Skip to content
2000
Volume 22, Issue 11
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by synaptic dysfunction and the accumulation of amyloid plaques. The molecular mechanisms linking gene dysregulation, pathogenic variants, and protein interaction networks to these core pathologies remain incompletely understood. This study aimed to integrate transcriptomic data with mutation and structural modeling to uncover disease mechanisms and identify therapeutic targets.

Methods

We performed differential gene expression analysis on the GSE138260 microarray dataset using GEO2R to identify DEGs in AD brain tissue. Missense mutations in DEGs were retrieved from the Alzheimer’s Disease Variant Portal (ADVP). Protein-protein interaction networks were constructed using the STRING database to identify connections with the amyloid precursor protein (APP). Molecular dynamics simulations were conducted to evaluate the structural consequences of the BDNF V66M mutation.

Results

A total of 1,588 DEGs were identified, including upregulation of immune-related genes and downregulation of neuroplasticity-associated genes ( BDNF, GRIN2B, GRM8). PPI analysis revealed a core network centered on APP, including BDNF as a direct interactor. The V66M variant in BDNF, confirmed to be downregulated in AD brains, showed increased rigidity and localized flexibility in structural models.

Discussion

The integration of transcriptomics and protein modeling revealed a critical link between BDNF dysfunction and APP interaction in AD. The V66M mutation was found to structurally alter BDNF, potentially disrupting its neuroprotective roles. The findings suggested that impaired BDNF signaling, driven by transcriptional repression and structural mutation, contributes to amyloid pathology and synaptic failure.

Conclusion

This multi-omics investigation has identified BDNF as a converging point of gene dysregulation and pathogenic mutation within an APP-centric network. Structural alterations induced by the V66M mutation may exacerbate amyloid accumulation and neuronal dysfunction, supporting therapeutic strategies aimed at enhancing BDNF signaling in AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050410268250919050955
2025-10-15
2026-02-07
Loading full text...

Full text loading...

References

  1. 2024 Alzheimer’s disease facts and figures.Alzheimers Dement.20242053708382110.1002/alz.1380938689398
    [Google Scholar]
  2. HenekaM.T. van der FlierW.M. JessenF. HoozemannsJ. ThalD.R. BocheD BrosseronF. TeunissenC. ZetterbergH. JacobsA.H. EdisonP. RamirezA. CruchagaC. LambertJ.C. LazaA.R. Sanchez-MutJ.V. FischerA. Castro-GomezS. SteinT.D. KleineidamL. WagnerM. NeherJ.J. CunninghamC. SinghraoS.K. PrinzM. GlassC.K. SchlachetzkiJ.C.M. ButovskyO. KleemannK. De JaegerP.L. ScheiblichH. BrownG.C. LandrethG. MoutinhoM. GrutzendlerJ. Gomez-NicolaD. McManusR.M. AndreassonK. IsingC. KarabagD. BakerD.J. LiddelowS.A. VerkhratskyA. TanseyM. MonsonegoA. AignerL. DorothéeG. NaveK.A. SimonsM. ConstantinG. RosenzweigN. PascualA. PetzoldG.C. KipnisJ. VenegasC. ColonnaM. WalterJ. TennerA.J. O'BanionM.K. SteinertJ.R. FeinsteinD.L. SastreM BhaskarK. HongS. SchaferD.P. GoldeT. RansohoffR.M. MorganD. BreitnerJ. MancusoR. RiechersS.P. Neuroinflammation in Alzheimer disease.Nat. Rev. Immunol.2025May25532135210.1038/s41577‑024‑01104‑739653749
    [Google Scholar]
  3. MeftahS. GanJ. Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression.Front. Synaptic Neurosci.202315112903610.3389/fnsyn.2023.112903636970154
    [Google Scholar]
  4. ChenY. YuY. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation.J. Neuroinflammation202320116510.1186/s12974‑023‑02853‑337452321
    [Google Scholar]
  5. XiaQ. YangX. ShiJ. LiuZ. PengY. WangW. LiB. ZhaoY. XiaoJ. HuangL. WangD. GaoX. The protective A673T mutation of amyloid precursor protein (APP) in Alzheimer’s disease.Mol. Neurobiol.20215884038405010.1007/s12035‑021‑02385‑y33914267
    [Google Scholar]
  6. ZhangY. ChenH. LiR. SterlingK. SongW. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future.Signal Transduct. Target. Ther.20238124810.1038/s41392‑023‑01484‑737386015
    [Google Scholar]
  7. FagianiF. LanniC. RacchiM. GovoniS. (Dys)regulation of synaptic activity and neurotransmitter release by β-Amyloid: A look beyond Alzheimer’s disease pathogenesis.Front. Mol. Neurosci.20211463588010.3389/fnmol.2021.63588033716668
    [Google Scholar]
  8. BaranowskiB.J. MohammadA. LeBlancP.J. FajardoV.A. MacPhersonR.E.K. Examination of Akt and GSK3β in BDNF-mediated reductions in BACE1 activity in neuronal cells.Physiol. Rep.202412167000110.14814/phy2.7000139161054
    [Google Scholar]
  9. NigamS.M. XuS. KritikouJ.S. MarosiK. BrodinL. MattsonM.P. Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP.J. Neurochem.2017142228629610.1111/jnc.1403428382744
    [Google Scholar]
  10. QiaoY. LiuH. HeC. MaY. ApoE. ApoE mimic peptide COG1410 reduces Aβ deposition and improves cognitive function by inducing the transformation of A1/A2 reactive astrocytes and increasing the BDNF concentration in brain of APP/PS1 double transgenic mice.Neuroscience202453711612510.1016/j.neuroscience.2023.11.02338006963
    [Google Scholar]
  11. BaoZ. ZhangS. LiX. MiR-5787 attenuates macrophages-mediated inflammation by targeting TLR4/NF-κB in ischemic cerebral infarction.Neuromolecular Med.202123336337010.1007/s12017‑020‑08628‑w33165670
    [Google Scholar]
  12. Andrade-TalaveraY. Rodríguez-MorenoA. Synaptic plasticity and oscillations in Alzheimer’s disease: A complex picture of a multifaceted disease.Front. Mol. Neurosci.20211469647610.3389/fnmol.2021.69647634220451
    [Google Scholar]
  13. Bello-MedinaPC González-FrancoDA Vargas-RodríguezI Díaz-CintraS Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease.Neurologia202237868269010.1016/j.nrleng.2019.06.00834509401
    [Google Scholar]
  14. BenitezD.P. JiangS. WoodJ. WangR. HallC.M. PeerboomC. WongN. StringerK.M. VitanovaK.S. SmithV.C. JoshiD. SaitoT. SaidoT.C. HardyJ. HanriederJ. De StrooperB. SalihD.A. TripathiT. EdwardsF.A. CummingsD.M. Knock-in models related to Alzheimer’s disease: Synaptic transmission, plaques and the role of microglia.Mol. Neurodegener.20211614710.1186/s13024‑021‑00457‑034266459
    [Google Scholar]
  15. CeylanH. Integrated bioinformatics analysis to identify alternative therapeutic targets for Alzheimer’s disease: Insights from a synaptic machinery perspective.J. Mol. Neurosci.202272227328610.1007/s12031‑021‑01893‑934414562
    [Google Scholar]
  16. NitscheA. ArnoldC. UeberhamU. ReicheK. FallmannJ. HackermüllerJ. HornF. StadlerP.F. ArendtT. Alzheimer-related genes show accelerated evolution.Mol. Psychiatry202126105790579610.1038/s41380‑020‑0680‑132203153
    [Google Scholar]
  17. HammersDB. ForoudTM. KimHJ. MusemaJ. DageJL. EloyanA. CarrilloMC. DickersonBC. RabinoviciGD. ApostolovaLG. NudelmanKN. Effects of BDNF and COMT variants on cognitive decline in early-onset Alzheimer’s disease.Alzheimers Dement.202420e09238310.1002/alz.092383
    [Google Scholar]
  18. GulinoR. Synaptic dysfunction and plasticity in amyotrophic lateral sclerosis.Int. J. Mol. Sci.2023245461310.3390/ijms2405461336902042
    [Google Scholar]
  19. ZhangW. XuC. SunJ. ShenH.M. WangJ. YangC. Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential.Acta Pharm. Sin. B20221231019104010.1016/j.apsb.2022.01.00835530153
    [Google Scholar]
  20. BhatiaD. GrozdanovV. RufW.P. KassubekJ. LudolphA.C. WeishauptJ.H. DanzerK.M. T-cell dysregulation is associated with disease severity in Parkinson’s disease.J. Neuroinflammation202118125010.1186/s12974‑021‑02296‑834717679
    [Google Scholar]
  21. WeteringJ. GeutH. BolJ.J. GalisY. TimmermansE. TwiskJ.W.R. HeppD.H. MorellaM.L. PihlstromL. LemstraA.W. RozemullerA.J.M. JonkmanL.E. van de BergW.D.J. Neuroinflammation is associated with Alzheimer’s disease co-pathology in dementia with Lewy bodies.Acta. Neuropathol. Commun.20241217310.1186/s40478‑024‑01786‑z38715119
    [Google Scholar]
  22. OnyangoI.G. JaureguiG.V. ČarnáM. BennettJ.P.Jr StokinG.B. Neuroinflammation in Alzheimer’s disease.Biomedicines20219552410.3390/biomedicines905052434067173
    [Google Scholar]
  23. Muñoz-CastroC. NooriA. MagdamoC.G. LiZ. MarksJ.D. FroschM.P. DasS. HymanB.T. Serrano-PozoA. Cyclic multiplex fluorescent immunohistochemistry and machine learning reveal distinct states of astrocytes and microglia in normal aging and Alzheimer’s disease.J. Neuroinflammation20221913010.1186/s12974‑022‑02383‑435109872
    [Google Scholar]
  24. ListaS. ImbimboB.P. GrassoM. FidilioA. EmanueleE. MinorettiP. López-OrtizS. Martín-HernándezJ. GabelleA. CarusoG. MalagutiM. MelchiorriD. Santos-LozanoA. ImbimboC. HenekaM.T. CaraciF. Tracking neuroinflammatory biomarkers in Alzheimer’s disease: A strategy for individualized therapeutic approaches?J. Neuroinflammation202421118710.1186/s12974‑024‑03163‑y39080712
    [Google Scholar]
  25. ParidaP. BhowmickS. SahaA. IslamM.A. Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study.J. Biomol. Struct. Dyn.202139392394210.1080/07391102.2020.172081931984863
    [Google Scholar]
  26. StaudacherO. von BernuthH. Clinical presentation, diagnosis, and treatment of chronic granulomatous disease.Front. Pediatr.202412138455010.3389/fped.2024.138455039005504
    [Google Scholar]
  27. VerhoogS. TaneriP.E. Roa DíazZ.M. Marques-VidalP. TroupJ.P. BallyL. FrancoO.H. GlisicM. MukaT. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A systematic review.Nutrients2019117156510.3390/nu1107156531336737
    [Google Scholar]
/content/journals/car/10.2174/0115672050410268250919050955
Loading
/content/journals/car/10.2174/0115672050410268250919050955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test