Skip to content
2000
image of Relation between Cerebrospinal Fluid Catecholamines and Vascular Risk Factors, Thyroid Function and Vitamins in Healthy Individuals and Patients with Neurodegenerative Diseases

Abstract

Introduction

The locus coeruleus is the primary site of norepinephrine (NE) synthesis in the brain. Its dysfunction has been implicated in the pathogenesis of Alzheimer’s disease. Vascular risk factors, thyroid dysfunction, and vitamin deficiencies have also been associated with an increased risk of dementia. This study aimed to evaluate the relationship between the catecholaminergic system-by measuring cerebrospinal fluid (CSF) levels of L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine (DA), and NE-and vascular risk factors, thyroid dysfunction, and vitamin deficiencies.

Methods

We conducted a cross-sectional observational study in which CSF levels of L-DOPA, DA and NE were measured in 117 participants. Data on Blood Pressure (BP), heart rate, glycaemic and lipid profiles, smoking history, thyroid function and vitamin B12 and folic acid levels were collected for each participant.

Results

We found significant correlations between NE and CSF glucose levels ( = 0.308, = 0.003) in participants without diabetes mellitus, between L-DOPA and orthostatic variation of diastolic BP ( = -0.288, = 0.014) and high-density lipoprotein ( = 0.404, = 0.001) and between NE and triglycerides ( = 0.271, = 0.030) and folic acid ( = 0.298, = 0.009).

Discussion

This is the first study to demonstrate correlations between CSF NE levels and CSF glucose, probably due to the effect of NE on astrocytes, and between CSF NE levels and folic acid, possibly related to its role in catecholamine synthesis. CSF L-DOPA levels were correlated with cardiovascular risk factors such as the orthostatic regulation of diastolic BP.

Conclusion

These findings may contribute to a better understanding of the pathophysiology of neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050411466251014111557
2026-01-02
2026-01-12
Loading full text...

Full text loading...

References

  1. Trillo L. Das D. Hsieh W. Ascending monoaminergic systems alterations in Alzheimer’s disease. Translating basic science into clinical care. Neurosci. Biobehav. Rev. 2013 37 8 1363 1379 10.1016/j.neubiorev.2013.05.008 23707776
    [Google Scholar]
  2. Gruber M.J. Ranganath C. How curiosity enhances hippocampus-dependent memory: The prediction, appraisal, curiosity, and exploration (PACE) framework. Trends Cogn. Sci. 2019 23 12 1014 1025 10.1016/j.tics.2019.10.003 31706791
    [Google Scholar]
  3. Lisman J. Grace A.A. Duzel E. A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends Neurosci. 2011 34 10 536 547 10.1016/j.tins.2011.07.006 21851992
    [Google Scholar]
  4. Lisman J.E. Grace A.A. The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 2005 46 5 703 713 10.1016/j.neuron.2005.05.002 15924857
    [Google Scholar]
  5. Nikolenko V.N. Borminskaya I.D. Nikitina A.T. Golyshkina M.S. Rizaeva N.A. Oganesyan M.V. Locus coeruleus-norepinephrine system: Spheres of influence and contribution to the development of neurodegenerative diseases. Front. Biosci. 2024 29 3 118 10.31083/j.fbl2903118 38538284
    [Google Scholar]
  6. Dahl M.J. Kulesza A. Werkle-Bergner M. Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer’s disease. Neurosci. Biobehav. Rev. 2023 153 105358 10.1016/j.neubiorev.2023.105358 37597700
    [Google Scholar]
  7. Krohn F. Lancini E. Ludwig M. Noradrenergic neuromodulation in ageing and disease. Neurosci. Biobehav. Rev. 2023 152 105311 10.1016/j.neubiorev.2023.105311 37437752
    [Google Scholar]
  8. Chowdhury A. Luchetti A. Fernandes G. A locus coeruleus-dorsal CA1 dopaminergic circuit modulates memory linking. Neuron 2022 110 20 3374 3388.e8 10.1016/j.neuron.2022.08.001 36041433
    [Google Scholar]
  9. Duszkiewicz A.J. McNamara C.G. Takeuchi T. Genzel L. Novelty and dopaminergic modulation of memory persistence: A tale of two systems. Trends Neurosci. 2019 42 2 102 114 10.1016/j.tins.2018.10.002 30455050
    [Google Scholar]
  10. Gálvez-Márquez D.K. Salgado-Ménez M. Moreno-Castilla P. Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus. Proc. Natl. Acad. Sci. USA 2022 119 49 e2208254119 10.1073/pnas.2208254119 36442129
    [Google Scholar]
  11. Kempadoo K.A. Mosharov E.V. Choi S.J. Sulzer D. Kandel E.R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl. Acad. Sci. USA 2016 113 51 14835 14840 10.1073/pnas.1616515114 27930324
    [Google Scholar]
  12. Takeuchi T. Duszkiewicz A.J. Sonneborn A. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 2016 537 7620 357 362 10.1038/nature19325 27602521
    [Google Scholar]
  13. Wagatsuma A. Okuyama T. Sun C. Smith L.M. Abe K. Tonegawa S. Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proc. Natl. Acad. Sci. USA 2018 115 2 E310 E316 10.1073/pnas.1714082115 29279390
    [Google Scholar]
  14. Wilmot J.H. Diniz C.R.A.F. Crestani A.P. Phasic locus coeruleus activity enhances trace fear conditioning by increasing dopamine release in the hippocampus. eLife 2024 12 RP91465 10.7554/eLife.91465.3 38592773
    [Google Scholar]
  15. Bondareff W. Mountjoy C.Q. Roth M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 1982 32 2 164 168 10.1212/WNL.32.2.164 7198741
    [Google Scholar]
  16. Mann D.M. Yates P.O. Marcyniuk B. A comparison of changes in the nucleus basalis and locus caeruleus in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1984 47 2 201 203 10.1136/jnnp.47.2.201 6707659
    [Google Scholar]
  17. Tomlinson B.E. Irving D. Blessed G. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci. 1981 49 3 419 428 10.1016/0022‑510X(81)90031‑9 7217992
    [Google Scholar]
  18. Kelly S.C. He B. Perez S.E. Ginsberg S.D. Mufson E.J. Counts S.E. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol. Commun. 2017 5 1 8 10.1186/s40478‑017‑0411‑2 28109312
    [Google Scholar]
  19. Zarow C. Lyness S.A. Mortimer J.A. Chui H.C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol. 2003 60 3 337 341 10.1001/archneur.60.3.337 12633144
    [Google Scholar]
  20. Serrano-Pozo A. Growdon J.H. Is Alzheimer’s Disease Risk Modifiable? J. Alzheimers Dis. 2019 67 3 795 819 10.3233/JAD181028 30776012
    [Google Scholar]
  21. Ge F. Zhu D. Tian M. Shi J. The role of thyroid function in alzheimer’s disease. J. Alzheimers Dis. 2021 83 4 1553 1562 10.3233/JAD‑210339 34420955
    [Google Scholar]
  22. Li Z. Liu J. Thyroid dysfunction and Alzheimer’s disease, a vicious circle. Front. Endocrinol. 2024 15 1354372 10.3389/fendo.2024.1354372 38419953
    [Google Scholar]
  23. Stefaniak O. Dobrzyńska M. Drzymała-Czyż S. Przysławski J. Diet in the prevention of alzheimer’s disease: Current knowledge and future research requirements. Nutrients 2022 14 21 4564 10.3390/nu14214564 36364826
    [Google Scholar]
  24. Lauer A.A. Grimm H.S. Apel B. Mechanistic link between vitamin b12 and alzheimer’s disease. Biomolecules 2022 12 1 129 10.3390/biom12010129 35053277
    [Google Scholar]
  25. Ardanaz C.G. Ramírez M.J. Solas M. Brain metabolic alterations in alzheimer’s disease. Int. J. Mol. Sci. 2022 23 7 3785 10.3390/ijms23073785 35409145
    [Google Scholar]
  26. Santisteban M.M. Iadecola C. Carnevale D. Hypertension, neurovascular dysfunction, and cognitive impairment. Hypertension 2023 80 1 22 34 10.1161/HYPERTENSIONAHA.122.18085 36129176
    [Google Scholar]
  27. Czuba E. Steliga A. Lietzau G. Kowiański P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions. Metab. Brain Dis. 2017 32 4 935 948 10.1007/s11011‑017‑0015‑3 28432486
    [Google Scholar]
  28. Giorgi F.S. Galgani A. Puglisi-Allegra S. Limanaqi F. Busceti C.L. Fornai F. Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer’s disease pathogenesis. J. Neurosci. Res. 2020 98 12 2406 2434 10.1002/jnr.24718 32875628
    [Google Scholar]
  29. McKhann G.M. Knopman D.S. Chertkow H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 263 269 10.1016/j.jalz.2011.03.005 21514250
    [Google Scholar]
  30. Rascovsky K. Hodges J.R. Knopman D. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011 134 9 2456 2477 10.1093/brain/awr179 21810890
    [Google Scholar]
  31. Gorno-Tempini M.L. Hillis A.E. Weintraub S. Classification of primary progressive aphasia and its variants. Neurology 2011 76 11 1006 1014 10.1212/WNL.0b013e31821103e6 21325651
    [Google Scholar]
  32. Thompson A.J. Banwell B.L. Barkhof F. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 17 2 162 173 10.1016/S1474‑4422(17)30470‑2 29275977
    [Google Scholar]
  33. Freeman R. Wieling W. Axelrod F.B. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 2011 21 2 69 72 10.1007/s10286‑011‑0119‑5 21431947
    [Google Scholar]
  34. Guimarães J. Vieira-Coelho M.A. Moura E. Urinary profile of catecholamines and metabolites in Parkinson patients with deep brain stimulation. Eur. J. Neurol. 2014 21 2 353 356 10.1111/ene.12161 23679894
    [Google Scholar]
  35. Lourenco M.V. Ribeiro F.C. Santos L.E. Beckman D. Melo H.M. Sudo F.K. Cerebrospinal fluid neurotransmitters, cytokines, and chemokines in Alzheimer’s and Lewy body diseases. J. Alzheimers Dis. 2021 82 3 1067 1074 10.3233/JAD‑210147
    [Google Scholar]
  36. Janssens J. Vermeiren Y. Fransen E. Cerebrospinal fluid and serum MHPG improve Alzheimer’s disease versus dementia with Lewy bodies differential diagnosis. Alzheimers Dement. 2018 10 1 172 181 10.1016/j.dadm.2018.01.002 29552632
    [Google Scholar]
  37. Henjum K. Watne L.O. Godang K. Cerebrospinal fluid catecholamines in Alzheimer’s disease patients with and without biological disease. Transl. Psychiatry 2022 12 1 151 10.1038/s41398‑022‑01901‑5 35397615
    [Google Scholar]
  38. Tohgi H. Ueno M. Abe T. Takahashi S. Nozaki Y. Concentration of monoamines and their metabolites in the cerebrospinal fluid from patients with senile dementia of the Alzheimer type and vascular dementia of the Binswanger type. J. Neural Transm. Park. Dis. Dement. Sect. 1992 4 1 69 77 10.1007/BF02257623 1540305
    [Google Scholar]
  39. Fillenz M. Lowry J.P. Boutelle M.G. Fray A.E. The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol. Scand. 1999 167 4 275 284 10.1046/j.1365‑201x.1999.00578.x 10632627
    [Google Scholar]
  40. Nortley R. Attwell D. Control of brain energy supply by astrocytes. Curr. Opin. Neurobiol. 2017 47 80 85 10.1016/j.conb.2017.09.012 29054039
    [Google Scholar]
  41. Laming P.R. Kimelberg H. Robinson S. Neuronal-glial interactions and behaviour. Neurosci. Biobehav. Rev. 2000 24 3 295 340 10.1016/S0149‑7634(99)00080‑9 10781693
    [Google Scholar]
  42. Pellerin L. Magistretti P.J. Sweet Sixteen for ANLS. J. Cereb. Blood Flow Metab. 2012 32 7 1152 1166 10.1038/jcbfm.2011.149 22027938
    [Google Scholar]
  43. Magistretti P.J. Regulation of glycogenolysis by neurotransmitters in the central nervous system. Diabete Metab. 1988 14 3 237 246 2900788
    [Google Scholar]
  44. Magistretti P.J. Vasoactive intestinal peptide and noradrenaline regulate energy metabolism in astrocytes: A physiological function in the control of local homeostasis within the CNS. Prog Brain Res 1994 100 87 93 10.1016/s0079‑6123(08)60773‑6] 7938539
    [Google Scholar]
  45. Magistretti P.J. Sorg O. Yu N. Martin J.L. Pellerin L. Neurotransmitters regulate energy metabolism in astrocytes: Implications for the metabolic trafficking between neural cells. Dev. Neurosci. 1993 15 3-5 306 312 10.1159/000111349 7805583
    [Google Scholar]
  46. DiNuzzo M. Giove F. Maraviglia B. Mangia S. Monoaminergic control of cellular glucose utilization by glycogenolysis in neocortex and hippocampus. Neurochem. Res. 2015 40 12 2493 2504 10.1007/s11064‑015‑1656‑4 26168779
    [Google Scholar]
  47. Briski K.P. Ibrahim M.M.H. Mahmood A.S.M.H. Alshamrani A.A. Norepinephrine regulation of ventromedial hypothalamic nucleus astrocyte glycogen metabolism. Int. J. Mol. Sci. 2021 22 2 759 10.3390/ijms22020759 33451134
    [Google Scholar]
  48. Harik S.I. LaManna J.C. Light A.I. Rosenthal M. Cerebral norepinephrine: Influence on cortical oxidative metabolism in situ. Science 1979 206 4414 69 71 10.1126/science.482927 482927
    [Google Scholar]
  49. LaManna J.C. Harik S.I. Light A.I. Rosenthal M. Norepinephrine depletion alters cerebral oxidative metabolism in the ‘active’ state. Brain Res. 1981 204 1 87 101 10.1016/0006‑8993(81)90654‑5 6265026
    [Google Scholar]
  50. Harik S.I. Busto R. Martinez E. Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. J. Neurosci. 1982 2 4 409 414 10.1523/JNEUROSCI.02‑04‑00409.1982 6279795
    [Google Scholar]
  51. Fray A.E. Forsyth R.J. Boutelle M.G. Fillenz M. The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: A microdialysis study. J. Physiol. 1996 496 1 49 57 10.1113/jphysiol.1996.sp021664 8910195
    [Google Scholar]
  52. Fillenz M. Lowry J.P. Studies of the source of glucose in the extracellular compartment of the rat brain. Dev. Neurosci. 1998 20 4-5 365 368 10.1159/000017332 9778573
    [Google Scholar]
  53. Saz-Lara A. Cavero-Redondo I. Martínez-Vizcaíno V. Lucerón-Lucas-Torres M. Pascual-Morena C. Sequí-Domínguez I. Association between arterial stiffness and orthostatic hypotension: A systematic review and meta-analysis. Front. Physiol. 2023 14 1164519 10.3389/fphys.2023.1164519 37250126
    [Google Scholar]
  54. Toth P. Tarantini S. Csiszar A. Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: Mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am. J. Physiol. Heart Circ. Physiol. 2017 312 1 H1 H20 10.1152/ajpheart.00581.2016 27793855
    [Google Scholar]
  55. Zhou G. Zhao X. Lou Z. Impaired cerebral autoregulation in alzheimer’s disease: A transcranial doppler study. J. Alzheimers Dis. 2019 72 2 623 631 10.3233/JAD‑190296 31594219
    [Google Scholar]
  56. Benedictus M.R. Leeuwis A.E. Binnewijzend M.A.A. Lower cerebral blood flow is associated with faster cognitive decline in Alzheimer’s disease. Eur. Radiol. 2017 27 3 1169 1175 10.1007/s00330‑016‑4450‑z 27334014
    [Google Scholar]
  57. Leijenaar J.F. van Maurik I.S. Kuijer J.P.A. Lower cerebral blood flow in subjects with Alzheimer’s dementia, mild cognitive impairment, and subjective cognitive decline using two‐dimensional phase‐contrast magnetic resonance imaging. Alzheimers Dement. 2017 9 1 76 83 10.1016/j.dadm.2017.10.001 29234724
    [Google Scholar]
  58. Franklin S.S. Ageing and hypertension: The assessment of blood pressure indices in predicting coronary heart disease. J. Hypertens. Suppl. 1999 17 5 S29 S36 10706323
    [Google Scholar]
  59. Swaminathan R.V. Alexander K.P. Pulse pressure and vascular risk in the elderly: Associations and clinical implications. Am. J. Geriatr. Cardiol. 2006 15 4 226 234 10.1111/j.1076‑7460.2006.04774.x 16849888
    [Google Scholar]
  60. Levin R.A. Carnegie M.H. Celermajer D.S. Pulse Pressure: An emerging therapeutic target for dementia. Front. Neurosci. 2020 14 669 10.3389/fnins.2020.00669 32670015
    [Google Scholar]
  61. Zorec R. Vardjan N. Adrenergic regulation of astroglial aerobic glycolysis and lipid metabolism: Towards a noradrenergic hypothesis of neurodegeneration. Neurobiol. Dis. 2023 182 106132 10.1016/j.nbd.2023.106132 37094775
    [Google Scholar]
  62. Smolič T. Tavčar P. Horvat A. Astrocytes in stress accumulate lipid droplets. Glia 2021 69 6 1540 1562 10.1002/glia.23978 33609060
    [Google Scholar]
  63. Smolič T. Zorec R. Vardjan N. Pathophysiology of lipid droplets in neuroglia. Antioxidants 2021 11 1 22 10.3390/antiox11010022 35052526
    [Google Scholar]
  64. Wei Q. Wang H. Tian Y. Xu F. Chen X. Wang K. Reduced serum levels of triglyceride, very low density lipoprotein cholesterol and apolipoprotein B in Parkinson’s disease patients. PLoS One 2013 8 9 e75743 10.1371/journal.pone.0075743 24086623
    [Google Scholar]
  65. Ikeda K. Nakamura Y. Kiyozuka T. Serological profiles of urate, paraoxonase-1, ferritin and lipid in Parkinson’s disease: Changes linked to disease progression. Neurodegener. Dis. 2011 8 4 252 258 10.1159/000323265 21282940
    [Google Scholar]
  66. Scigliano G. Musicco M. Soliveri P. Piccolo I. Ronchetti G. Girotti F. Reduced risk factors for vascular disorders in Parkinson disease patients: A case-control study. Stroke 2006 37 5 1184 1188 10.1161/01.STR.0000217384.03237.9c 16574924
    [Google Scholar]
  67. Li J. Gu C. Zhu M. Li D. Chen L. Zhu X. Correlations between blood lipid, serum cystatin C, and homocysteine levels in patients with Parkinson’s disease. Psychogeriatrics 2020 20 2 180 188 10.1111/psyg.12483 31828903
    [Google Scholar]
  68. Gregório M.L. Pinhel M.A.S. Sado C.L. Impact of genetic variants of apolipoprotein E on lipid profile in patients with Parkinson’s disease. BioMed Res. Int. 2013 2013 1 7 10.1155/2013/641515 24175296
    [Google Scholar]
  69. Miyake Y. Tanaka K. Fukushima W. Case-control study of risk of Parkinson’s disease in relation to hypertension, hypercholesterolemia, and diabetes in Japan. J. Neurol. Sci. 2010 293 1-2 82 86 10.1016/j.jns.2010.03.002 20347450
    [Google Scholar]
  70. Huang X. Auinger P. Eberly S. Serum cholesterol and the progression of Parkinson’s disease: Results from DATATOP. PLoS One 2011 6 8 e22854 10.1371/journal.pone.0022854 21853051
    [Google Scholar]
  71. Huang X. Abbott R.D. Petrovitch H. Mailman R.B. Ross G.W. Low LDL cholesterol and increased risk of Parkinson’s disease: Prospective results from Honolulu‐Asia Aging Study. Mov. Disord. 2008 23 7 1013 1018 10.1002/mds.22013 18381649
    [Google Scholar]
  72. de Lau L.M.L. Koudstaal P.J. Hofman A. Breteler M.M.B. Serum cholesterol levels and the risk of Parkinson’s disease. Am. J. Epidemiol. 2006 164 10 998 1002 10.1093/aje/kwj283 16905642
    [Google Scholar]
  73. Simon K.C. Chen H. Schwarzschild M. Ascherio A. Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurology 2007 69 17 1688 1695 10.1212/01.wnl.0000271883.45010.8a 17761552
    [Google Scholar]
  74. Huang X. Chen H. Miller W.C. Lower low‐density lipoprotein cholesterol levels are associated with Parkinson’s disease. Mov. Disord. 2007 22 3 377 381 10.1002/mds.21290 17177184
    [Google Scholar]
  75. Ozga J.E. Felicione N.J. Blank M.D. Turiano N.A. Cigarette smoking duration mediates the association between future thinking and norepinephrine level. Addict. Behav. 2018 87 33 38 10.1016/j.addbeh.2018.06.004 29940389
    [Google Scholar]
  76. Bruijnzeel A.W. Tobacco addiction and the dysregulation of brain stress systems. Neurosci. Biobehav. Rev. 2012 36 5 1418 1441 10.1016/j.neubiorev.2012.02.015 22405889
    [Google Scholar]
  77. Krulich L. Neurotransmitter control of thyrotropin secretion. Neuroendocrinology 1982 35 2 139 147 10.1159/000123369 6127638
    [Google Scholar]
  78. Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006 5 11 949 960 10.1016/S1474‑4422(06)70598‑1 17052662
    [Google Scholar]
  79. Fernstrom JD Fernstrom MH Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain J Nutr 2007 137 6 1539S 47S (Suppl. 1) 10.1093/jn/137.6.1539S 17513421
    [Google Scholar]
  80. Chalupsky K. Kračun D. Kanchev I. Bertram K. Görlach A. Folic acid promotes recycling of tetrahydrobiopterin and protects against hypoxia-induced pulmonary hypertension by recoupling endothelial nitric oxide synthase. Antioxid. Redox Signal. 2015 23 14 1076 1091 10.1089/ars.2015.6329 26414244
    [Google Scholar]
/content/journals/car/10.2174/0115672050411466251014111557
Loading
/content/journals/car/10.2174/0115672050411466251014111557
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: blood pressure ; cholesterol ; thyroid ; norepinephrine ; dopamine ; cerebrospinal fluid ; glucose ; L-DOPA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test