Skip to content
2000
image of The Role of Microglial Cells and Cytokine Modulation in Alzheimer’s Disease: A Neuroinflammatory Perspective

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by abnormalities in protein metabolism leading to the accumulation of extracellular amyloid-beta (Aβ) plaques and intracellular neurofibrillary tangles (hyperphosphorylated tau protein). While these pathological constructs have held significant attention for decades, emerging evidence highlights the understanding of neuroinflammation (notably involving microglia, and cytokine signaling) as a critical initial event with respect to the inception and progression of AD. This review discusses the dynamic and dualistic effects of immune response in AD based on the relationship between neuroinflammatory processes and classical neuropathological characteristics. Microglia are ubiquitous immune cells in the central nervous system responsible for maintaining homeostasis as the brain's “housekeepers” by removing cellular debris, pruning synapses, and monitoring cell interactions. However, microglia in AD function produce a chronically activated phenotype that elicits neurotoxicity, impairs synaptic functioning, and is are protracted source of neuroinflammation. The appearance of disease-associated microglia (DAM) may illustrate complexities of TREM2 signaling for the anabolism of Aβ clearance and the modulation of inflammatory systems. Cytokine imbalance - higher expression of pro-inflammatory ( IL-1β, TNF-α) and lower expression of anti-inflammatory ( IL-10, TGF-β) - adds to a self-perpetuating inflammatory loop that exacerbates Aβ and tau pathology, brain-blood barrier permeability, and peripheral-CNS immune communications. The mechanisms of an inflammatory event may drive brain tau hyperphosphorylation, tau propagation, along with other pathophysiological neurodegenerative features of traumatic brain injury and Alzheimer's disease. While examples of therapies targeting microglia and their cytokine activity are actively being explored, clinical efforts have been mixed. Neuroimaging development ( TSPO-PET), cytokine collection and compositional approaches, and application of single-cell transcriptomics are providing new ways of thinking about complex neuroimmunology. Exploring, informing, and defining the timing, context, and variations of neuroinflammatory responses will be ultimately needed to create effective, targeted therapies for Alzheimer's disease (AD).

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050412711251115023127
2026-01-02
2026-01-12
Loading full text...

Full text loading...

References

  1. Dissanayaka D.M.S. Jayasena V. Rainey-Smith S.R. Martins R.N. Fernando W.M.A.D.B. The role of diet and gut microbiota in Alzheimer’s disease. Nutrients 2024 16 3 412 10.3390/nu16030412 38337696
    [Google Scholar]
  2. EL-Geneedy M Moustafa HED Khalifa F Khater H AbdElhalim E An MRI-based deep learning approach for accurate detection of Alzheimer’s disease. Alex. Eng. J. 2023 63 7 211 221 10.1016/j.aej.2022.07.062
    [Google Scholar]
  3. Payne A. Nahashon S. Taka E. Adinew G.M. Soliman K.F.A. Epigallocatechin-3-gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules 2022 12 3 371 10.3390/biom12030371 35327563
    [Google Scholar]
  4. Rody T. De Amorim J.A. De Felice F.G. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front. Aging Neurosci. 2022 14 965190 10.3389/fnagi.2022.965190 36118704
    [Google Scholar]
  5. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  6. Kavitha C. Mani V. Srividhya S.R. Khalaf O.I. Tavera Romero C.A. Early-stage Alzheimer’s disease prediction using machine learning models. Front. Public Health 2022 10 853294 10.3389/fpubh.2022.853294 35309200
    [Google Scholar]
  7. Lukiw W.J. MicroRNA (miRNA) complexity in Alzheimer’s disease (AD). Biology 2023 12 6 788 10.3390/biology12060788 37372073
    [Google Scholar]
  8. Isik S. Yeman Kiyak B. Akbayir R. Seyhali R. Arpaci T. Microglia mediated neuroinflammation in Parkinson’s disease. Cells 2023 12 7 1012 10.3390/cells12071012 37048085
    [Google Scholar]
  9. Hughes H.K. Ashwood P. Ashwood P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav. Immun. 2023 108 245 254 10.1016/j.bbi.2022.12.001 36494048
    [Google Scholar]
  10. Li Q. Yang X. Xu J. Early prediction of Alzheimer’s disease and related dementias using real‐world electronic health records. Alzheimers Dement. 2023 19 8 3506 3518 10.1002/alz.12967 36815661
    [Google Scholar]
  11. Sanna P.P. Cabrelle C. Kawamura T. A history of repeated alcohol intoxication promotes cognitive impairment and gene expression signatures of disease progression in the 3xTg mouse model of Alzheimer’s disease. eNeuro 2023 10 7 10.1523/ENEURO.0456‑22.2023
    [Google Scholar]
  12. Herrero Babiloni A. Baril A.A. Charlebois-Plante C. The putative role of neuroinflammation in the interaction between traumatic brain injuries, sleep, pain and other neuropsychiatric outcomes: a state-of-the-art review. J. Clin. Med. 2023 12 5 1793 10.3390/jcm12051793 36902580
    [Google Scholar]
  13. Chen Y. Peng F. Xing Z. Chen J. Peng C. Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol. 2022 13 1006434 10.3389/fimmu.2022.1006434 36353622
    [Google Scholar]
  14. Sharp F.R. DeCarli C.S. Jin L.W. Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer’s disease (AD) neuropathology: A hypothesis and review. Front. Aging Neurosci. 2023 15 1096206 10.3389/fnagi.2023.1096206 36845656
    [Google Scholar]
  15. Hanna L. Poluyi E. Ikwuegbuenyi C. Morgan E. Imaguezegie G. Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Egypt. J. Neurosurg. 2022 37 1 15 10.1186/s41984‑022‑00150‑4
    [Google Scholar]
  16. Kim Y. Kim J. Kang S. Chang K.A. Depressive-like behaviors induced by mGluR5 reduction in 6xTg mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 16 13010 10.3390/ijms241613010 37629191
    [Google Scholar]
  17. Besin V. Humardani F.M. Mulyanata L.T. Neurogenomics of Alzheimer’s disease (AD): An Asian population review. Clin. Chim. Acta 2023 546 117389 10.1016/j.cca.2023.117389 37211175
    [Google Scholar]
  18. Warren S.L. Moustafa A.A. Functional magnetic resonance imaging, deep learning, and Alzheimer’s disease: A systematic review. J. Neuroimaging 2023 33 1 5 18 10.1111/jon.13063 36257926
    [Google Scholar]
  19. Fang Y.C. Hsieh Y.C. Hu C.J. Tu Y.K. Endothelial dysfunction in neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 3 2909 10.3390/ijms24032909 36769234
    [Google Scholar]
  20. Rigat L. Ouk K. Kramer A. Priller J. Dysfunction of circadian and sleep rhythms in the early stages of Alzheimer’s disease. Acta Physiol. (Oxf.) 2023 238 2 e13970 10.1111/apha.13970 37000425
    [Google Scholar]
  21. Dermitzakis I. Manthou M.E. Meditskou S. Origin and emergence of microglia in the CNS-an interesting (hi)story of an eccentric cell. Curr. Issues Mol. Biol. 2023 45 3 2609 2628 10.3390/cimb45030171 36975541
    [Google Scholar]
  22. Gerrits E. Brouwer N. Kooistra S.M. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol. 2021 141 5 681 696 10.1007/s00401‑021‑02263‑w 33609158
    [Google Scholar]
  23. van Weering H.R.J. Nijboer T.W. Brummer M.L. Boddeke E.W.G.M. Eggen B.J.L. Microglia morphotyping in the adult mouse CNS using hierarchical clustering on principal components reveals regional heterogeneity but no sexual dimorphism. Glia 2023 71 10 2356 2371 10.1002/glia.24427 37293807
    [Google Scholar]
  24. Geladaris A. Häusser-Kinzel S. Pretzsch R. IL-10-providing B cells govern pro-inflammatory activity of macrophages and microglia in CNS autoimmunity. Acta Neuropathol. 2023 145 4 461 477 10.1007/s00401‑023‑02552‑6 36854993
    [Google Scholar]
  25. Sobue A. Komine O. Yamanaka K. Neuroinflammation in Alzheimer’s disease: Microglial signature and their relevance to disease. Inflamm. Regen. 2023 43 1 26 10.1186/s41232‑023‑00277‑3 37165437
    [Google Scholar]
  26. Aloi M.S. Prater K.E. Sánchez R.E.A. Microglia specific deletion of miR-155 in Alzheimer’s disease mouse models reduces amyloid-β pathology but causes hyperexcitability and seizures. J. Neuroinflammation 2023 20 1 60 10.1186/s12974‑023‑02745‑6 36879321
    [Google Scholar]
  27. Abbatecola A.M. Arosio B. Cerasuolo M. Common neurodegenerative pathways in brain aging, cognitive decline, type 2 diabetes & metabolic syndrome. J Gerontol Geriatrics 2024 72 1 43 49 10.36150/2499‑6564‑N691 38308660
    [Google Scholar]
  28. Latham A.S. Moreno J.A. Geer C.E. Biological agents and the aging brain: glial inflammation and neurotoxic signaling. Front. Aging 2023 4 1244149 10.3389/fragi.2023.1244149 37649972
    [Google Scholar]
  29. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  30. Han T. Xu Y. Sun L. Hashimoto M. Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen. Res. 2024 19 6 1241 1248 10.4103/1673‑5374.385845 37905870
    [Google Scholar]
  31. Zhu R. Luo Y. Li S. Wang Z. The role of microglial autophagy in Parkinson’s disease. Front. Aging Neurosci. 2022 14 1039780 10.3389/fnagi.2022.1039780 36389074
    [Google Scholar]
  32. Lalwani R.C. Volmar C.H. Wahlestedt C. Webster K.A. Shehadeh L.A. Contextualizing the role of osteopontin in the inflammatory responses of Alzheimer’s disease. Biomedicines 2023 11 12 3232 10.3390/biomedicines11123232 38137453
    [Google Scholar]
  33. Sakai M. Yu Z. Taniguchi M. N-acetylcysteine suppresses microglial inflammation and induces mortality dose-dependently via tumor necrosis factor-α signaling. Int. J. Mol. Sci. 2023 24 4 3798 10.3390/ijms24043798 36835209
    [Google Scholar]
  34. Glotfelty E.J. Hsueh S.C. Claybourne Q. Microglial Nogo delays recovery following traumatic brain injury in mice. Glia 2023 71 10 2473 2494 10.1002/glia.24436 37401784
    [Google Scholar]
  35. Lopez-Ortiz AO Eyo UB Astrocytes and microglia in the coordination of CNS development and homeostasis. J Neurochem 2023 166 5 jnc.16006 10.1111/jnc.16006 37985374
    [Google Scholar]
  36. Bobotis B.C. Halvorson T. Carrier M. Tremblay M.È. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front. Cell. Neurosci. 2024 18 1317125 10.3389/fncel.2024.1317125 38425429
    [Google Scholar]
  37. Wang M. Zhang H. Liang J. Huang J. Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. J. Neuroinflammation 2023 20 1 76 10.1186/s12974‑023‑02753‑6 36935511
    [Google Scholar]
  38. Sheu M.L. Pan L.Y. Yang C.N. Neuronal death caused by HMGB1-evoked via inflammasomes from thrombin-activated microglia cells. Int. J. Mol. Sci. 2023 24 16 12664 10.3390/ijms241612664 37628850
    [Google Scholar]
  39. Yang L.G. March Z.M. Stephenson R.A. Narayan P.S. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol. Metab. 2023 34 8 430 445 10.1016/j.tem.2023.05.002 37357100
    [Google Scholar]
  40. Lozupone M. Imbimbo B.P. Balducci C. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer’s disease? Alzheimers Dement. 2023 19 1 353 368 10.1002/alz.12728 35900209
    [Google Scholar]
  41. Yadav V.C.M. Kumarasamy M. Natural products as potential modulators of pro-inflammatory cytokines signalling in Alzheimer’s disease. Brain Behavior and Immunity Integrative 2024 5 100048 10.1016/j.bbii.2024.100048
    [Google Scholar]
  42. Wang L. Western D. Timsina J. Plasma proteomics of SARS-CoV-2 infection and severity reveals impact on Alzheimer’s and coronary disease pathways. iScience 2023 26 4 106408 10.1016/j.isci.2023.106408 36974157
    [Google Scholar]
  43. Sharma B. Satija G. Madan A. Role of NLRP3 inflammasome and its inhibitors as emerging therapeutic drug candidates for Alzheimer’s disease: a review of mechanism of activation, regulation, and inhibition. Inflammation 2023 46 1 56 87 10.1007/s10753‑022‑01730‑0 36006570
    [Google Scholar]
  44. Luís J.P. Simões C.J.V. Brito R.M.M. The therapeutic prospects of targeting IL-1R1 for the modulation of neuroinflammation in central nervous system disorders. Int. J. Mol. Sci. 2022 23 3 1731 10.3390/ijms23031731 35163653
    [Google Scholar]
  45. Razee A. Banerjee S. Hong J. Thoracic spinal cord neuroinflammation as a novel therapeutic target in pulmonary hypertension. Hypertension 2023 80 6 1297 1310 10.1161/HYPERTENSIONAHA.122.20782 37092338
    [Google Scholar]
  46. Oală I.E. Mitranovici M.I. Chiorean D.M. Endometriosis and the role of pro-inflammatory and anti-inflammatory cytokines in pathophysiology: A narrative review of the literature. Diagnostics 2024 14 3 312 10.3390/diagnostics14030312 38337827
    [Google Scholar]
  47. Thakur S. Dhapola R. Sarma P. Medhi B. Reddy D.H. Neuroinflammation in Alzheimer’s disease: Current progress in molecular signaling and therapeutics. Inflammation 2023 46 1 1 17 10.1007/s10753‑022‑01721‑1 35986874
    [Google Scholar]
  48. Čarna M. Onyango I.G. Katina S. Pathogenesis of Alzheimer’s disease: Involvement of the choroid plexus. Alzheimers Dement. 2023 19 8 3537 3554 10.1002/alz.12970 36825691
    [Google Scholar]
  49. Lau V. Ramer L. Tremblay M.È. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nat. Commun. 2023 14 1 1670 10.1038/s41467‑023‑37304‑3 36966157
    [Google Scholar]
  50. Al-Ghraiybah N.F. Wang J. Alkhalifa A.E. Glial cell-mediated neuroinflammation in Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 18 10572 10.3390/ijms231810572 36142483
    [Google Scholar]
  51. León B.E. Kang S. Franca-Solomon G. Shang P. Choi D.S. Alcohol-induced neuroinflammatory response and mitochondrial dysfunction on aging and Alzheimer’s disease. Front. Behav. Neurosci. 2022 15 778456 10.3389/fnbeh.2021.778456 35221939
    [Google Scholar]
  52. Yuyin W. Bushen Yizhi anti-aging prescription improves cognitive function of APP/PS1 mice by regulating microglia and macrophage polarization. Chinese J Tissue Eng Res 2022 26 52 819 10.12307/2022.819
    [Google Scholar]
  53. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  54. Rai S.N. Tiwari N. Singh P. Exploring the paradox of COVID-19 in neurological complications with emphasis on Parkinson’s and Alzheimer’s disease. Oxid. Med. Cell. Longev. 2022 2022 1 3012778 10.1155/2022/3012778 36092161
    [Google Scholar]
  55. Li Y. Chen X. Zhou M. Feng S. Peng X. Wang Y. Microglial TLR4/NLRP3 inflammasome signaling in Alzheimer’s disease. J. Alzheimers Dis. 2024 97 1 75 88 10.3233/JAD‑230273 38043010
    [Google Scholar]
  56. Singh A. Targeting abnormal tau phosphorylation for Alzheimer’s therapeutics. Horm. Metab. Res. 2023 55 10 649 659 10.1055/a‑2238‑1384 38350636
    [Google Scholar]
  57. Athanasiou E. Gargalionis A.N. Anastassopoulou C. Tsakris A. Boufidou F. New insights into the molecular interplay between human herpesviruses and Alzheimer’s disease - a narrative review. Brain Sci. 2022 12 8 1010 10.3390/brainsci12081010 36009073
    [Google Scholar]
  58. Vakili O. Asili P. Babaei Z. Circular RNAs in Alzheimer’s disease: a new perspective of diagnostic and therapeutic targets. CNS Neurol. Disord. Drug Targets 2022 21 10 861 872 10.2174/1871527321666220829164211 36043720
    [Google Scholar]
  59. Kouri N. Frankenhauser I. Boon B.D.C. Digital pathology analysis reveals TDP‐43 pathology as a strong predictor of glial activation in Alzheimer’s disease. Alzheimers Dement. 2023 19 S12 e080535 10.1002/alz.080535
    [Google Scholar]
  60. Motta C. Assogna M. Bonomi C.G. Interplay between the catecholaminergic enzymatic axis and neurodegeneration/neuroinflammation processes in the Alzheimer’s disease continuum. Eur. J. Neurol. 2023 30 4 839 848 10.1111/ene.15691 36692274
    [Google Scholar]
  61. Mey G.M. Mahajan K.R. DeSilva T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2023 15 1 e1583 10.1002/wsbm.1583 35948371
    [Google Scholar]
  62. Sánchez-Alcázar J.A. Villalón-García I. Povea-Cabello S. Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen. Res. 2023 18 6 1196 1202 10.4103/1673‑5374.358614 36453394
    [Google Scholar]
  63. Fang J. Luo S. Lu Z. HK2: Gatekeeping microglial activity by tuning glucose metabolism and mitochondrial functions. Mol. Cell 2023 83 6 829 831 10.1016/j.molcel.2023.02.022 36931254
    [Google Scholar]
  64. Villegas S. Roda A.R. Serra-Mir G. Montoliu-Gaya L. Tiessler L. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen. Res. 2022 17 8 1666 1674 10.4103/1673‑5374.332127 35017413
    [Google Scholar]
  65. Coomans E.M. van Westen D. Binette A.P. Interactions between vascular burden and amyloid-β pathology on trajectories of tau accumulation. Brain 2024 147 3 949 960 10.1093/brain/awad317 37721482
    [Google Scholar]
  66. Jongsma E. Goyala A. Mateos J.M. Ewald C.Y. Removal of extracellular human amyloid beta aggregates by extracellular proteases in C. elegans. eLife 2023 12 e83465 10.7554/eLife.83465 37728486
    [Google Scholar]
  67. Sadeghzadeh J. Shahabi P. Farhoudi M. Ebrahimi-Kalan A. Mobed A. Shahpasand K. Tau protein biosensors in the diagnosis of neurodegenerative diseases. Adv. Pharm. Bull. 2023 13 3 502 511 10.34172/apb.2023.061 37646056
    [Google Scholar]
  68. Sánchez-Tapia M. Mimenza-Alvarado A. Granados-Domínguez L. The gut microbiota–brain axis during aging, mild cognitive impairment and dementia: role of tau protein, β-amyloid and LPS in serum and curli protein in stool. Nutrients 2023 15 4 932 10.3390/nu15040932 36839291
    [Google Scholar]
  69. Guo Q. Xie J. Guo C.J. Par-4 in neuronal death and survival in Alzheimer’s disease and other neurodegenerative diseases. Tumor Suppressor Par-4. Cham Springer 2022 267 289 10.1007/978‑3‑030‑80558‑6_14
    [Google Scholar]
  70. Antignano I. Liu Y. Offermann N. Capasso M. Aging microglia. Cell. Mol. Life Sci. 2023 80 5 126 10.1007/s00018‑023‑04775‑y 37081238
    [Google Scholar]
  71. Yu C. Deng X. Xu D. Microglia in epilepsy. Neurobiol. Dis. 2023 185 106249 10.1016/j.nbd.2023.106249 37536386
    [Google Scholar]
  72. Barmpagiannos K. Theotokis P. Petratos S. The diversity of astrocyte activation during multiple sclerosis: potential cellular targets for novel disease modifying therapeutics. Healthcare (Basel) 2023 11 11 1585 10.3390/healthcare11111585 37297725
    [Google Scholar]
  73. Cron R.Q. Goyal G. Chatham W.W. Cytokine storm syndrome. Annu. Rev. Med. 2023 74 1 321 337 10.1146/annurev‑med‑042921‑112837 36228171
    [Google Scholar]
  74. Harsanyi S. Kupcova I. Danisovic L. Klein M. Selected biomarkers of depression: what are the effects of cytokines and inflammation? Int. J. Mol. Sci. 2022 24 1 578 10.3390/ijms24010578 36614020
    [Google Scholar]
  75. Karner D. Kvestak D. Lisnic B. Comprehensive analysis of soluble mediator profiles in congenital CMV infection using an MCMV model. Viruses 2024 16 2 208 10.3390/v16020208 38399983
    [Google Scholar]
  76. Cuní-López C. Stewart R. Oikari L.E. Advanced patient-specific microglia cell models for pre-clinical studies in Alzheimer’s disease. J. Neuroinflammation 2024 21 1 50 10.1186/s12974‑024‑03037‑3 38365833
    [Google Scholar]
  77. Wu L. Xian X. Xu G. Toll-like receptor 4: a promising therapeutic target for Alzheimer’s disease. Mediators Inflamm. 2022 2022 1 20 10.1155/2022/7924199 36046763
    [Google Scholar]
  78. Iring A. Tóth A. Baranyi M. The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson’s disease: Signalling pathway and novel therapeutic targets. Pharmacol. Res. 2022 176 106045 10.1016/j.phrs.2021.106045 34968684
    [Google Scholar]
  79. Yu N. Cui H. Jin S. IL-6 from cerebrospinal fluid causes widespread pain via STAT3-mediated astrocytosis in chronic constriction injury of the infraorbital nerve. J. Neuroinflammation 2024 21 1 60 10.1186/s12974‑024‑03049‑z 38419042
    [Google Scholar]
  80. Akeret K. Buzzi R.M. Thomson B.R. MyD88-TLR4-dependent choroid plexus activation precedes perilesional inflammation and secondary brain edema in a mouse model of intracerebral hemorrhage. J. Neuroinflammation 2022 19 1 290 10.1186/s12974‑022‑02641‑5 36482445
    [Google Scholar]
  81. Strzelec M. Detka J. Mieszczak P. Sobocińska M.K. Majka M. Immunomodulation-a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front. Immunol. 2023 14 1127704 10.3389/fimmu.2023.1127704 36969193
    [Google Scholar]
  82. Park J. Lee C. Kim Y.T. Effects of natural product-derived compounds on inflammatory pain via regulation of microglial activation. Pharmaceuticals (Basel) 2023 16 7 941 10.3390/ph16070941 37513853
    [Google Scholar]
  83. Schlotterose L. Cossais F. Lucius R. Hattermann K. Breaking the circulus vitiosus of neuroinflammation: Resveratrol attenuates the human glial cell response to cytokines. Biomed. Pharmacother. 2023 163 114814 10.1016/j.biopha.2023.114814 37148859
    [Google Scholar]
  84. Payne A. Taka E. Adinew G.M. Soliman K.F.A. Molecular mechanisms of the anti-inflammatory effects of epigallocatechin 3-gallate (EGCG) in LPS-activated BV-2 microglia cells. Brain Sci. 2023 13 4 632 10.3390/brainsci13040632 37190597
    [Google Scholar]
  85. He X.B. Wu Y. Huang H. Guo F. A novel histone deacetylase inhibitor‐based approach to eliminate microglia and retain astrocyte properties in glial cell culture. J. Neurochem. 2022 161 5 405 416 10.1111/jnc.15581 35092690
    [Google Scholar]
  86. Ono C.T. Yu Z. Obara T. Association between low levels of anti‐inflammatory cytokines during pregnancy and postpartum depression. Psychiatry Clin. Neurosci. 2023 77 8 434 441 10.1111/pcn.13566 37178325
    [Google Scholar]
  87. Du N. Yang R. Jiang S. Anti-aging drugs and the related signal pathways. Biomedicines 2024 12 1 127 10.3390/biomedicines12010127 38255232
    [Google Scholar]
  88. Ekentok-Atici C. Viral delivery systems within the gene therapy landscape. Journal of Research in Pharmacy 2023 27 3 640 652 10.29228/jrp.502
    [Google Scholar]
  89. Sena S. Van Staden J. Kumar V. Husen A. Hemidesmus indicus (L.) R. Br. ex Schult as natural bioactive products: An evidence-based review focused on inflammation related cancer prevention potential. Curr. Res. Biotechnol. 2023 6 100165 10.1016/j.crbiot.2023.100165
    [Google Scholar]
  90. Chan Y. Targeting cancer-inducing inflammation: current advancements and future prospects. Recent Developments in Anti-Inflammatory Therapy. Elsevier 2023 1 35 10.1016/B978‑0‑323‑99988‑5.00001‑2
    [Google Scholar]
  91. Ghosal R. Edwards K.L. Chiarelli T.L. Biomarkers of reproductive health in wildlife and techniques for their assessment. Theriogenology Wild 2023 3 100052 10.1016/j.therwi.2023.100052
    [Google Scholar]
  92. Barthel H. Villemagne V.L. Drzezga A. Future directions in molecular imaging of neurodegenerative disorders. J. Nucl. Med. 2022 63 11 68S 74S 10.2967/jnumed.121.263202 35649650
    [Google Scholar]
  93. Self W.K. Holtzman D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med. 2023 29 9 2187 2199 10.1038/s41591‑023‑02505‑2 37667136
    [Google Scholar]
  94. Zatcepin A. Ziegler S.I. Detectors in positron emission tomography. Z. Med. Phys. 2023 33 1 4 12 10.1016/j.zemedi.2022.08.004 36208967
    [Google Scholar]
  95. Rizzo A. Racca M. Garrou F. Diagnostic performance of positron emission tomography with fibroblast-activating protein inhibitors in gastric cancer: A systematic review and meta-analysis. Int. J. Mol. Sci. 2023 24 12 10136 10.3390/ijms241210136 37373285
    [Google Scholar]
  96. Kolabas Z.I. Kuemmerle L.B. Perneczky R. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 2023 186 17 3706 3725.e29 10.1016/j.cell.2023.07.009 37562402
    [Google Scholar]
  97. Fleischmann D.F. Büttner M. Unterrainer M. High-grade glioma radiation therapy and reirradiation treatment planning using translocator protein positron emission tomography with 18F-GE-180. Adv. Radiat. Oncol. 2023 8 3 101185 10.1016/j.adro.2023.101185 36896209
    [Google Scholar]
  98. Eren F. Schwieler L. Orhan F. Immunological protein profiling of first-episode psychosis patients identifies CSF and blood biomarkers correlating with disease severity. Brain Behav. Immun. 2023 111 376 385 10.1016/j.bbi.2023.04.020 37146654
    [Google Scholar]
  99. Claeys W. Van Hoecke L. Geerts A. Neurometabolic and gliovascular changes in murine hepatic encephalopathy. J. Hepatol. 2022 77 6 S106 S107 10.1016/S0168‑8278(22)00601‑8
    [Google Scholar]
  100. Han E.X. Gu S. Steinle M. High-multiplexing quantitative CodePlex proteomic profiling of platelets in triple-negative breast cancer (TNBC) patients and healthy subjects. J. Clin. Oncol. 2022 40 16_suppl e15017.(Suppl.) 10.1200/JCO.2022.40.16_suppl.e15017
    [Google Scholar]
  101. Lan Y. Zhang X. Liu S. Fate mapping of Spp1 expression reveals age-dependent plasticity of disease-associated microglia-like cells after brain injury. Immunity 2024 57 2 349 363.e9 10.1016/j.immuni.2024.01.008 38309272
    [Google Scholar]
  102. Lin C.C.J. Herisson F. Le H. Mast cell deficiency improves cognition and enhances disease-associated microglia in 5XFAD mice. Cell Rep. 2023 42 9 113141 10.1016/j.celrep.2023.113141 37713312
    [Google Scholar]
  103. Thammahakin P. Maezono K. Maekawa N. Kariwa H. Kobayashi S. Detection of disease-associated microglia among various microglia phenotypes induced by West Nile virus infection in mice. J. Neurovirol. 2023 29 4 367 375 10.1007/s13365‑023‑01161‑z 37552415
    [Google Scholar]
  104. Martins-Ferreira R. Calafell-Segura J. Leal B. Rodríguez-Ubreva J. Martínez-Saez E. Mereu E. Pinho E. Costa P. Laguna A. Ballestar E. The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions. Nature Communications 2025 16 739 10.1038/s41467‑025‑56124
    [Google Scholar]
  105. Nayak V. Patra S. Rout S. Regulation of neuroinflammation in Alzheimer’s disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. Phytomedicine 2024 122 155150 10.1016/j.phymed.2023.155150 37944239
    [Google Scholar]
  106. Kong A.H.Y. Wu A.J. Ho O.K.Y. Exploring the potential of aptamers in targeting neuroinflammation and neurodegenerative disorders: opportunities and challenges. Int. J. Mol. Sci. 2023 24 14 11780 10.3390/ijms241411780 37511539
    [Google Scholar]
  107. Jain S. Singh R. Paliwal S. Sharma S. Targeting neuroinflammation as a disease-modifying approach to Alzheimer’s disease: potential and challenges. Mini Rev. Med. Chem. 2023 23 22 2097 2116 10.2174/1389557523666230511122435 37170998
    [Google Scholar]
  108. Jorfi M. Maaser-Hecker A. Tanzi R.E. The neuroimmune axis of Alzheimer’s disease. Genome Med. 2023 15 1 6 10.1186/s13073‑023‑01155‑w 36703235
    [Google Scholar]
  109. Kim S. Sharma C. Jung U.J. Kim S.R. Pathophysiological role of microglial activation induced by blood-borne proteins in Alzheimer’s disease. Biomedicines 2023 11 5 1383 10.3390/biomedicines11051383 37239054
    [Google Scholar]
  110. Garnier-Crussard A. Cotton F. Krolak-Salmon P. Chételat G. White matter hyperintensities in Alzheimer’s disease: Beyond vascular contribution. Alzheimers Dement. 2023 19 8 3738 3748 10.1002/alz.13057 37027506
    [Google Scholar]
  111. Glotfelty E.J. Tovar-y-Romo L.B. Hsueh S.C. The RhoA-ROCK1/ROCK2 pathway exacerbates inflammatory signaling in immortalized and primary microglia. Cells 2023 12 10 1367 10.3390/cells12101367 37408199
    [Google Scholar]
  112. Lana D. Branca J.J.V. Delfino G. Morphofunctional investigation in a transgenic mouse model of Alzheimer’s disease: non-reactive astrocytes are involved in Aβ load and reactive astrocytes in plaque build-up. Cells 2023 12 18 2258 10.3390/cells12182258 37759482
    [Google Scholar]
  113. Ye Y. Gao M. Shi W. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer’s disease. Front. Immunol. 2024 14 1325530 10.3389/fimmu.2023.1325530 38259476
    [Google Scholar]
  114. Kumar P. Mathew S. Gamage R. From the bush to the brain: Preclinical stages of ethnobotanical anti-inflammatory and neuroprotective drug discovery - an Australian example. Int. J. Mol. Sci. 2023 24 13 11086 10.3390/ijms241311086 37446262
    [Google Scholar]
  115. Tahami Monfared A.A. Byrnes M.J. White L.A. Zhang Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022 11 2 553 569 10.1007/s40120‑022‑00338‑8 35286590
    [Google Scholar]
/content/journals/car/10.2174/0115672050412711251115023127
Loading
/content/journals/car/10.2174/0115672050412711251115023127
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: tau pathology ; amyloid-beta ; Alzheimer’s disease ; cytokines ; neuroinflammation ; microglia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test