci. 2020 11 22 3741 3748 10.1021/acschemneuro.0c00273 33119989
    [Google Scholar]
  130. Yousaf M. Ahmad M. Bhatti I.A. In vivo and in vitro monitoring of amyloid aggregation via BSA@FGQDs multimodal probe. ACS Sens. 2019 4 1 200 210 10.1021/acssensors.8b01216 30596230
    [Google Scholar]
  131. Tang H. Li Y. Kakinen A. Graphene quantum dots obstruct the membrane axis of Alzheimer’s amyloid beta. Phys. Chem. Chem. Phys. 2021 24 1 86 97 10.1039/D1CP04246G 34878460
    [Google Scholar]
  132. Mohebichamkhorami F. Faizi M. Mahmoudifard M. Microfluidic synthesis of ultrasmall chitosan/graphene quantum dots particles for intranasal delivery in Alzheimer’s disease treatment. Small 2023 19 40 2207626 10.1002/smll.202207626 37309299
    [Google Scholar]
  133. Bhaloo A. Nguyen S. Lee B.H. Doped graphene quantum dots as biocompatible radical scavenging agents. Antioxidants 2023 12 8 1536 10.3390/antiox12081536 37627531
    [Google Scholar]
  134. Walton-Raaby M. Woods R. Kalyaanamoorthy S. Investigating the theranostic potential of graphene quantum dots in Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 11 9476 10.3390/ijms24119476 37298426
    [Google Scholar]
  135. Alamri O.A. Qusti S. Balgoon M. The role of MoS2 QDs coated with DSPE-PEG-TPP in the protection of protein secondary structure of the brain tissues in an Alzheimer’s disease model. Int. J. Biol. Macromol. 2024 255 128522 10.1016/j.ijbiomac.2023.128522 38040141
    [Google Scholar]
  136. Agarwal V. Chatterjee K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale 2018 10 35 16365 16397 10.1039/C8NR04284E 30151537
    [Google Scholar]
  137. Zheng X.T. Ananthanarayanan A. Luo K.Q. Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015 11 14 1620 1636 10.1002/smll.201402648 25521301
    [Google Scholar]
  138. Wu X. Tian F. Wang W. Chen J. Wu M. Zhao J.X. Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices 2013 1 31 4676 4684 10.1039/c3tc30820k 23997934
    [Google Scholar]
  139. Zhu S. Zhang J. Qiao C. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011 47 24 6858 6860 10.1039/c1cc11122a 21584323
    [Google Scholar]
  140. Brambilla D. Le Droumaguet B. Nicolas J. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy, and safety issues. Nanomedicine 2011 7 5 521 540 10.1016/j.nano.2011.03.008 21477665
    [Google Scholar]
  141. Giorgetti S. Greco C. Tortora P. Aprile F.A. Targeting amyloid aggregation: An overview of strategies and mechanisms. Int. J. Mol. Sci. 2018 19 9 2677 10.3390/ijms19092677 30205618
    [Google Scholar]
  142. Villalva M.D. Agarwal V. Ulanova M. Sachdev P.S. Braidy N. Quantum dots as a theranostic approach in Alzheimer’s disease: A systematic review. Nanomedicine 2021 16 18 1595 1611 10.2217/nnm‑2021‑0104 34180261
    [Google Scholar]
  143. Phafat B. Bhattacharya S. Quantum dots as theranostic agents: Recent advancements, surface modifications, and future applications. Mini Rev. Med. Chem. 2023 23 12 1257 1272 10.2174/1389557522666220405202222 35382722
    [Google Scholar]
  144. de Boëver R. Town J.R. Li X. Claverie J.P. Carbon dots for carbon dummies: The quantum and the molecular questions among some others. Chemistry 2022 28 47 202200748 10.1002/chem.202200748 35666681
    [Google Scholar]
  145. Tong X. Shi S. Tong C. Iftikhar A. Long R. Zhu Y. Quantum/carbon dots based fluorescent assays for enzyme activity. TrAC Trends Anal Chem 2020 131 116008 10.1016/j.trac.2020.116008
    [Google Scholar]
  146. Rosini M. Simoni E. Caporaso R. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur. J. Med. Chem. 2019 180 111 120 10.1016/j.ejmech.2019.07.011 31301562
    [Google Scholar]
  147. Takahashi-Ito K. Makino M. Okado K. Tomita T. Memantine inhibits β-amyloid aggregation and disassembles preformed β-amyloid aggregates. Biochem. Biophys. Res. Commun. 2017 493 1 158 163 10.1016/j.bbrc.2017.09.058 28917837
    [Google Scholar]
  148. Nakamura A. Kaneko N. Villemagne V.L. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018 554 7691 249 254 10.1038/nature25456 29420472
    [Google Scholar]
  149. Campanari M.L. García-Ayllón M.S. Blazquez-Llorca L. Luk W.K.W. Tsim K. Sáez-Valero J. Acetylcholinesterase protein level is preserved in the Alzheimer’s brain. J. Mol. Neurosci. 2014 53 3 446 453 10.1007/s12031‑013‑0183‑5 24318838
    [Google Scholar]
  150. Marucci G. Buccioni M. Ben D.D. Lambertucci C. Volpini R. Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021 190 108352 10.1016/j.neuropharm.2020.108352
    [Google Scholar]
  151. Ismail M.F. ElMeshad, Salem. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer’s disease. Int. J. Nanomedicine 2013 393 10.2147/IJN.S39232
    [Google Scholar]
  152. Huang H. Li P. Zhang M. Graphene quantum dots for detecting monomeric amyloid peptides. Nanoscale 2017 9 16 5044 5048 10.1039/C6NR10017A 28397888
    [Google Scholar]
  153. Qiao W. Yan S. Song X. Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Appl. Surf. Sci. 2015 359 130 136 10.1016/j.apsusc.2015.10.089
    [Google Scholar]
  154. Štengl V. Henych J. Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale 2013 5 8 3387 3394 10.1039/c3nr00192j 23467444
    [Google Scholar]
  155. Li B.L. Chen L.X. Zou H.L. Lei J.L. Luo H.Q. Li N.B. Electrochemically induced Fenton reaction of few-layer MoS2 nanosheets: Preparation of luminescent quantum dots via a transition of nanoporous morphology. Nanoscale 2014 6 16 9831 9838 10.1039/C4NR02592J 25027566
    [Google Scholar]
  156. Wang Y. Ni Y. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal. Chem. 2014 86 15 7463 7470 10.1021/ac5012014 25001878
    [Google Scholar]
  157. Yan D. Wang G. Xiong F. A selenium-catalysed para-amination of phenols. Nat. Commun. 2018 9 1 4293 10.1038/s41467‑018‑06763‑4 30327477
    [Google Scholar]
  158. Mousa R. Dardashti N.R. Metanis N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. 2017 56 50 15818 15827 10.1002/anie.201706876 28857389
    [Google Scholar]
  159. Chen Y. Zhang W. Fan Y. Xu X. Zhang Z. Hydrothermal preparation of selenium nanorods. Mater. Chem. Phys. 2006 98 2-3 191 194 10.1016/j.matchemphys.2005.05.051
    [Google Scholar]
  160. Yan S. Wang H. Zhang Y. Li S. Xiao Z. Direct solution-phase synthesis of Se submicrotubes using Se powder as selenium source. Mater. Chem. Phys. 2009 114 1 300 303 10.1016/j.matchemphys.2008.09.013
    [Google Scholar]
  161. Zhang X. Chen X. Guo Y. Thiolate-assisted route for constructing chalcogen quantum dots with photoinduced fluorescence enhancement. ACS Appl. Mater. Interfaces 2021 13 41 48449 48456 10.1021/acsami.1c15772 34619967
    [Google Scholar]
  162. Hong Q. Jin X. Zhou C. Shao J. Gold nanoparticles with amyloid-β reduce neurocell cytotoxicity for the treatment and care of Alzheimer’s disease therapy. Gold Bull. 2023 56 3 135 144 10.1007/s13404‑023‑00327‑1
    [Google Scholar]
  163. Chang Y.J. Chien Y.H. Chang C.C. Wang P.N. Chen Y.R. Chang Y.C. Detection of femtomolar amyloid-β peptides for early-stage identification of Alzheimer’s amyloid-β aggregation with functionalized gold nanoparticles. ACS Appl. Mater. Interfaces 2024 16 3 3819 3828 10.1021/acsami.3c12750 38214471
    [Google Scholar]
  164. Chiang M.C. Nicol C.J.B. GSH-AuNP anti-oxidative stress, ER stress and mitochondrial dysfunction in amyloid-beta peptide-treated human neural stem cells. Free Radic. Biol. Med. 2022 187 185 201 10.1016/j.freeradbiomed.2022.05.025 35660451
    [Google Scholar]
  165. Chiang M.C. Nicol C.J.B. Lin C.H. Chen S.J. Yen C. Huang R.N. Nanogold induces anti-inflammation against oxidative stress induced in human neural stem cells exposed to amyloid-beta peptide. Neurochem. Int. 2021 145 104992 10.1016/j.neuint.2021.104992 33609598
    [Google Scholar]
  166. Wang G. Shen X. Song X. Wang N. Wo X. Gao Y. Protective mechanism of gold nanoparticles on human neural stem cells injured by β-amyloid protein through miR-21-5p/SOCS6 pathway. Neurotoxicology 2023 95 12 22 10.1016/j.neuro.2022.12.011 36623431
    [Google Scholar]
  167. Anadozie S.O. Effiom D.O. Adewale O.B. Hibiscus sabdariffa synthesized gold nanoparticles ameliorate aluminum chloride induced memory deficits through inhibition of COX-2/BACE-1 mRNA expression in rats. Arab. J. Chem. 2023 16 4 104604 10.1016/j.arabjc.2023.104604
    [Google Scholar]
  168. Al-Radadi N.S. Biogenic proficient synthesis of (Au-NPs) via aqueous extract of red dragon pulp and seed oil: Characterization, antioxidant, cytotoxic properties, anti-diabetic anti-inflammatory, anti-Alzheimer and their anti-proliferative potential against cancer cell lines. Saudi J. Biol. Sci. 2022 29 4 2836 2855 10.1016/j.sjbs.2022.01.001 35531221
    [Google Scholar]
  169. Sanati M. Khodagholi F. Aminyavari S. Impact of gold nanoparticles on amyloid β-induced Alzheimer’s disease in a rat animal model: Involvement of stim proteins. ACS Chem. Neurosci. 2019 10 5 2299 2309 10.1021/acschemneuro.8b00622 30933476
    [Google Scholar]
  170. dos Santos Tramontin N. da Silva S. Arruda R. Gold nanoparticles treatment reverses brain damage in Alzheimer’s disease model. Mol. Neurobiol. 2020 57 2 926 936 10.1007/s12035‑019‑01780‑w 31612296
    [Google Scholar]
  171. Thakor A.S. Jokerst J. Zavaleta C. Massoud T.F. Gambhir S.S. Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett. 2011 11 10 4029 4036 10.1021/nl202559p 21846107
    [Google Scholar]
  172. Liu X.Y. Wang J.Q. Ashby C.R. Zeng L. Fan Y.F. Chen Z.S. Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov. Today 2021 26 5 1284 1292 10.1016/j.drudis.2021.01.030 33549529
    [Google Scholar]
  173. Chiang M.C. Yang Y.P. Nicol C.J.B. Wang C.J. Gold nanoparticles in neurological diseases: A review of neuroprotection. Int. J. Mol. Sci. 2024 25 4 2360 10.3390/ijms25042360 38397037
    [Google Scholar]
  174. Aili M. Zhou K. Zhan J. Zheng H. Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer’s disease. J. Mater. Chem. B Mater. Biol. Med. 2023 11 36 8605 8621 10.1039/D3TB01023F 37615596
    [Google Scholar]
  175. Graczyk A. Pawlowska R. Jedrzejczyk D. Chworos A. Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules 2020 25 1 204 10.3390/molecules25010204 31947834
    [Google Scholar]
  176. Liu J. Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater. 2017 55 13 27 10.1016/j.actbio.2017.03.055 28377307
    [Google Scholar]
  177. Shittu K.O. Bankole M.T. Abdulkareem A.S. Abubakre O.K. Ubaka A.U. Application of gold nanoparticles for improved drug efficiency. Adv Nat Sci Nanosci Nanotech 2017 8 3 035014 10.1088/2043‑6254/aa7716
    [Google Scholar]
  178. Amendola V. Pilot R. Frasconi M. Maragò O.M. Iatì M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017 29 20 203002 10.1088/1361‑648X/aa60f3 28426435
    [Google Scholar]
  179. Ho T. Ahmadi S. Kerman K. Do glutathione and copper interact to modify Alzheimer’s disease pathogenesis? Free Radic. Biol. Med. 2022 181 180 196 10.1016/j.freeradbiomed.2022.01.025 35092854
    [Google Scholar]
  180. Dwivedi D. Megha K. Mishra R. Mandal P.K. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res. 2020 45 7 1461 1480 10.1007/s11064‑020‑03030‑1 32297027
    [Google Scholar]
  181. Zhang J. Mou L. Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 2020 11 4 923 936 10.1039/C9SC06497D 34084347
    [Google Scholar]
  182. Calvo-Rodriguez M. Bacskai B.J. Mitochondria and calcium in Alzheimer’s disease: From cell signaling to neuronal cell death. Trends Neurosci. 2021 44 2 136 151 10.1016/j.tins.2020.10.004 33160650
    [Google Scholar]
  183. Anwar M.M. Oxidative stress‐A direct bridge to central nervous system homeostatic dysfunction and Alzheimer’s disease. Cell Biochem. Funct. 2022 40 1 17 27 10.1002/cbf.3673 34716723
    [Google Scholar]
  184. Huda N.U. Ghneim H.K. Fozia F. Ahmed M. Mushtaq N. Sher N. Green synthesis of Kickxia elatine-induced silver nanoparticles and their role as anti-acetylcholinesterase in the treatment of Alzheimer’s disease. Green Process Synth 2023 12 1 20230060 10.1515/gps‑2023‑0060
    [Google Scholar]
  185. Youssif K.A. Haggag E.G. Elshamy A.M. Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts. PLoS One 2019 14 11 0223781 10.1371/journal.pone.0223781 31693694
    [Google Scholar]
  186. Jan H. Zaman G. Usman H. Biogenically proficient synthesis and characterization of silver nanoparticles (Ag-NPs) employing aqueous extract of Aquilegia pubiflora along with their in vitro antimicrobial, anti-cancer and other biological applications. J. Mater. Res. Technol. 2021 15 950 968 10.1016/j.jmrt.2021.08.048
    [Google Scholar]
  187. Sikorska K. Grądzka I. Sochanowicz B. Diminished amyloid-β uptake by mouse microglia upon treatment with quantum dots, silver or cerium oxide nanoparticles: Nanoparticles and amyloid-β uptake by microglia. Hum. Exp. Toxicol. 2020 39 2 147 158 10.1177/0960327119880586 31601117
    [Google Scholar]
  188. Gonzalez-Carter D.A. Leo B.F. Ruenraroengsak P. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci. Rep. 2017 7 1 42871 10.1038/srep42871 28251989
    [Google Scholar]
  189. Zhang X. Li Y. Hu Y. Green synthesis of silver nanoparticles and their preventive effect in deficits in recognition and spatial memory in sporadic Alzheimer’s rat model. Colloids Surf. A Physicochem. Eng. Asp. 2020 605 125288 10.1016/j.colsurfa.2020.125288
    [Google Scholar]
  190. Xu L. Wang Y.Y. Huang J. Chen C.Y. Wang Z.X. Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020 10 20 8996 9031 10.7150/thno.45413 32802176
    [Google Scholar]
  191. Yaqoob A.A. Ahmad H. Parveen T. Ahmad A. Oves M. Ismail I.M.I. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem. 2020 8 341 10.3389/fchem.2020.00341
    [Google Scholar]
  192. Eker F. Duman H. Akdaşçi E. Witkowska A.M. Bechelany M. Karav S. Silver nanoparticles in therapeutics and beyond: A review of mechanism insights and applications. Nanomaterials 2024 14 20 1618 10.3390/nano14201618 39452955
    [Google Scholar]
  193. Banerjee V. Das K.P. Interaction of silver nanoparticles with proteins: A characteristic protein concentration dependent profile of SPR signal. Colloids Surf. B Biointerfaces 2013 111 71 79 10.1016/j.colsurfb.2013.04.052 23792543
    [Google Scholar]
  194. Dąbrowska-Bouta B. Sulkowski G. Frontczak-Baniewicz M. Ultrastructural and biochemical features of cerebral microvessels of adult rat subjected to a low dose of silver nanoparticles. Toxicology 2018 408 31 38 10.1016/j.tox.2018.06.009 29935189
    [Google Scholar]
  195. Liao C. Li Y. Tjong S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019 20 2 449 10.3390/ijms20020449 30669621
    [Google Scholar]
  196. Fernández M.N. Muñoz-Olivas R. Luque-Garcia J.L. SILAC-based quantitative proteomics identifies size-dependent molecular mechanisms involved in silver nanoparticles-induced toxicity. Nanotoxicology 2019 13 6 812 826 10.1080/17435390.2019.1579374 30776931
    [Google Scholar]
  197. Elmongy N.F. Meawad S.B. Elshora S.Z. Platelet‐rich plasma ameliorates neurotoxicity induced by silver nanoparticles in male rats via modulation of apoptosis, inflammation, and oxidative stress. J. Biochem. Mol. Toxicol. 2023 37 9 23420 10.1002/jbt.23420 37345720
    [Google Scholar]
  198. Noga M. Milan J. Frydrych A. Jurowski K. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)—critical review: State of the Art. Int. J. Mol. Sci. 2023 24 6 5133 10.3390/ijms24065133 36982206
    [Google Scholar]
  199. Huang C.L. Hsiao I.L. Lin H.C. Wang C.F. Huang Y.J. Chuang C.Y. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ. Res. 2015 136 253 263 10.1016/j.envres.2014.11.006 25460644
    [Google Scholar]
  200. Chen I.C. Hsiao I.L. Lin H.C. Wu C.H. Chuang C.Y. Huang Y.J. Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environ. Toxicol. Pharmacol. 2016 47 108 118 10.1016/j.etap.2016.09.009 27664952
    [Google Scholar]
  201. Mohammadi E. Amini S.M. Green synthesis of stable and biocompatible silver nanoparticles with natural flavonoid apigenin. Nano-Struct Nano-Obj 2024 38 101175 10.1016/j.nanoso.2024.101175
    [Google Scholar]
  202. Eltahir A.O.E. Lategan K.L. David O.M. Pool E.J. Luckay R.C. Hussein A.A. Green Synthesis of Gold Nanoparticles Using Liquiritin and Other Phenolics from Glycyrrhiza glabra and Their Anti-Inflammatory Activity. J. Funct. Biomater. 2024 15 4 95 10.3390/jfb15040095 38667552
    [Google Scholar]
  203. Hashmi S.S. Ibrahim M. Adnan M. Green synthesis of silver nanoparticles from Olea europaea L. extracted polysaccharides, characterization, and its assessment as an antimicrobial agent against multiple pathogenic microbes. Open Chem. 2024 22 1 20240016 10.1515/chem‑2024‑0016
    [Google Scholar]
  204. Tappin A.D. Barriada J.L. Braungardt C.B. Evans E.H. Patey M.D. Achterberg E.P. Dissolved silver in European estuarine and coastal waters. Water Res. 2010 44 14 4204 4216 10.1016/j.watres.2010.05.022 20557920
    [Google Scholar]
  205. Zhang J. Liu S. Han J. Wang Z. Zhang S. On the developmental toxicity of silver nanoparticles. Mater. Des. 2021 203 109611 10.1016/j.matdes.2021.109611
    [Google Scholar]
  206. Zhai X. Yan W. Liu S. Tian L. Zhang Y. Zhao Y. Silver nanoparticles induce iron accumulation-associated cognitive impairment via modulating neuronal ferroptosis. Environ. Pollut. 2024 346 123555 10.1016/j.envpol.2024.123555
    [Google Scholar]
  207. Weissleder R. Nahrendorf M. Pittet M.J. Imaging macrophages with nanoparticles. Nat. Mater. 2014 13 2 125 138 10.1038/nmat3780 24452356
    [Google Scholar]
  208. Lee N. Choi S.H. Hyeon T. Nano‐Sized C.T. Nano-sized CT contrast agents. Adv. Mater. 2013 25 19 2641 2660 10.1002/adma.201300081 23553799
    [Google Scholar]
  209. Rajh T. Dimitrijevic N.M. Bissonnette M. Koritarov T. Konda V. Titanium dioxide in the service of the biomedical revolution. Chem. Rev. 2014 114 19 10177 10216 10.1021/cr500029g 25171650
    [Google Scholar]
  210. Cui N. Lu H. Li M. Magnetic nanoparticles associated peg/plga block copolymer targeted with anti-transferrin receptor antibodies for Alzheimer’s disease. J. Biomed. Nanotechnol. 2018 14 5 1017 1024 10.1166/jbn.2018.2512 29883571
    [Google Scholar]
  211. Cheng K.K. Chan P.S. Fan S. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 2015 44 155 172 10.1016/j.biomaterials.2014.12.005 25617135
    [Google Scholar]
  212. Mirsadeghi S. Shanehsazzadeh S. Atyabi F. Dinarvand R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater. Sci. Eng. C 2016 59 390 397 10.1016/j.msec.2015.10.026 26652388
    [Google Scholar]
  213. Zhang D. Fa H.B. Zhou J.T. Li S. Diao X.W. Yin W. The detection of β-amyloid plaques in an Alzheimer’s disease rat model with DDNP-SPIO. Clin. Radiol. 2015 70 1 74 80 10.1016/j.crad.2014.09.019 25459675
    [Google Scholar]
  214. Zhou J. Fa H. Yin W. Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer’s disease. Mater. Sci. Eng. C 2014 37 348 355 10.1016/j.msec.2014.01.005 24582259
    [Google Scholar]
  215. Sanati M. Aminyavari S. Khodagholi F. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer’s disease: Potential participation of STIMs. Neurotoxicology 2021 85 145 159 10.1016/j.neuro.2021.05.013 34058247
    [Google Scholar]
  216. Cai J. Dao P. Chen H. Yan L. Li Y.L. Zhang W. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer’s disease. Dyes Pigm 2020 173 107999 10.1016/j.dyepig.2019.107999
    [Google Scholar]
  217. Liu X. Zhang L. Lu S. Superparamagnetic iron oxide nanoparticles conjugated with Aβ oligomer-specific scFv antibody and class A scavenger receptor activator show therapeutic potentials for Alzheimer’s Disease. J. Nanobiotechnology 2020 18 1 160 10.1186/s12951‑020‑00723‑1 33160377
    [Google Scholar]
  218. Liu X.G. Zhang L. Lu S. Multifunctional superparamagnetic iron oxide nanoparticles conjugated with aβ oligomer-specific scfv antibody and class A scavenger receptor activator show early diagnostic potentials for Alzheimer’s disease. Int. J. Nanomedicine 2020 15 4919 4932 10.2147/IJN.S240953 32764925
    [Google Scholar]
  219. Amanzadeh Jajin E. Esmaeili A. Rahgozar S. Noorbakhshnia M. Quercetin-conjugated superparamagnetic iron oxide nanoparticles protect alcl3-induced neurotoxicity in a rat model of Alzheimer’s disease via antioxidant genes, APP gene, and miRNA-101. Front. Neurosci. 2021 14 598617 10.3389/fnins.2020.598617 33716639
    [Google Scholar]
  220. Wei H. Hu Y. Wang J. Gao X. Qian X. Tang M. Superparamagnetic iron oxide nanoparticles: Cytotoxicity, metabolism, and cellular behavior in biomedicine applications. Int. J. Nanomedicine 2021 16 6097 6113 10.2147/IJN.S321984 34511908
    [Google Scholar]
  221. Wu L. Mendoza-Garcia A. Li Q. Sun S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016 116 18 10473 10512 10.1021/acs.chemrev.5b00687 27355413
    [Google Scholar]
  222. Girardet T. Bianchi E. Henrionnet C. Pinzano A. Bouguet-Bonnet S. Boulogne C. SPIONs magnetic nanoparticles for MRI applications: Microwave synthesis and physicochemical, magnetic and biological characterizations. Mater. Today Commun. 2023 36 106819 10.1016/j.mtcomm.2023.106819
    [Google Scholar]
  223. Mollick M. Rahaman S.M. Ashique S. Bhowmick M. Bhowmick P. Pal R. SPIONs: Paving the way for targeted drug delivery to cancer cells. Curr. Cancer Ther. Rev. 2025 21 2 145 158 10.2174/0115733947282050240314034927
    [Google Scholar]
  224. Wu X. Ciannella S. Choe H. SPIONs magnetophoresis and separation via permanent magnets: Biomedical and environmental applications. Processes 2023 11 12 3316 10.3390/pr11123316
    [Google Scholar]
  225. Bulte J.W.M. Wang C. Shakeri-Zadeh A. In vivo cellular magnetic imaging: Labeled versus unlabeled cells. Adv. Funct. Mater. 2022 32 50 2207626 10.1002/adfm.202207626 36589903
    [Google Scholar]
  226. Jin R. Liu L. Zhu W. Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like receptor-4 signaling. Biomaterials 2019 203 23 30 10.1016/j.biomaterials.2019.02.026 30851490
    [Google Scholar]
  227. D’Angelo B. Santucci S. Benedetti E. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr. Nanosci. 2009 5 2 167 176 10.2174/157341309788185523
    [Google Scholar]
  228. Machhi J. Yeapuri P. Markovic M. Europium-doped cerium oxide nanoparticles for microglial amyloid beta clearance and homeostasis. ACS Chem. Neurosci. 2022 13 8 1232 1244 10.1021/acschemneuro.1c00847 35312284
    [Google Scholar]
  229. Sofranko A. Wahle T. Kolling J. Effects of subchronic dietary exposure to the engineered nanomaterials SiO2 and CeO2 in C57BL/6J and 5xFAD Alzheimer model mice. Part. Fibre Toxicol. 2022 19 1 23 10.1186/s12989‑022‑00461‑2 35337343
    [Google Scholar]
  230. Dowding J.M. Song W. Bossy K. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014 21 10 1622 1632 10.1038/cdd.2014.72 24902900
    [Google Scholar]
  231. Cimini A. D’Angelo B. Das S. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater. 2012 8 6 2056 2067 10.1016/j.actbio.2012.01.035 22343002
    [Google Scholar]
  232. Hanzha V.V. Rozumna N.M. Kravenska Y.V. Spivak M.Y. Lukyanetz E.A. The effect of cerium dioxide nanoparticles on the viability of hippocampal neurons in Alzheimer’s disease modeling. Front. Cell. Neurosci. 2023 17 1131168 10.3389/fncel.2023.1131168 37006473
    [Google Scholar]
  233. Shi Y. Pilozzi A.R. Huang X. Exposure of CuO nanoparticles contributes to cellular apoptosis, redox stress, and Alzheimer’s Aβ amyloidosis. Int. J. Environ. Res. Public Health 2020 17 3 1005 10.3390/ijerph17031005 32033400
    [Google Scholar]
  234. Mou X. Pilozzi A. Tailor B. Exposure to CuO nanoparticles mediates nfκb activation and enhances amyloid precursor protein expression. Biomedicines 2020 8 3 45 10.3390/biomedicines8030045 32120908
    [Google Scholar]
  235. Ding X. Lin K. Li Y. Dang M. Jiang L. Synthesis of biocompatible zinc oxide (ZnO) nanoparticles and their neuroprotective effect of 6-OHDA induced neural damage in SH-SY 5Y cells. J. Cluster Sci. 2020 31 6 1315 1328 10.1007/s10876‑019‑01741‑2
    [Google Scholar]
  236. El-Hawwary S.S. Abd Almaksoud H.M. Saber F.R. Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Advances 2021 11 29 18009 18025 10.1039/D1RA01725J 35480186
    [Google Scholar]
  237. Sadowska-Bartosz I. Bartosz G. Redox nanoparticles: Synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J. Nanobiotechnology 2018 16 1 87 10.1186/s12951‑018‑0412‑8 30390681
    [Google Scholar]
  238. Ma Y. Tian Z. Zhai W. Qu Y. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res. 2022 15 12 10328 10342 10.1007/s12274‑022‑4666‑y 35845145
    [Google Scholar]
  239. Bai Y. Li Y. Li Y. Tian L. Advanced biological applications of cerium oxide nanozymes in disease related to oxidative damage. ACS Omega 2024 9 8 8601 8614 10.1021/acsomega.3c03661 38434816
    [Google Scholar]
  240. Ashleigh T. Swerdlow R.H. Beal M.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement. 2023 19 1 333 342 10.1002/alz.12683 35522844
    [Google Scholar]
  241. Alqahtani T. Deore S.L. Kide A.A. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease, and Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral Sclerosis -An updated review. Mitochondrion 2023 71 83 92 10.1016/j.mito.2023.05.007 37269968
    [Google Scholar]
  242. Xu D. Yang P. Yang Z.J. Blockage of Drp1 phosphorylation at Ser579 protects neurons against Aβ1 42 induced degeneration. Mol. Med. Rep. 2021 24 3 657 10.3892/mmr.2021.12296 34278489
    [Google Scholar]
  243. Baek S.H. Park S.J. Jeong J.I. Inhibition of drp1 ameliorates synaptic depression, aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J. Neurosci. 2017 37 20 5099 5110 10.1523/JNEUROSCI.2385‑16.2017 28432138
    [Google Scholar]
  244. Zinovkin R.A. Zamyatnin A.A. Mitochondria-targeted drugs. Curr. Mol. Pharmacol. 2019 12 3 202 214 10.2174/1874467212666181127151059 30479224
    [Google Scholar]
  245. Mehta P. Shende P. Collation of fullerenes and carbon nanotubes with genistein for synergistic anti-Alzheimer’s activity by amyloid-β deaggregation. J. Drug Deliv. Sci. Technol. 2024 91 105205 10.1016/j.jddst.2023.105205
    [Google Scholar]
  246. Yang Z. Zhang Y. Yang Y. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 2010 6 3 427 441 10.1016/j.nano.2009.11.007 20056170
    [Google Scholar]
  247. Li H. Luo Y. Derreumaux P. Wei G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide. Biophys. J. 2011 101 9 2267 2276 10.1016/j.bpj.2011.09.046 22067167
    [Google Scholar]
  248. Das D. Ghosh S. Vernekar A.A. Mugesh G. Ravindranath V. Novel anti-oxidant V2O5 nanowires prevent spine loss in primary cortical neurons derived from a mouse model of Alzheimer′s disease. Free Radic. Biol. Med. 2016 100 S159 S160 10.1016/j.freeradbiomed.2016.10.418
    [Google Scholar]
  249. Ijaz H. Mahmood A. Abdel-Daim M.M. Sarfraz R.M. Zaman M. Zafar N. Review on carbon nanotubes (CNTs) and their chemical and physical characteristics, with particular emphasis on potential applications in biomedicine. Inorg. Chem. Commun. 2023 155 111020 10.1016/j.inoche.2023.111020
    [Google Scholar]
  250. Guo Q. Shen X.T. Li Y.Y. Xu S.Q. Carbon nanotubes-based drug delivery to cancer and brain. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2017 37 5 635 641 29058274
    [Google Scholar]
  251. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  252. Elsori D. Rashid G. Khan N.A. Nanotube breakthroughs: Unveiling the potential of carbon nanotubes as a dual therapeutic arsenal for Alzheimer’s disease and brain tumors. Front. Oncol. 2023 13 1265347 10.3389/fonc.2023.1265347 37799472
    [Google Scholar]
  253. Mirali M. Jafariazar Z. Mirzaei M. Loading tacrine Alzheimer’s drug at the carbon nanotube. DFT Approach 2021 2 3 8
    [Google Scholar]
  254. Eatemadi A. Daraee H. Karimkhanloo H. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014 9 1 393 10.1186/1556‑276X‑9‑393 25170330
    [Google Scholar]
  255. Lin X. Zhang N. Berberine: Pathways to protect neurons. Phytother. Res. 2018 32 8 1501 1510 10.1002/ptr.6107 29732634
    [Google Scholar]
  256. Hussien H.M. Abd-Elmegied A. Ghareeb D.A. Hafez H.S. Ahmed H.E.A. El-moneam N.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem. Toxicol. 2018 111 432 444 10.1016/j.fct.2017.11.025 29170048
    [Google Scholar]
  257. Zhu F. Wu F. Ma Y. Decrease in the production of β-amyloid by berberine inhibition of the expression of β-secretase in HEK293 cells. BMC Neurosci. 2011 12 1 125 10.1186/1471‑2202‑12‑125 22152059
    [Google Scholar]
  258. Fang Z. Tang Y. Ying J. Tang C. Wang Q. Traditional Chinese medicine for anti-Alzheimer’s disease: Berberine and evodiamine from Evodia rutaecarpa. Chin. Med. 2020 15 1 82 10.1186/s13020‑020‑00359‑1 32774447
    [Google Scholar]
  259. Sharma H.S. Ali S.F. Dong W. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann. N. Y. Acad. Sci. 2007 1122 1 197 218 10.1196/annals.1403.014 18077574
    [Google Scholar]
  260. Stern E. Klemic J.F. Routenberg D.A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007 445 7127 519 522 10.1038/nature05498 17268465
    [Google Scholar]
  261. Wu M. Niu X. Zhang R. Ping Xu Z. Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv. Drug Deliv. Rev. 2022 187 114360 10.1016/j.addr.2022.114360
    [Google Scholar]
  262. Cheng L. Wang X. Gong F. Liu T. Liu Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater. 2020 32 13 1902333 10.1002/adma.201902333 31353752
    [Google Scholar]
  263. Novoselov K.S. Geim A.K. Morozov S.V. Electric field effect in atomically thin carbon films. Science 2004 306 5696 666 669 10.1126/science.1102896 15499015
    [Google Scholar]
  264. Ares P. Novoselov K.S. Recent advances in graphene and other 2D materials. Nano Materials Sci 2022 4 1 3 9 10.1016/j.nanoms.2021.05.002
    [Google Scholar]
  265. Bhimanapati G.R. Lin Z. Meunier V. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015 9 12 11509 11539 10.1021/acsnano.5b05556 26544756
    [Google Scholar]
  266. He X. Zhu Y. Ma B. Bioactive 2D nanomaterials for neural repair and regeneration. Adv. Drug Deliv. Rev. 2022 187 114379 10.1016/j.addr.2022.114379 35667464
    [Google Scholar]
  267. Tufail S. Sherwani M.A. Shamim Z. 2D nanostructures: Potential in diagnosis and treatment of Alzheimer’s disease. Biomed. Pharmacother. 2024 170 116070 10.1016/j.biopha.2023.116070 38163396
    [Google Scholar]
  268. Yang J. Liu W. Sun Y. Dong X. LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis. Langmuir 2020 36 7 1804 1812 10.1021/acs.langmuir.9b03612 32011894
    [Google Scholar]
  269. Wang J. Zhang Z. Zhang H. Enhanced photoresponsive graphene oxide-modified g-C 3 N 4 for disassembly of amyloid β fibrils. ACS Appl. Mater. Interfaces 2019 11 1 96 103 10.1021/acsami.8b10343 30532948
    [Google Scholar]
  270. Li X. Li K. Chu F. Huang J. Yang Z. Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons. Chem. Biol. Interact. 2020 325 109126 10.1016/j.cbi.2020.109126 32430275
    [Google Scholar]
  271. Chu F. Li K. Li X. Xu L. Huang J. Yang Z. Graphene oxide ameliorates the cognitive impairment through inhibiting PI3K/Akt/mTOR pathway to induce autophagy in AD mouse model. Neurochem. Res. 2021 46 2 309 325 10.1007/s11064‑020‑03167‑z 33180247
    [Google Scholar]
  272. Yang Z. Ge C. Liu J. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale 2015 7 44 18725 18737 10.1039/C5NR01172H 26503908
    [Google Scholar]
  273. Mahmoudi M. Akhavan O. Ghavami M. Rezaee F. Ghiasi S.M.A. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 2012 4 23 7322 7325 10.1039/c2nr31657a 23079862
    [Google Scholar]
  274. Chen Y. Chen Z. Sun Y. Lei J. Wei G. Mechanistic insights into the inhibition and size effects of graphene oxide nanosheets on the aggregation of an amyloid-β peptide fragment. Nanoscale 2018 10 19 8989 8997 10.1039/C8NR01041B 29725676
    [Google Scholar]
  275. Chen X. Pandit S. Shi L. Graphene oxide attenuates toxicity of amyloid‐β aggregates in yeast by promoting disassembly and boosting cellular stress response. Adv. Funct. Mater. 2023 33 45 2304053 10.1002/adfm.202304053
    [Google Scholar]
  276. Kapil N. Singh A. Singh M. Das D. Efficient MoS 2 exfoliation by cross‐β‐amyloid nanotubes for multistimuli‐responsive and biodegradable aqueous dispersions. Angew. Chem. Int. Ed. 2016 55 27 7772 7776 10.1002/anie.201509953 26880665
    [Google Scholar]
  277. Ma M. Wang Y. Gao N. A near‐infrared‐controllable artificial metalloprotease used for degrading amyloid‐β monomers and aggregates. Chemistry 2019 25 51 11852 11858 10.1002/chem.201902828 31361361
    [Google Scholar]
  278. Wang X. Han Q. Liu X. Wang C. Yang R. Multifunctional inhibitors of β-amyloid aggregation based on MoS 2/AuNR nanocomposites with high near-infrared absorption. Nanoscale 2019 11 18 9185 9193 10.1039/C9NR01845J 31038146
    [Google Scholar]
  279. Kale M. Wankhede N. Pawar R. Ballal S. Kumawat R. Goswami M. AI-driven innovations in Alzheimer’s disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Res. Rev. 2024 101 102497 10.1016/j.arr.2024.102497
    [Google Scholar]
/content/journals/car/10.2174/0115672050413838251014045255
Loading
/content/journals/car/10.2174/0115672050413838251014045255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test