Skip to content
2000
image of Identification of MicroRNA Drug Targets for Alzheimer's and Diabetes Mellitus Using Network Medicine

Abstract

Introduction

Type 2 diabetes mellitus (T2D) is a known risk factor for developing Alzheimer’s disease (AD). Recent research shows that both diseases share complex and related pathophysiological processes. Network medicine approaches can help to elucidate common dysregulated processes among different diseases, such as AD and T2D. Thus, the aim of this work was to determine differentially expressed genes (DEGs) in AD and T2D and to apply a network medicine approach to identify the microRNAs (miRNAs) involved in the AD-T2D association.

Methods

Gene expression microarray data sets consisting of 384 control samples and 399 samples belonging to AD and T2D disease were analyzed to obtain DEGs shared by both diseases; the miRNAs associated with these DEGs were predicted using a network medicine approach. Finally, potential small molecules targeting these potentially deregulated miRNAs were identified.

Results

AD and T2D shared a subset of 82 downregulated DEGs. These genes were significantly associated ( 0.01) with the ontology terms of chemical synaptic deregulation. DEGs were associated with 12 miRNAs expressed in specific tissues for AD and T2D. Such miRNAs were also primarily associated with the ontology terms related to synaptic deregulation and cancer, and AKT signaling pathways. Steroid anti-inflammatory drugs, antineoplastics, and glucose metabolites were predicted to be potential regulators of the 12 shared miRNAs.

Discussion

The network medicine approach integrating DEGs and miRNAs enabled the identification of shared, potentially deregulated biological processes and pathways underlying the pathophysiology of AD and T2D. These common molecular mechanisms were also linked to drugs currently used in clinical practice, suggesting that this strategy may inform future drug repurposing efforts. Nonetheless, further in-depth biological validation is required to confirm these findings.

Conclusion

Network medicine allowed identifying 12 miRNAs involved in the AD-T2D association, and these could be drug targets for the design of new treatments; however, the identified miRNAs need further experimental confirmation.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050393875250626065205
2025-07-14
2025-09-12
Loading full text...

Full text loading...

References

  1. Morselli Gysi D. do Valle Í. Zitnik M. Ameli A. Gan X. Varol O. Ghiassian S.D. Patten J.J. Davey R.A. Loscalzo J. Barabási A.L. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci. USA 2021 118 19 2025581118 10.1073/pnas.2025581118 33906951
    [Google Scholar]
  2. Chen S. Li H. Zheng J. Hao L. Jing T. Wu P. Zhang B. Ma D. Zhang J. Ma J. Expression profiles of exosomal micrornas derived from cerebrospinal fluid in patients with congenital hydrocephalus determined by microRNA sequencing. Dis. Markers 2022 2022 1 16 10.1155/2022/5344508 35371347
    [Google Scholar]
  3. Rajamaki B. Hartikainen S. Tolppanen A.M. The effect of comorbidities on survival in persons with Alzheimer’s disease: A matched cohort study. BMC Geriatr. 2021 21 1 173 10.1186/s12877‑021‑02130‑z 33750334
    [Google Scholar]
  4. Zhang J. Chen C. Hua S. Liao H. Wang M. Xiong Y. Cao F. An updated meta-analysis of cohort studies: Diabetes and risk of Alzheimer’s disease. Diabetes Res. Clin. Pract. 2017 124 41 47 10.1016/j.diabres.2016.10.024 28088029
    [Google Scholar]
  5. Cheng G. Huang C. Deng H. Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta‐analysis of longitudinal studies. Intern. Med. J. 2012 42 5 484 491 10.1111/j.1445‑5994.2012.02758.x 22372522
    [Google Scholar]
  6. Diniz Pereira J. Gomes Fraga V. Morais Santos A.L. Carvalho M.G. Caramelli P. Braga Gomes K. Alzheimer’s disease and type 2 diabetes mellitus: A systematic review of proteomic studies. J. Neurochem. 2021 156 6 753 776 10.1111/jnc.15166 32909269
    [Google Scholar]
  7. Chornenkyy Y. Wang W.X. Wei A. Nelson P.T. Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol. 2019 29 1 3 17 10.1111/bpa.12655 30106209
    [Google Scholar]
  8. Kamal M. Priyamvada S. Anbazhagan A. Jabir N. Tabrez S. Greig N. Linking Alzheimer’s disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS Neurol. Disord. Drug Targets 2014 13 2 338 346 10.2174/18715273113126660137
    [Google Scholar]
  9. Michailidis M. Moraitou D. Tata D.A. Kalinderi K. Papamitsou T. Papaliagkas V. Alzheimer’s disease as type 3 diabetes: Common pathophysiological mechanisms between Alzheimer’s disease and type 2 diabetes. Int. J. Mol. Sci. 2022 23 5 2687 10.3390/ijms23052687 35269827
    [Google Scholar]
  10. Huang C. Luo J. Wen X. Li K. Linking diabetes mellitus with alzheimer’s disease: Bioinformatics analysis for the potential pathways and characteristic genes. Biochem. Genet. 2022 60 3 1049 1075 10.1007/s10528‑021‑10154‑8 34779951
    [Google Scholar]
  11. Condrat C.E. Thompson D.C. Barbu M.G. Bugnar O.L. Boboc A. Cretoiu D. Suciu N. Cretoiu S.M. Voinea S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020 9 2 276 10.3390/cells9020276 31979244
    [Google Scholar]
  12. Saliminejad K. Khorshid K.H.R. Fard S.S. Ghaffari S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019 234 5 5451 5465 10.1002/jcp.27486 30471116
    [Google Scholar]
  13. Montano M. MicroRNAs: MiRRORS of health and disease. Transl. Res. 2011 157 4 157 162 10.1016/j.trsl.2011.02.001 21420026
    [Google Scholar]
  14. Ho P.T.B. Clark I.M. Le L.T.T. MicroRNA-based diagnosis and therapy. Int. J. Mol. Sci. 2022 23 13 7167 10.3390/ijms23137167 35806173
    [Google Scholar]
  15. Ghiam S. Eslahchi C. Shahpasand K. Habibi-Rezaei M. Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front. Aging Neurosci. 2022 14 955461 10.3389/fnagi.2022.955461 36092798
    [Google Scholar]
  16. Alamro H. Bajic V. Macvanin M.T. Isenovic E.R. Gojobori T. Essack M. Gao X. Type 2 diabetes mellitus and its comorbidity, alzheimer’s disease: Identifying critical microRNA using machine learning. Front. Endocrinol. 2023 13 1084656 10.3389/fendo.2022.1084656 36743910
    [Google Scholar]
  17. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Holko M. Yefanov A. Lee H. Zhang N. Robertson C.L. Serova N. Davis S. Soboleva A. NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Res. 2013 41 Database issue D991 D995 23193258
    [Google Scholar]
  18. Gautier L. Cope L. Bolstad B.M. Irizarry R.A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004 20 3 307 315 10.1093/bioinformatics/btg405 14960456
    [Google Scholar]
  19. McCall M.N. Almudevar A. Affymetrix GeneChip microarray preprocessing for multivariate analyses. Brief. Bioinform. 2012 13 5 536 546 10.1093/bib/bbr072 22210854
    [Google Scholar]
  20. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  21. Ripley B.D. The R project in statistical computing. MSOR Connections 2001 1 1 23 25 10.11120/msor.2001.01010023
    [Google Scholar]
  22. Chu T-M. Bao W. Thomas R.S. Wolfinger R.D. Batch Profile Estimation, Correction, and Scoring. Batch Effects and Noise in Microarray Experiments. Hoboken, New Jersey John Wiley & Sons, Ltd 2009 155 165 10.1002/9780470685983.ch13
    [Google Scholar]
  23. Johnson W.E. Li C. Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007 8 1 118 127 10.1093/biostatistics/kxj037 16632515
    [Google Scholar]
  24. McCarthy D.J. Smyth G.K. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 2009 25 6 765 771 10.1093/bioinformatics/btp053 19176553
    [Google Scholar]
  25. Savage R.S. Heller K. Xu Y. Ghahramani Z. Truman W.M. Grant M. Denby K.J. Wild D.L. R/BHC: Fast Bayesian hierarchical clustering for microarray data. BMC Bioinformatics 2009 10 1 242 10.1186/1471‑2105‑10‑242 19660130
    [Google Scholar]
  26. Hulsen T. de Vlieg J. Alkema W. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 2008 9 1 488 10.1186/1471‑2164‑9‑488 18925949
    [Google Scholar]
  27. Bruford E.A. Antonescu C.R. Carroll A.J. Chinnaiyan A. Cree I.A. Cross N.C.P. Dalgleish R. Gale R.P. Harrison C.J. Hastings R.J. Huret J.L. Johansson B. Le Beau M. Mecucci C. Mertens F. Verhaak R. Mitelman F. HUGO gene nomenclature committee (HGNC) recommendations for the designation of gene fusions. Leukemia 2021 35 11 3040 3043 10.1038/s41375‑021‑01436‑6 34615987
    [Google Scholar]
  28. Timalsina P. Charles K. Mondal A.M. STRING PPI score to characterize protein subnetwork biomarkers for human diseases and pathways. Proceedings of the 2014 IEEE International Conference on Bioinformatics and Bioengineering 2014, pp. 251-256. 10.1109/BIBE.2014.46
    [Google Scholar]
  29. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014 8 S4 S11 10.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  30. Chen E.Y. Tan C.M. Kou Y. Duan Q. Wang Z. Meirelles G.V. Clark N.R. Ma’ayan A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013 14 1 128 10.1186/1471‑2105‑14‑128 23586463
    [Google Scholar]
  31. Chang L. Zhou G. Soufan O. Xia J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020 48 W1 W244 W251 10.1093/nar/gkaa467 32484539
    [Google Scholar]
  32. Hsu S.D. Lin F.M. Wu W.Y. Liang C. Huang W.C. Chan W.L. Tsai W.T. Chen G.Z. Lee C.J. Chiu C.M. Chien C.H. Wu M.C. Huang C.Y. Tsou A.P. Huang H.D. miRTarBase: A database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 2011 39 Database issue D163 D169 10.1093/nar/gkq1107 21071411
    [Google Scholar]
  33. Karagkouni D. Paraskevopoulou M.D. Chatzopoulos S. Vlachos I.S. Tastsoglou S. Kanellos I. Papadimitriou D. Kavakiotis I. Maniou S. Skoufos G. Vergoulis T. Dalamagas T. Hatzigeorgiou A.G. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018 46 D1 D239 D245 10.1093/nar/gkx1141 29156006
    [Google Scholar]
  34. Xiao F. Zuo Z. Cai G. Kang S. Gao X. Li T. miRecords: An integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009 37 Database D105 D110 10.1093/nar/gkn851 18996891
    [Google Scholar]
  35. Khan M.S.H. Hegde V. Obesity and diabetes mediated chronic inflammation: A potential biomarker in Alzheimer’s disease. J. Pers. Med. 2020 10 2 42 10.3390/jpm10020042 32455946
    [Google Scholar]
  36. Aljanabi N.M. Mamtani S. Al-Ghuraibawi M.M.H. Yadav S. Nasr L. Alzheimer’s and hyperglycemia: Role of the insulin signaling pathway and GSK-3 inhibition in paving a path to dementia. Cureus 2020 12 2 6885 10.7759/cureus.6885 32190448
    [Google Scholar]
  37. Fan Y.C. Hsu J.L. Tung H.Y. Chou C.C. Bai C.H. Increased dementia risk predominantly in diabetes mellitus rather than in hypertension or hyperlipidemia: A population-based cohort study. Alzheimers Res. Ther. 2017 9 1 7 10.1186/s13195‑017‑0236‑z 28162091
    [Google Scholar]
  38. De Felice F.G. Ferreira S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 2014 63 7 2262 2272 10.2337/db13‑1954 24931033
    [Google Scholar]
  39. Chen J. Lin J. Hu Y. Ye M. Yao L. Wu L. Zhang W. Wang M. Deng T. Guo F. Huang Y. Zhu B. Wang D. RNADisease v4.0: An updated resource of RNA-associated diseases, providing RNA-disease analysis, enrichment and prediction. Nucleic Acids Res. 2023 51 D1 D1397 D1404 10.1093/nar/gkac814 36134718
    [Google Scholar]
  40. Kehl T. Kern F. Backes C. Fehlmann T. Stöckel D. Meese E. Lenhof H.P. Keller A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020 48 D1 D142 D147 10.1093/nar/gkz1022 31691816
    [Google Scholar]
  41. Yu F. Li B. Sun J. Qi J. De Wilde R.L. Torres-de la Roche L.A. Li C. Ahmad S. Shi W. Li X. Chen Z. PSRR: A web server for predicting the regulation of miRNAS expression by small molecules. Front. Mol. Biosci. 2022 9 817294 10.3389/fmolb.2022.817294 35386297
    [Google Scholar]
  42. Afzal M. Alharbi K.S. Alzarea S.I. Alyamani N.M. Kazmi I. Güven E. Revealing genetic links of Type 2 diabetes that lead to the development of Alzheimer’s disease. Heliyon 2023 9 1 12202 10.1016/j.heliyon.2022.e12202 36711310
    [Google Scholar]
  43. Ye X. Liu M. Wang X. Cheng S. Li C. Bai Y. Yang L. Wang X. Wen J. Xu W. Zhang S. Xu X. Li X. Exploring the common pathogenesis of Alzheimer’s disease and type 2 diabetes mellitus via microarray data analysis. Front. Aging Neurosci. 2023 15 1071391 10.3389/fnagi.2023.1071391 36923118
    [Google Scholar]
  44. Padmanabhan P. Kneynsberg A. Götz J. Super-resolution microscopy: A closer look at synaptic dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2021 22 12 723 740 10.1038/s41583‑021‑00531‑y 34725519
    [Google Scholar]
  45. Wu D. Li Y. Zheng L. Xiao H. Ouyang L. Wang G. Sun Q. Small molecules targeting protein–protein interactions for cancer therapy. Acta Pharm. Sin. B 2023 13 10 4060 4088 10.1016/j.apsb.2023.05.035 37799384
    [Google Scholar]
  46. Guo L. Tian J. Du H. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J. Alzheimers Dis. 2017 57 4 1071 1086 10.3233/JAD‑160702 27662318
    [Google Scholar]
  47. Garcia-Serrano A.M. Duarte J.M.N. Brain metabolism alterations in type 2 diabetes: What did we learn from diet-induced diabetes models? Front. Neurosci. 2020 14 229 10.3389/fnins.2020.00229 32265637
    [Google Scholar]
  48. Polidori N. Mainieri F. Chiarelli F. Mohn A. Giannini C. Early insulin resistance, type 2 diabetes, and treatment options in childhood. Horm. Res. Paediatr. 2022 95 2 149 166 10.1159/000521515 34915489
    [Google Scholar]
  49. Sędzikowska A. Szablewski L. Insulin and insulin resistance in alzheimer’s disease. Int. J. Mol. Sci. 2021 22 18 9987 10.3390/ijms22189987 34576151
    [Google Scholar]
  50. Kshirsagar V. Thingore C. Juvekar A. Insulin resistance: A connecting link between Alzheimer’s disease and metabolic disorder. Metab. Brain Dis. 2021 36 1 67 83 10.1007/s11011‑020‑00622‑2 32986168
    [Google Scholar]
  51. Ergin K. Çetinkaya R. Regulation of microRNAs. Methods Mol. Biol. 2022 2257 1 32 10.1007/978‑1‑0716‑1170‑8_1
    [Google Scholar]
  52. Ambros V. The functions of animal microRNAs. Nature 2004 431 7006 350 355 10.1038/nature02871 15372042
    [Google Scholar]
  53. Zheng M. Wang P. Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech 2021 11 4 179 10.1007/s13205‑021‑02738‑3
    [Google Scholar]
  54. Deng X. Liu X. Wei Y. Wang K. Zhu J. Zhong J. Zheng J. Guo R. Zhu Y. Ye Q. Wang M. Chen Y. He J. Chen Z. Huang S. Lv C. Zheng G. Liu S. Wen L. ErbB4 deficiency exacerbates olfactory dysfunction in an early-stage Alzheimer’s disease mouse model. Acta Pharmacol. Sin. 2024 45 12 2497 2512 10.1038/s41401‑024‑01332‑6 38982150
    [Google Scholar]
  55. Mouton-Liger F. Dumurgier J. Cognat E. Hourregue C. Zetterberg H. Vanderstichele H. Vanmechelen E. Bouaziz-Amar E. Blennow K. Hugon J. Paquet C. CSF levels of the BACE1 substrate NRG1 correlate with cognition in Alzheimer’s disease. Alzheimers Res. Ther. 2020 12 1 88 10.1186/s13195‑020‑00655‑w 32690068
    [Google Scholar]
  56. Muhammad I.F. Borné Y. Bao X. Melander O. Orho-Melander M. Nilsson P.M. Nilsson J. Engström G. Circulating HER2/ErbB2 levels are associated with increased incidence of diabetes: A population-based cohort study. Diabetes Care 2019 42 8 1582 1588 10.2337/dc18‑2556 31201260
    [Google Scholar]
  57. Rogers C. Moukdar F. McGee M.A. Davis B. Buehrer B.M. Daniel K.W. Collins S. Barakat H. Robidoux J. EGF receptor (ERBB1) abundance in adipose tissue is reduced in insulin-resistant and type 2 diabetic women. J. Clin. Endocrinol. Metab. 2012 97 3 E329 E340 10.1210/jc.2011‑1033 22238402
    [Google Scholar]
  58. Zabłocka A. Kazana W. Sochocka M. Stańczykiewicz B. Janusz M. Leszek J. Orzechowska B. Inverse correlation between alzheimer’s disease and cancer: Short overview. Mol. Neurobiol. 2021 58 12 6335 6349 10.1007/s12035‑021‑02544‑1 34523079
    [Google Scholar]
  59. Xia S. Yu X. Chen G. Pain as a protective factor for Alzheimer disease in patients with cancer. Cancers 2022 15 1 248 10.3390/cancers15010248 36612244
    [Google Scholar]
  60. Ma L.L. Yu J.T. Wang H.F. Meng X.F. Tan C.C. Wang C. Tan L. Association between cancer and Alzheimer’s disease: Systematic review and meta-analysis. J. Alzheimers Dis. 2014 42 2 565 573 10.3233/JAD‑140168 24906231
    [Google Scholar]
  61. Fan R. Xiao C. Wan X. Cha W. Miao Y. Zhou Y. Qin C. Cui T. Su F. Shan X. Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol. 2019 16 6 707 718 10.1080/15476286.2019.1593094 30900502
    [Google Scholar]
  62. Sun J. Xu M. Ru J. James-Bott A. Xiong D. Wang X. Cribbs A.P. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. Eur. J. Med. Chem. 2023 257 115500 10.1016/j.ejmech.2023.115500 37262996
    [Google Scholar]
  63. Ismail R. Parbo P. Madsen L.S. Hansen A.K. Hansen K.V. Schaldemose J.L. Kjeldsen P.L. Stokholm M.G. Gottrup H. Eskildsen S.F. Brooks D.J. The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: A longitudinal PET study. J. Neuroinflammation 2020 17 1 151 10.1186/s12974‑020‑01820‑6 32375809
    [Google Scholar]
  64. Kacířová M. Zmeškalová A. Kořínková L. Železná B. Kuneš J. Maletínská L. Inflammation: Major denominator of obesity, Type 2 diabetes and Alzheimer’s disease-like pathology? Clin. Sci. 2020 134 5 547 570 10.1042/CS20191313 32167154
    [Google Scholar]
  65. Lin M.H. Wu W.T. Chen Y.C. Lu C.H. Su S.C. Kuo F.C. Chou Y.C. Sun C.A. Association between non-steroidal anti-inflammatory drugs use and the risk of type 2 diabetes mellitus: A nationwide retrospective cohort study. J. Clin. Med. 2022 11 11 3186 10.3390/jcm11113186 35683572
    [Google Scholar]
  66. Rivers-Auty J. Mather A.E. Peters R. Lawrence C.B. Brough D. Anti-inflammatories in Alzheimer’s disease—potential therapy or spurious correlate? Brain Commun. 2020 2 2 fcaa109 10.1093/braincomms/fcaa109 33134914
    [Google Scholar]
  67. Kuryłowicz A. Koźniewski K. Anti-inflammatory strategies targeting metaflammation in type 2 diabetes. Molecules 2020 25 9 2224 10.3390/molecules25092224 32397353
    [Google Scholar]
  68. Jain S. Singh R. Paliwal S. Sharma S. Targeting neuroinflammation as disease modifying approach to Alzheimer’s disease: Potential and challenges. Mini Rev. Med. Chem. 2023 23 22 2097 2116 10.2174/1389557523666230511122435 37170998
    [Google Scholar]
  69. Gupta A. Effectiveness of ways to treat Alzheimer’s via studying ways to treat inflammatory processes in Alzheimer’s disease. J. Posit. School Psychol. 2022 6 4 1 5
    [Google Scholar]
  70. Beeri M.S. Schmeidler J. Lesser G.T. Maroukian M. West R. Leung S. Wysocki M. Perl D.P. Purohit D.P. Haroutunian V. Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology. Neurobiol. Aging 2012 33 7 1258 1264 10.1016/j.neurobiolaging.2011.02.011 21458888
    [Google Scholar]
  71. Suh S. Park M.K. Glucocorticoid-induced diabetes mellitus: An important but overlooked problem. Endocrinol. Metab. 2017 32 2 180 189 10.3803/EnM.2017.32.2.180 28555464
    [Google Scholar]
  72. Jolley J.A. Rajan P.V. Petersen R. Fong A. Wing D.A. Effect of antenatal betamethasone on blood glucose levels in women with and without diabetes. Diabetes Res. Clin. Pract. 2016 118 98 104 10.1016/j.diabres.2016.06.005 27351800
    [Google Scholar]
  73. Hwang J.L. Weiss R.E. Steroid‐induced diabetes: A clinical and molecular approach to understanding and treatment. Diabetes Metab. Res. Rev. 2014 30 2 96 102 10.1002/dmrr.2486 24123849
    [Google Scholar]
  74. Russell S.J. Sala R. Conaghan P.G. Habib G. Vo Q. Manning R. Kivitz A. Davis Y. Lufkin J. Johnson J.R. Kelley S. Bodick N. Triamcinolone acetonide extended-release in patients with osteoarthritis and type 2 diabetes: A randomized, phase 2 study. Rheumatology 2018 57 12 2235 2241 10.1093/rheumatology/key265 30203101
    [Google Scholar]
  75. Zhang M. Luo H. Xi Z. Rogaeva E. Drug repositioning for diabetes based on ‘omics’ data mining. PLoS One 2015 10 5 0126082 10.1371/journal.pone.0126082 25946000
    [Google Scholar]
/content/journals/car/10.2174/0115672050393875250626065205
Loading
/content/journals/car/10.2174/0115672050393875250626065205
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test