Skip to content
2000
image of An In silico Multi-Omics Investigation of Alzheimer's Disease Linking Gene Dysregulation, Mutations, and Protein Networks to Core Pathologies

Abstract

Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by synaptic dysfunction and the accumulation of amyloid plaques. The molecular mechanisms linking gene dysregulation, pathogenic variants, and protein interaction networks to these core pathologies remain incompletely understood. This study aimed to integrate transcriptomic data with mutation and structural modeling to uncover disease mechanisms and identify therapeutic targets.

Methods

We performed differential gene expression analysis on the GSE138260 microarray dataset using GEO2R to identify DEGs in AD brain tissue. Missense mutations in DEGs were retrieved from the Alzheimer’s Disease Variant Portal (ADVP). Protein-protein interaction networks were constructed using the STRING database to identify connections with the amyloid precursor protein (APP). Molecular dynamics simulations were conducted to evaluate the structural consequences of the BDNF V66M mutation.

Results

A total of 1,588 DEGs were identified, including upregulation of immune-related genes and downregulation of neuroplasticity-associated genes ( BDNF, GRIN2B, GRM8). PPI analysis revealed a core network centered on APP, including BDNF as a direct interactor. The V66M variant in BDNF, confirmed to be downregulated in AD brains, showed increased rigidity and localized flexibility in structural models.

Discussion

The integration of transcriptomics and protein modeling revealed a critical link between BDNF dysfunction and APP interaction in AD. The V66M mutation was found to structurally alter BDNF, potentially disrupting its neuroprotective roles. The findings suggested that impaired BDNF signaling, driven by transcriptional repression and structural mutation, contributes to amyloid pathology and synaptic failure.

Conclusion

This multi-omics investigation has identified BDNF as a converging point of gene dysregulation and pathogenic mutation within an APP-centric network. Structural alterations induced by the V66M mutation may exacerbate amyloid accumulation and neuronal dysfunction, supporting therapeutic strategies aimed at enhancing BDNF signaling in AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050410268250919050955
2025-10-15
2025-12-15
Loading full text...

Full text loading...

References

  1. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024 20 5 3708 3821 10.1002/alz.13809 38689398
    [Google Scholar]
  2. Heneka MT van der Flier WM Jessen F Hoozemanns J Thal DR Boche D Brosseron F Teunissen C Zetterberg H Jacobs AH Edison P Ramirez A Cruchaga C Lambert JC Laza AR Sanchez-Mut JV Fischer A Castro-Gomez S Stein TD Kleineidam L Wagner M Neher JJ Cunningham C Singhrao SK Prinz M Glass CK Schlachetzki JCM Butovsky O Kleemann K De Jaeger PL Scheiblich H Brown GC Landreth G Moutinho M Grutzendler J Gomez-Nicola D McManus RM Andreasson K Ising C Karabag D Baker DJ Liddelow SA Verkhratsky A Tansey M Monsonego A Aigner L Dorothée G Nave KA Simons M Constantin G Rosenzweig N Pascual A Petzold GC Kipnis J Venegas C Colonna M Walter J Tenner AJ O'Banion MK Steinert JR Feinstein DL Sastre M Bhaskar K Hong S Schafer DP Golde T Ransohoff RM Morgan D Breitner J Mancuso R Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025 May 25 5 321 352 10.1038/s41577‑024‑01104‑7 39653749
    [Google Scholar]
  3. Meftah S. Gan J. Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front. Synaptic Neurosci. 2023 15 1129036 10.3389/fnsyn.2023.1129036 36970154
    [Google Scholar]
  4. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  5. Xia Q. Yang X. Shi J. Liu Z. Peng Y. Wang W. Li B. Zhao Y. Xiao J. Huang L. Wang D. Gao X. The protective A673T mutation of amyloid precursor protein (APP) in Alzheimer’s disease. Mol. Neurobiol. 2021 58 8 4038 4050 10.1007/s12035‑021‑02385‑y 33914267
    [Google Scholar]
  6. Zhang Y. Chen H. Li R. Sterling K. Song W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023 8 1 248 10.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  7. Fagiani F. Lanni C. Racchi M. Govoni S. (Dys)regulation of synaptic activity and neurotransmitter release by β-Amyloid: A look beyond Alzheimer’s disease pathogenesis. Front. Mol. Neurosci. 2021 14 635880 10.3389/fnmol.2021.635880 33716668
    [Google Scholar]
  8. Baranowski B.J. Mohammad A. LeBlanc P.J. Fajardo V.A. MacPherson R.E.K. Examination of Akt and GSK3β in BDNF ‐mediated reductions in BACE1 activity in neuronal cells. Physiol. Rep. 2024 12 16 70001 10.14814/phy2.70001 39161054
    [Google Scholar]
  9. Nigam S.M. Xu S. Kritikou J.S. Marosi K. Brodin L. Mattson M.P. Exercise and BDNF reduce Aβ production by enhancing α‐secretase processing of APP. J. Neurochem. 2017 142 2 286 296 10.1111/jnc.14034 28382744
    [Google Scholar]
  10. Qiao Y. Liu H. He C. Ma Y. Apo E. ApoE mimic peptide COG1410 reduces Aβ deposition and improves cognitive function by inducing the transformation of A1/A2 reactive astrocytes and increasing the BDNF concentration in brain of APP/PS1 double transgenic mice. Neuroscience 2024 537 116 125 10.1016/j.neuroscience.2023.11.023 38006963
    [Google Scholar]
  11. Bao Z. Zhang S. Li X. MiR-5787 attenuates macrophages-mediated inflammation by targeting TLR4/NF-κB in ischemic cerebral infarction. Neuromolecular Med. 2021 23 3 363 370 10.1007/s12017‑020‑08628‑w 33165670
    [Google Scholar]
  12. Andrade-Talavera Y. Rodríguez-Moreno A. Synaptic plasticity and oscillations in Alzheimer’s disease: A complex picture of a multifaceted disease. Front. Mol. Neurosci. 2021 14 696476 10.3389/fnmol.2021.696476 34220451
    [Google Scholar]
  13. Bello-Medina PC González-Franco DA Vargas-Rodríguez I Díaz-Cintra S Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurologia 2022 37 8 682 690 10.1016/j.nrleng.2019.06.008 34509401
    [Google Scholar]
  14. Benitez D.P. Jiang S. Wood J. Wang R. Hall C.M. Peerboom C. Wong N. Stringer K.M. Vitanova K.S. Smith V.C. Joshi D. Saito T. Saido T.C. Hardy J. Hanrieder J. De Strooper B. Salih D.A. Tripathi T. Edwards F.A. Cummings D.M. Knock-in models related to Alzheimer’s disease: Synaptic transmission, plaques and the role of microglia. Mol. Neurodegener. 2021 16 1 47 10.1186/s13024‑021‑00457‑0 34266459
    [Google Scholar]
  15. Ceylan H. Integrated bioinformatics analysis to identify alternative therapeutic targets for Alzheimer’s disease: Insights from a synaptic machinery perspective. J. Mol. Neurosci. 2022 72 2 273 286 10.1007/s12031‑021‑01893‑9 34414562
    [Google Scholar]
  16. Nitsche A. Arnold C. Ueberham U. Reiche K. Fallmann J. Hackermüller J. Horn F. Stadler P.F. Arendt T. Alzheimer-related genes show accelerated evolution. Mol. Psychiatry 2021 26 10 5790 5796 10.1038/s41380‑020‑0680‑1 32203153
    [Google Scholar]
  17. Hammers DB. Foroud TM. Kim HJ. Musema J. Dage JL. Eloyan A. Carrillo MC. Dickerson BC. Rabinovici GD. Apostolova LG. Nudelman KN. Effects of BDNF and COMT variants on cognitive decline in early-onset Alzheimer’s disease. Alzheimers Dement 2024 20 e092383 10.1002/alz.092383
    [Google Scholar]
  18. Gulino R. Synaptic dysfunction and plasticity in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2023 24 5 4613 10.3390/ijms24054613 36902042
    [Google Scholar]
  19. Zhang W. Xu C. Sun J. Shen H.M. Wang J. Yang C. Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm. Sin. B 2022 12 3 1019 1040 10.1016/j.apsb.2022.01.008 35530153
    [Google Scholar]
  20. Bhatia D. Grozdanov V. Ruf W.P. Kassubek J. Ludolph A.C. Weishaupt J.H. Danzer K.M. T-cell dysregulation is associated with disease severity in Parkinson’s disease. J. Neuroinflammation 2021 18 1 250 10.1186/s12974‑021‑02296‑8 34717679
    [Google Scholar]
  21. Wetering J. Geut H. Bol J.J. Galis Y. Timmermans E. Twisk J.W.R. Hepp D.H. Morella M.L. Pihlstrom L. Lemstra A.W. Rozemuller A.J.M. Jonkman L.E. van de Berg W.D.J. Neuroinflammation is associated with Alzheimer’s disease co-pathology in dementia with Lewy bodies. Acta Neuropathol. Commun. 2024 12 1 73 10.1186/s40478‑024‑01786‑z 38715119
    [Google Scholar]
  22. Onyango I.G. Jauregui G.V. Čarná M. Bennett J.P. Jr Stokin G.B. Neuroinflammation in Alzheimer’s Disease. Biomedicines 2021 9 5 524 10.3390/biomedicines9050524 34067173
    [Google Scholar]
  23. Muñoz-Castro C. Noori A. Magdamo C.G. Li Z. Marks J.D. Frosch M.P. Das S. Hyman B.T. Serrano-Pozo A. Cyclic multiplex fluorescent immunohistochemistry and machine learning reveal distinct states of astrocytes and microglia in normal aging and Alzheimer’s disease. J. Neuroinflammation 2022 19 1 30 10.1186/s12974‑022‑02383‑4 35109872
    [Google Scholar]
  24. Lista S. Imbimbo B.P. Grasso M. Fidilio A. Emanuele E. Minoretti P. López-Ortiz S. Martín-Hernández J. Gabelle A. Caruso G. Malaguti M. Melchiorri D. Santos-Lozano A. Imbimbo C. Heneka M.T. Caraci F. Tracking neuroinflammatory biomarkers in Alzheimer’s disease: A strategy for individualized therapeutic approaches? J. Neuroinflammation 2024 21 1 187 10.1186/s12974‑024‑03163‑y 39080712
    [Google Scholar]
  25. Parida P. Bhowmick S. Saha A. Islam M.A. Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study. J. Biomol. Struct. Dyn. 2021 39 3 923 942 10.1080/07391102.2020.1720819 31984863
    [Google Scholar]
  26. Staudacher O. von Bernuth H. Clinical presentation, diagnosis, and treatment of chronic granulomatous disease. Front Pediatr. 2024 12 1384550 10.3389/fped.2024.1384550 39005504
    [Google Scholar]
  27. Verhoog S. Taneri P.E. Roa Díaz Z.M. Marques-Vidal P. Troup J.P. Bally L. Franco O.H. Glisic M. Muka T. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A systematic review. Nutrients 2019 11 7 1565 10.3390/nu11071565 31336737
    [Google Scholar]
/content/journals/car/10.2174/0115672050410268250919050955
Loading
/content/journals/car/10.2174/0115672050410268250919050955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test