Skip to content
2000
image of The Role of Lipoprotein and Gut Microbiome in Alzheimer's Disease: A Review of Novel Findings and Potential Applications

Abstract

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is inadequately comprehended, with hypotheses implicating amyloid-β, tau pathology, mitochondrial dysfunction, and epigenetic factors. Recent research underscores the significance of lipoproteins and the gut microbiota in the etiology of AD. Apolipoprotein E (ApoE), particularly the E4 subtype, emerges as a key genetic risk factor, influencing oxidative stress, synaptic defects, glucose metabolism, and amyloid-β clearance. Lipoprotein receptors, such as LRP-1, also influence the integrity of the blood-brain barrier, indicating potential for therapeutic applications. Novel therapies targeting lipoproteins, such as ALZ-801 and IDOL inhibitors, show promise in preclinical and clinical trials. Concurrently, the gut microbiome’s impact on AD is increasingly recognized. Dysbiosis correlates with inflammation, mitochondrial oxidative stress, impaired autophagy, and neurotransmitter imbalances. Gut-derived metabolites, including phenylalanine and isoleucine, promote Th1 cell activation and microglial dysfunction, exacerbating AD pathology. Interventions, like probiotics, , and polyphenols, demonstrate efficacy in restoring microbial balance and mitigating cognitive decline. Crucially, bidirectional interactions between lipoproteins and the gut microbiome are implicated in AD. ApoE genotypes influence gut microbial composition, while microbiota-derived short-chain fatty acids and endotoxins modulate lipid metabolism and neuroinflammation. These interactions, mediated the gut-brain axis, highlight novel therapeutic avenues. Current FDA-approved AD drugs face limitations in efficacy and side effects, underscoring the need for innovative strategies targeting lipoprotein-gut microbiome crosstalk. Integrating insights into lipoprotein biology and gut microbiota dynamics may offer transformative potential for AD treatment, emphasizing combinatorial approaches to modulate these interconnected pathways. Further research is warranted to elucidate mechanistic links and translate preclinical findings into clinical applications.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050407276251014113234
2025-10-24
2025-12-14
Loading full text...

Full text loading...

References

  1. Pluta R. A look at the etiology of Alzheimer’s disease based on the brain ischemia model. Curr. Alzheimer Res. 2024 21 3 166 182 10.2174/0115672050320921240627050736 38963100
    [Google Scholar]
  2. Singh Y. P. Kumar H. A recent update on huprine and its hybrids as a potential multifunctional agent for the treatment of Alzheimer's disease. Chemical Biol. Drug Design 2024 103 e14478 10.1111/cbdd.14478
    [Google Scholar]
  3. Butterfield D. A. Mattson M. P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer's disease. Neurobiol Dis. 2020 104795 10.1016/j.nbd.2020.104795
    [Google Scholar]
  4. Dose J. A.-O. X. Huebbe P. Nebel A. Rimbach G. APOE genotype and stress response: A mini review. Lipids Health Dis. 2016 15 121 10.1186/s12944‑016‑0288‑2
    [Google Scholar]
  5. Cechova K. Andel R. Angelucci F. Chmatalova Z. Markova H. Laczó J. Vyhnalek M. Matoska V. Kaplan V. Nedelska Z. Ward D.D. Hort J. Impact of APOE and BDNF Val66Met gene polymorphisms on cognitive functions in patients with amnestic mild cognitive impairment. J. Alzheimers Dis. 2020 73 1 247 257 10.3233/JAD‑190464 31771052
    [Google Scholar]
  6. Delgado-Peraza F. Nogueras-Ortiz C. Simonsen A.H. Knight D.L.D. Yao P.J. Goetzl E.J. Jensen C.S. Høgh P. Gottrup H. Vestergaard K. Hasselbalch S.G. Kapogiannis D. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer’s disease. Alzheimers Res. Ther. 2023 15 1 156 10.1186/s13195‑023‑01303‑9 37730689
    [Google Scholar]
  7. Chhibber A. Zhao L. ERβ and ApoE isoforms interact to regulate BDNF–5-HT2A signaling and synaptic function in the female brain. Alzheimers Res. Ther. 2017 9 1 79 79 10.1186/s13195‑017‑0305‑3 28934977
    [Google Scholar]
  8. Paranjpe M. D. Chen X. Liu M. Paranjpe I. Leal J. P. Wang R. Pomper M. G. Wong D. F. Benzinger T. L. S. Zhou Y. The effect of ApoE ε4 on longitudinal brain region-specific glucose metabolism in patients with mild cognitive impairment: A FDG-PET study. Neuroimage Clin. 2019 22 101795 10.1016/j.nicl.2019.101795
    [Google Scholar]
  9. Yamazaki Y. A.-O. Zhao N. A.-O. Caulfield T. A.-O. Liu C. C. Bu G. A.-O. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019 15 9 501 518 10.1038/s41582‑019‑0228‑7
    [Google Scholar]
  10. Hooper C. De Souto Barreto P. Cantet C. Cesari M. Payoux P. Salabert A. S. Vellas B. Chronically raised C-reactive protein is inversely associated with cortical β-amyloid in older adults with subjective memory complaints. Exp. Gerontol. 2018 108 226 230 10.1016/j.exger.2018.04.014
    [Google Scholar]
  11. Lee J. Choi J. Wong G.W. Wolfgang M.J. Neurometabolic roles of ApoE and Ldl-R in mouse brain. J. Bioenerg. Biomembr. 2016 48 1 13 21 10.1007/s10863‑015‑9636‑6 26686234
    [Google Scholar]
  12. Wadhwani A.R. Affaneh A. Van Gulden S. Kessler J.A. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Ann. Neurol. 2019 85 5 726 739 10.1002/ana.25455 30840313
    [Google Scholar]
  13. Blanchard J.W. Bula M. Davila-Velderrain J. Akay L.A. Zhu L. Frank A. Victor M.B. Bonner J.M. Mathys H. Lin Y.T. Ko T. Bennett D.A. Cam H.P. Kellis M. Tsai L.H. Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 2020 26 6 952 963 10.1038/s41591‑020‑0886‑4 32514169
    [Google Scholar]
  14. Blanchard J.W. Bula M. Davila-Velderrain J. Akay L.A. Zhu L. Frank A. Victor M.B. Bonner J.M. Mathys H. Lin Y.T. Ko T. Bennett D.A. Cam H.P. Kellis M. Tsai L.H. Author correction: Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 2021 27 2 356 10.1038/s41591‑021‑01250‑8 33514950
    [Google Scholar]
  15. Profaci C.P. Munji R.N. Pulido R.S. Daneman R. The blood–brain barrier in health and disease: Important unanswered questions. J. Exp. Med. 2020 217 4 e20190062 10.1084/jem.20190062 32211826
    [Google Scholar]
  16. Montagne A. Nation D.A. Sagare A.P. Barisano G. Sweeney M.D. Chakhoyan A. Pachicano M. Joe E. Nelson A.R. D’Orazio L.M. Buennagel D.P. Harrington M.G. Benzinger T.L.S. Fagan A.M. Ringman J.M. Schneider L.S. Morris J.C. Reiman E.M. Caselli R.J. Chui H.C. Tcw J. Chen Y. Pa J. Conti P.S. Law M. Toga A.W. Zlokovic B.V. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 2020 581 7806 71 76 10.1038/s41586‑020‑2247‑3 32376954
    [Google Scholar]
  17. Sousa J.A. Bernardes C. Bernardo-Castro S. Lino M. Albino I. Ferreira L. Brás J. Guerreiro R. Tábuas-Pereira M. Baldeiras I. Santana I. Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer’s disease: From delivery to target. Front. Aging Neurosci. 2023 15 1102809 10.3389/fnagi.2023.1102809 36875694
    [Google Scholar]
  18. Zhou A.L. Swaminathan S.K. Salian V.S. Wang L. Curran G.L. Min H.K. Lowe V.J. Kandimalla K.K. Insulin signaling differentially regulates the trafficking of insulin and amyloid beta peptides at the blood–brain barrier. Mol. Pharm. 2024 21 5 2176 2186 10.1021/acs.molpharmaceut.3c00784 38625027
    [Google Scholar]
  19. Gao J. Littman R. Diamante G. Xiao X. Ahn I. S. Yang X. Cole T. A. Tontonoz P. Therapeutic IDOL reduction ameliorates amyloidosis and improves cognitive function in APP/PS1 mice. Mol. Cell. Biol. 2020 40 8 e00518-19 10.1128/MCB.00518‑19
    [Google Scholar]
  20. Islam S. Sun Y. Gao Y. Nakamura T. Noorani A.A. Li T. Wong P.C. Kimura N. Matsubara E. Kasuga K. Ikeuchi T. Tomita T. Zou K. Michikawa M. Presenilin is essential for ApoE Secretion, a novel role of presenilin involved in Alzheimer’s Disease pathogenesis. J. Neurosci. 2022 42 8 1574 1586 10.1523/JNEUROSCI.2039‑21.2021 34987110
    [Google Scholar]
  21. Ramakrishna K. Viswanadh M.K. Dumala N. Chakravarth G. Venkateswarlu K. Gutti G. Yadagiri G. Duguluri S. Rai S.N. Advanced biomaterials in neuroprotection: Innovations and clinical applications. Biomaterials and Neurodegenerative Disorders. Kumar G. Mukherjee S. Kumar S. Singapore Springer Nature Singapore 2025 69 92 10.1007/978‑981‑97‑9959‑6_4
    [Google Scholar]
  22. Masuoka N. Yoshimine C. Hori M. Tanaka M. Asada T. Abe K. Hisatsune T. Effects of anserine/carnosine supplementation on mild cognitive impairment with APOE4. Nutrients 2019 11 7 1626 10.3390/nu11071626
    [Google Scholar]
  23. Torosyan N. Sethanandha C. Grill J. D. Dilley M. L. Lee J. Cummings J. L. Ossinalde C. Silverman D. H. Changes in regional cerebral blood flow associated with a 45 day course of the ketogenic agent, caprylidene, in patients with mild to moderate Alzheimer’s disease: Results of a randomized, double-blinded, pilot study. Exp. Gerontol. 2018 111 118 121 10.1016/j.exger.2018.07.009
    [Google Scholar]
  24. Hey J. A. Kocis P. Hort J. Abushakra S. Power A. Vyhnálek M. Yu J. Y. Tolar M. Discovery and identification of an endogenous metabolite of tramiprosate and its prodrug ALZ-801 that inhibits beta amyloid oligomer formation in the human brain. CNS Drugs 2018 32 9 849 861 10.1007/s40263‑018‑0554‑0 30076539
    [Google Scholar]
  25. Bairamian D. Sha S. Rolhion N. Sokol H. Dorothée G. Lemere C.A. Krantic S. Microbiota in neuroinflammation and synaptic dysfunction: A focus on Alzheimer’s disease. Mol. Neurodegener. 2022 17 1 19 10.1186/s13024‑022‑00522‑2 35248147
    [Google Scholar]
  26. Schneider E. O’Riordan K.J. Clarke G. Cryan J.F. Feeding gut microbes to nourish the brain: Unravelling the diet–microbiota–gut–brain axis. Nat. Metab. 2024 6 8 1454 1478 10.1038/s42255‑024‑01108‑6 39174768
    [Google Scholar]
  27. Kim M.S. Kim Y. Choi H. Kim W. Park S. Lee D. Kim D.K. Kim H.J. Choi H. Hyun D.W. Lee J.Y. Choi E.Y. Lee D.S. Bae J.W. Mook-Jung I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 2020 69 2 283 294 10.1136/gutjnl‑2018‑317431 31471351
    [Google Scholar]
  28. Ma X. Kim J.K. Shin Y.J. Son Y.H. Lee D.Y. Park H.S. Kim D.H. Alleviation of cognitive impairment-like behaviors, neuroinflammation, colitis, and gut dysbiosis in 5xFAD Transgenic and aged mice by Lactobacillus mucosae and Bifidobacterium longum. Nutrients 2023 15 15 3381 10.3390/nu15153381 37571319
    [Google Scholar]
  29. Lin X. Chen Y. Zhang P. Chen G. Zhou Y. Yu X. The potential mechanism of postoperative cognitive dysfunction in older people. Exp. Gerontol. 2020 130 110791 10.1016/j.exger.2019.110791 31765741
    [Google Scholar]
  30. He L. Duan X. Li S. Zhang R. Dai X. Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res. Rev. 2024 95 102223 10.1016/j.arr.2024.102223 38325753
    [Google Scholar]
  31. Jiang X.L. Gu X.Y. Zhou X.X. Chen X.M. Zhang X. Yang Y.T. Qin Y. Shen L. Yu W.F. Su D.S. Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain Behav. Immun. 2019 80 605 615 10.1016/j.bbi.2019.05.006 31063849
    [Google Scholar]
  32. Mou Y. Du Y. Zhou L. Yue J. Hu X. Liu Y. Chen S. Lin X. Zhang G. Xiao H. Dong B. Gut microbiota interact with the brain through systemic chronic inflammation: Implications on neuroinflammation, neurodegeneration, and aging. Front. Immunol. 2022 13 796288 10.3389/fimmu.2022.796288 35464431
    [Google Scholar]
  33. Liu S. Gao J. Zhu M. Liu K. Zhang H.L. Gut microbiota and dysbiosis in Alzheimer’s Disease: Implications for pathogenesis and treatment. Mol. Neurobiol. 2020 57 12 5026 5043 10.1007/s12035‑020‑02073‑3 32829453
    [Google Scholar]
  34. Swerdlow R.H. Khan S.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses 2004 63 1 8 20 10.1016/j.mehy.2003.12.045 15193340
    [Google Scholar]
  35. Ashleigh T. Swerdlow R.H. Beal M.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement. 2023 19 1 333 342 10.1002/alz.12683 35522844
    [Google Scholar]
  36. Casanova A. Wevers A. Navarro-Ledesma S. Pruimboom L. Mitochondria: It is all about energy. Front. Physiol. 2023 14 1114231 10.3389/fphys.2023.1114231 37179826
    [Google Scholar]
  37. Nguyen N.M. Cho J. Lee C. Gut microbiota and Alzheimer’s Disease: How to study and apply their relationship. Int. J. Mol. Sci. 2023 24 4 4047 10.3390/ijms24044047 36835459
    [Google Scholar]
  38. Cecarini V. Cuccioloni M. Zheng Y. Bonfili L. Gong C. Angeletti M. Mena P. Del Rio D. Eleuteri A.M. Flavan-3-ol microbial metabolites modulate proteolysis in neuronal cells reducing amyloid-beta (1-42) levels. Mol. Nutr. Food Res. 2021 65 18 2100380 10.1002/mnfr.202100380 34318994
    [Google Scholar]
  39. Ayoub S. Arabi M. Al-Najjar Y. Laswi I. Outeiro T.F. Chaari A. Glycation in Alzheimer’s disease and type 2 diabetes: The Prospect otions. f dual drug approaches for therapeutic interven Mol. Neurobiol. 2025 2 10.1007/s12035‑025‑05051‑9 40402411
    [Google Scholar]
  40. Bonfili L. Cecarini V. Cuccioloni M. Angeletti M. Berardi S. Scarpona S. Rossi G. Eleuteri A.M. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 2018 55 10 7987 8000 10.1007/s12035‑018‑0973‑4 29492848
    [Google Scholar]
  41. Tanida M. Yamano T. Maeda K. Okumura N. Fukushima Y. Nagai K. Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci. Lett. 2005 389 2 109 114 10.1016/j.neulet.2005.07.036 16118039
    [Google Scholar]
  42. Gladkikh I.N. Sintsova O.V. Leychenko E.V. Kozlov S.A. TRPV1 Ion Channel: Structural features, activity modulators, and therapeutic potential. Biochemistry (Mosc.) 2021 86 S1 Suppl. 1 S50 S70 10.1134/S0006297921140054 33827400
    [Google Scholar]
  43. Suárez-Suárez C. González-Pérez S. Márquez-Miranda V. Araya-Duran I. Vidal-Beltrán I. Vergara S. Carvacho I. Hinostroza F. The endocannabinoid peptide RVD-Hemopressin Is a TRPV1 channel blocker. Biomolecules 2024 14 9 1134 10.3390/biom14091134 39334900
    [Google Scholar]
  44. Maximiano T.K.E. Carneiro J.A. Fattori V. Verri W.A. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024 119 102870 10.1016/j.ceca.2024.102870 38531262
    [Google Scholar]
  45. Benítez-Angeles M. Morales-Lázaro S.L. Juárez-González E. Rosenbaum T. TRPV1: Structure, endogenous agonists, and mechanisms. Int. J. Mol. Sci. 2020 21 10 3421 10.3390/ijms21103421 32408609
    [Google Scholar]
  46. Syed Y.Y. Sodium oligomannate: First approval. Drugs 2020 80 4 441 444 10.1007/s40265‑020‑01268‑1 32020555
    [Google Scholar]
  47. Wang Z.J. Li X.R. Chai S.F. Li W.R. Li S. Hou M. Li J.L. Ye Y.C. Cai H.Y. Hölscher C. Wu M.N. Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer’s disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology 2023 240 109716 10.1016/j.neuropharm.2023.109716 37730113
    [Google Scholar]
  48. Cui Z. Zhao X. Amevor F.K. Du X. Wang Y. Li D. Shu G. Tian Y. Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front. Immunol. 2022 13 943321 10.3389/fimmu.2022.943321 35935939
    [Google Scholar]
  49. Strasser B. Wolters M. Weyh C. Krüger K. Ticinesi A. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients 2021 13 6 2045 10.3390/nu13062045 34203776
    [Google Scholar]
  50. Perler B.K. Friedman E.S. Wu G.D. The role of the gut microbiota in the relationship between diet and human health. Annu. Rev. Physiol. 2023 85 1 449 468 10.1146/annurev‑physiol‑031522‑092054 36375468
    [Google Scholar]
  51. Sun Y. Zhao J. Lu Y. Ngo F.Y. Shuai B. Zhang Z.J. Feng Y. Rong J. In silico prediction of Quercetin analogs for targeting death-associated protein kinase 1 (DAPK1) against Alzheimer’s Disease. Curr. Neuropharmacol. 2024 22 14 2353 2367 10.2174/1570159X22666240515090434 38752632
    [Google Scholar]
  52. Batiha G.E.S. Beshbishy A.M. Ikram M. Mulla Z.S. El-Hack M.E.A. Taha A.E. Algammal A.M. Elewa Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods 2020 9 3 374 10.3390/foods9030374 32210182
    [Google Scholar]
  53. Lv M. Yang S. Cai L. Qin L. Li B. Wan Z. Effects of quercetin intervention on cognition function in app/ps1 mice was affected by vitamin D status. Mol. Nutr. Food Res. 2018 62 24 1800621 10.1002/mnfr.201800621 30328681
    [Google Scholar]
  54. Sang Z. Wang K. Shi J. Cheng X. Zhu G. Wei R. Ma Q. Yu L. Zhao Y. Tan Z. Liu W. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2020 187 111958 111958 10.1016/j.ejmech.2019.111958 31865014
    [Google Scholar]
  55. Aathira N.S. Kaur A. Kumar A. Dar G.M. Nimisha Sharma A.K. Bera P. Mahajan B. Chatterjee A. Saluja S.S. The genetic risk factors, molecular pathways, microRNAs, and the gut microbiome in Alzheimer’s disease. Neuroscience 2025 577 217 227 10.1016/j.neuroscience.2025.05.021 40374065
    [Google Scholar]
  56. Nicholson J. K. Wilson I. D. Understanding “global” systems biology: Metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2003 2 8 668 676 10.1038/nrd1157
    [Google Scholar]
  57. Martinez-Guryn K. Hubert N. Frazier K. Urlass S. Musch M.W. Ojeda P. Pierre J.F. Miyoshi J. Sontag T.J. Cham C.M. Reardon C.A. Leone V. Chang E.B. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 2018 23 4 458 469.e5 10.1016/j.chom.2018.03.011 29649441
    [Google Scholar]
  58. Rebolledo C. Cuevas A. Zambrano T. Acuña J.J. Jorquera M.A. Saavedra K. Martínez C. Lanas F. Serón P. Salazar L.A. Saavedra N. Bacterial community profile of the gut microbiota differs between hypercholesterolemic subjects and controls. BioMed Res. Int. 2017 2017 1 6 10.1155/2017/8127814 28698878
    [Google Scholar]
  59. Granado-Serrano A. B. Martín-Garí M. A.-O. Sánchez V. Riart Solans M. Berdún R. Ludwig I. A. Rubió L. Vilaprinyó E. Portero-Otín M. Serrano J. A.-O. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci Rep 2019 9 1 1772 10.1038/s41598‑019‑38874‑3 30742005
    [Google Scholar]
  60. Loman B. R. Hernández-Saavedra D. An R. Rector R. S. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: A systematic review and meta-analysis. Nutr. Rev. 2018 76 11 822 839 10.1093/nutrit/nuy031 30113661
    [Google Scholar]
  61. Deng X. Ma J. Song M. Jin Y. Ji C. Ge W. Guo C. Effects of products designed to modulate the gut microbiota on hyperlipidaemia. Eur. J. Nutr. 2019 58 5 2001 2015 10.1007/s00394‑018‑1821‑z
    [Google Scholar]
  62. Parikh I.J. Estus J.L. Zajac D.J. Malik M. Maldonado Weng J. Tai L.M. Chlipala G.E. LaDu M.J. Green S.J. Estus S. Murine gut microbiome association with APOE alleles. Front. Immunol. 2020 11 200 200 10.3389/fimmu.2020.00200 32117315
    [Google Scholar]
  63. Tran T. T. T. Corsini S. Kellingray L. Hegarty C. Le Gall G. Narbad A. Müller M. Tejera N. O'Toole P. W. Minihane A. M. Vauzour D. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimer’s disease pathophysiology. FASEB J. 2019 33 7 8221 8231 10.1096/fj.201900071R 30958695
    [Google Scholar]
  64. Maldonado Weng J. Parikh I. Naqib A. York J. Green S. J. Estus S. LaDu M. A.-O. Synergistic effects of APOE and sex on the gut microbiome of young EFAD transgenic mice. Molecular Neurodegeneration 2019 14 47 10.1186/s13024‑019‑0352‑2 31861986
    [Google Scholar]
  65. Brown G.C. Heneka M.T. The endotoxin hypothesis of Alzheimer’s disease. Mol. Neurodegener. 2024 19 1 30 10.1186/s13024‑024‑00722‑y 38561809
    [Google Scholar]
  66. Pogue A.I. Jaber V.R. Sharfman N.M. Zhao Y. Lukiw W.J. Downregulation of Neurofilament Light Chain Expression in Human Neuronal-Glial Cell Co-Cultures by a Microbiome-Derived Lipopolysaccharide-Induced miRNA-30b-5p. Front. Neurol. 2022 13 900048 10.3389/fneur.2022.900048 35812116
    [Google Scholar]
  67. Padhi P. Worth C. Zenitsky G. Jin H. Sambamurti K. Anantharam V. Kanthasamy A. Kanthasamy A.G. Mechanistic insights into gut microbiome dysbiosis-mediated neuroimmune dysregulation and protein misfolding and clearance in the pathogenesis of chronic neurodegenerative disorders. Front. Neurosci. 2022 16 836605 10.3389/fnins.2022.836605 35281490
    [Google Scholar]
  68. Cammann D. Lu Y. Cummings M.J. Zhang M.L. Cue J.M. Do J. Ebersole J. Chen X. Oh E.C. Cummings J.L. Chen J. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep. 2023 13 1 5258 10.1038/s41598‑023‑31730‑5 37002253
    [Google Scholar]
  69. Prakash P. Manchanda P. Paouri E. Bisht K. Sharma K. Rajpoot J. Wendt V. Hossain A. Wijewardhane P.R. Randolph C.E. Chen Y. Stanko S. Gasmi N. Gjojdeshi A. Card S. Fine J. Jethava K.P. Clark M.G. Dong B. Ma S. Crockett A. Thayer E.A. Nicolas M. Davis R. Hardikar D. Allende D. Prayson R.A. Zhang C. Davalos D. Chopra G. Amyloid β induces lipid droplet-mediated microglial dysfunction in Alzheimer’s disease. bioRxiv 2024 40393454
    [Google Scholar]
  70. Zhou Y. Xie L. Schröder J. Schuster I.S. Nakai M. Sun G. Sun Y.B.Y. Mariño E. Degli-Esposti M.A. Marques F.Z. Grubman A. Polo J.M. Mackay C.R. Dietary fiber and microbiota metabolite receptors enhance cognition and alleviate disease in the 5xFAD mouse model of Alzheimer’s disease. J. Neurosci. 2023 43 37 6460 6475 10.1523/JNEUROSCI.0724‑23.2023 37596052
    [Google Scholar]
  71. Ivkovic S. Major T. Mitic M. Loncarevic-Vasiljkovic N. Jovic M. Adzic M. Fatty acids as biomodulators of Piezo1 mediated glial mechanosensitivity in Alzheimer’s disease. Life Sci. 2022 297 120470 10.1016/j.lfs.2022.120470 35283177
    [Google Scholar]
  72. Mi Y. Qi G. Vitali F. Shang Y. Raikes A.C. Wang T. Jin Y. Brinton R.D. Gu H. Yin F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat. Metab. 2023 5 3 445 465 10.1038/s42255‑023‑00756‑4 36959514
    [Google Scholar]
  73. Chen C. Liao J. Xia Y. Liu X. Jones R. Haran J. McCormick B. Sampson T.R. Alam A. Ye K. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 2022 71 11 2233 2252 10.1136/gutjnl‑2021‑326269 35017199
    [Google Scholar]
  74. Bago Rožanković P. Rožanković M. Badžak J. Stojić M. Šušak Sporiš I. Impact of donepezil and memantine on behavioral and psychological symptoms of Alzheimer disease: Six-month open-label study. Cogn. Behav. Neurol. 2021 34 4 288 294 10.1097/WNN.0000000000000285
    [Google Scholar]
  75. Guo J. Wang Z. Liu R. Huang Y. Zhang N. Zhang R. Memantine, Donepezil, or Combination Therapy—What is the best therapy for Alzheimer’s Disease? A Network Meta-Analysis. Brain Behav. 2020 10 11 e01831 10.1002/brb3.1831 32914577
    [Google Scholar]
  76. Akıncıoğlu H. Gülçin İ. Potent acetylcholinesterase inhibitors: Potential drugs for Alzheimer’s disease. Mini Rev. Med. Chem. 2020 20 8 703 715 10.2174/1389557520666200103100521 31902355
    [Google Scholar]
  77. Soni U. Singh K. Jain D. Pujari R. Exploring Alzheimer’s disease treatment: Established therapies and novel strategies for future care. Eur. J. Pharmacol. 2025 998 177520 10.1016/j.ejphar.2025.177520 40097131
    [Google Scholar]
  78. Haake A. Nguyen K. Friedman L. Chakkamparambil B. Grossberg G.T. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Drug Saf. 2020 19 2 147 157 10.1080/14740338.2020.1721456 31976781
    [Google Scholar]
  79. ALNasser M.N. Alboraiy G.M. Alsowig E.M. Alqattan F.M. Cholinesterase inhibitors from plants and their potential in alzheimer’s treatment: Systematic review. Brain Sci. 2025 15 2 215 10.3390/brainsci15020215
    [Google Scholar]
  80. Marucci G. Buccioni M. Ben D.D. Lambertucci C. Volpini R. Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021 190 108352 10.1016/j.neuropharm.2020.108352 33035532
    [Google Scholar]
  81. Athar T. Al Balushi K. Khan S.A. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol. Biol. Rep. 2021 48 7 5629 5645 10.1007/s11033‑021‑06512‑9 34181171
    [Google Scholar]
  82. Liu R.M. Aging, cellular senescence, and alzheimer’s disease. Int. J. Mol. Sci. 2022 23 4 1989 10.3390/ijms23041989 35216123
    [Google Scholar]
  83. Yarns B.C. Holiday K.A. Carlson D.M. Cosgrove C.K. Melrose R.J. Pathophysiology of Alzheimer’s disease. Psychiatr. Clin. North Am. 2022 45 4 663 676 10.1016/j.psc.2022.07.003 36396271
    [Google Scholar]
  84. Zheng Q. Wang X. Alzheimer’s disease: Insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025 16 2 83 120 10.1093/procel/pwae026 38733347
    [Google Scholar]
  85. Pluta R. Ułamek-Kozioł M. Januszewski S. Czuczwar S.J. Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging (Albany NY) 2020 12 6 5539 5550 10.18632/aging.102930 32191919
    [Google Scholar]
  86. Lou T. Tao B. Chen M. Relationship of apolipoprotein E with Alzheimer’s disease and other neurological disorders: An updated review. Neuroscience 2023 514 123 140 10.1016/j.neuroscience.2023.01.032 36736614
    [Google Scholar]
  87. Yang J. Liang J. Hu N. He N. Liu B. Liu G. Qin Y. The Gut microbiota modulates neuroinflammation in alzheimer’s disease: Elucidating crucial factors and mechanistic underpinnings. CNS Neurosci. Ther. 2024 30 10 e70091 10.1111/cns.70091 39460538
    [Google Scholar]
  88. Ji D. Chen W.Z. Zhang L. Zhang Z.H. Chen L.J. Gut microbiota, circulating cytokines and dementia: A Mendelian randomization study. J. Neuroinflammation 2024 21 1 2 10.1186/s12974‑023‑02999‑0 38178103
    [Google Scholar]
  89. Ahuja-Casarín A.I. Merino-Montiel P. Vega-Baez J.L. Montiel-Smith S. Fernandes M.X. Lagunes I. Maya I. Padrón J.M. López Ó. Fernández-Bolaños J.G. Tuning the activity of iminosugars: Novel N -alkylated deoxynojirimycin derivatives as strong BuChE inhibitors. J. Enzyme Inhib. Med. Chem. 2021 36 1 138 146 10.1080/14756366.2020.1847101 33228403
    [Google Scholar]
  90. Parida I.S. Takasu S. Ito J. Eitsuka T. Nakagawa K. 1-Deoxynojirimycin attenuates pathological markers of Alzheimer’s disease in the in vitro model of neuronal insulin resistance. FASEB J. 2024 38 13 e23800 10.1096/fj.202302600R 38979931
    [Google Scholar]
/content/journals/car/10.2174/0115672050407276251014113234
Loading
/content/journals/car/10.2174/0115672050407276251014113234
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test