Skip to content
2000
image of Neuroprotective Effects of Fenugreek Leaf Extract in a Drosophila Model of Alzheimer's Disease Expressing Human Aβ-42

Abstract

Introduction

Much emphasis has been given to the biological activities of Fenugreek against various diseased conditions. This study investigated the effect of fenugreek leaf extract on behavioural and cognitive function of transgenic having human Aβ-42 expression in the neurons, herein referred as Alzheimer’s disease model flies (AD flies).

Materials and Methods

AD flies were exposed to four different doses of fenugreek leaf extract (FE) containing 0.005, 0.010, 0.015 and 0.02 g/ml for 30 days. Thereafter, behavioural and cognitive assessment was done using climbing ability, activity pattern, aversive phototaxis and odour choice indexes. The life span of different groups of flies was also recorded. The effect of FE on the oxidative stress markers, acetylcholinesterase, monoamine oxidase (MAO) and caspase 3 and 9 activities were determined. The deposition of Aβ-42 aggregates in the brain tissue of the flies was studied by performing immunostaining. Also, the metabolic profile of different groups of flies was studied by performing LC-MS/MS. Compared with control flies, 22 selected metabolites were found to be upregulated and downregulated among transgenic AD flies and FE exposed AD flies compared to control.

Results

The findings of this study showed the neuroprotective role of fenugreek extract, which could be employed for the treatment of Alzheimer’s disease. The AD flies exposed to FE showed a dose-dependent postponement in the decline of climbing ability, activity and cognitive impairments. A significant dose dependent increase in the life span was also noticed in the AD flies exposed to FE. A significant reduction in the oxidative stress, acetylcholinesterase, monoamine oxidase, and caspase-3&9 activities was also observed in a dose dependent manner. The results obtained from the immunostaining suggest the reduction in the deposition of Aβ-42 fibril, which was also confirmed by the docking studies showed the energetically favoured interaction useful for inhibiting the acetylcholinesterase and Aβ-42 aggregates.

Discussion

This study demonstrates the neurological potency of fenugreek leaf extract (FE) in a model of AD due to its antioxidantive, anti-cholinesterase, and neuroprotective properties. Using a combination of behavioral, biochemical, histological, and metabolomic approaches, we evaluated the therapeutic potential of FE in mitigating AD-like symptoms in transgenic flies expressing Aβ-42.

Conclusion

Fenugreek leaf extract may serve as a potential natural remedy for slowing down or alleviating the progression of AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050385870250721072643
2025-08-07
2025-09-16
Loading full text...

Full text loading...

References

  1. Wang X. Zhao Q. Tao R. Decreased retinal vascular density in Alzheimer’s disease (AD) and mild cognitive impairment (MCI): an optical coherence tomography angiography (OCTA) study. Front. Aging Neurosci. 2021 12 572484 10.3389/fnagi.2020.572484 33519415
    [Google Scholar]
  2. Gaugler J. James B. Johnson T. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022 18 4 700 789 10.1002/alz.12638 35289055
    [Google Scholar]
  3. Plascencia-Villa G. Perry G. Roles of oxidative stress in synaptic dysfunction and neuronal cell death in Alzheimer’s disease. Antioxid 2023 12 8 1628 10.3390/antiox12081628
    [Google Scholar]
  4. Tsintzas E. Niccoli T. Using Drosophila amyloid toxicity models to study Alzheimer’s disease. Ann. Hum. Genet. 2024 88 5 349 363 10.1111/ahg.12554 38517001
    [Google Scholar]
  5. Wang X. Iyaswamy A. Xu D. Real-time detection and visualization of amyloid-β aggregates induced by hydrogen peroxide in cell and mouse models of Alzheimer’s disease. ACS Appl. Mater. Interfaces 2023 15 1 39 47 10.1021/acsami.2c07859 35866616
    [Google Scholar]
  6. Varshney H. Siddique Y.H. Role of natural plant products against Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2021 20 10 904 941 10.2174/1871527320666210420135437 33881973
    [Google Scholar]
  7. Varshney H. Siddique Y.H. Medicinal properties of Fenugreek: A review. Open Biol. J. 2023 2 11
    [Google Scholar]
  8. Varshney H. Siddique Y.H. Pharmacological attributes of Fenugreek with Special reference to Alzheimer’s disease. Curr. Alzheimer Res. 2023 20 2 71 79 10.2174/1567205020666230525154300 37231762
    [Google Scholar]
  9. Duffy J.B. GAL4 system in drosophila: A fly geneticist’s swiss army knife. Genesis 2002 34 1-2 1 15 10.1002/gene.10150 12324939
    [Google Scholar]
  10. Siddique Y.H. Naz F. Rahul, Rashid M, Tajuddin. Effect of Majun Baladur on life span, climbing ability, oxidative stress and dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease. Heliyon 2019 5 4 e01483 10.1016/j.heliyon.2019.e01483 31011645
    [Google Scholar]
  11. Ali F Rahul Jyoti S Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci. Lett. 2019 692 90 99 10.1016/j.neulet.2018.10.053 30420334
    [Google Scholar]
  12. Siddique Y.H. Ali F. Protective effect of nordihydroguaiaretic acid (NDGA) on the transgenic Drosophila model of Alzheimer’s disease. Inter 2017 269 59 66 [PMID: 28392391
    [Google Scholar]
  13. Pendleton R.G. Parvez F. Sayed M. Hillman R. Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J. Pharmacol. Exp. Ther. 2002 300 1 91 96 10.1124/jpet.300.1.91 11752102
    [Google Scholar]
  14. Ali Y.O. Escala W. Ruan K. Zhai R.G. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J. Vis. Exp. 2011 49 49 2504 [PMID: 21445036
    [Google Scholar]
  15. Simonnet M.M. Berthelot-Grosjean M. Grosjean Y. Testing Drosophila olfaction with a Y-maze assay. J. Vis. Exp. 2014 88 51241 10.3791/51241
    [Google Scholar]
  16. Jollow D.J. Mitchell J.R. Zampaglione N. Gillette J.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974 11 3 151 169 10.1159/000136485 4831804
    [Google Scholar]
  17. Habig W.H. Pabst M.J. Jakoby W.B. Glutathione S-Transferases. J. Biol. Chem. 1974 249 22 7130 7139 10.1016/S0021‑9258(19)42083‑8 4436300
    [Google Scholar]
  18. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  19. Hawkins C.L. Morgan P.E. Davies M.J. Quantification of protein modification by oxidants. Free Radic. Biol. Med. 2009 46 8 965 988 10.1016/j.freeradbiomed.2009.01.007 19439229
    [Google Scholar]
  20. Marklund S.L. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 1984 74 4 1398 1403 10.1172/JCI111550 6541229
    [Google Scholar]
  21. Beers R.F. Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952 195 1 133 140 10.1016/S0021‑9258(19)50881‑X 14938361
    [Google Scholar]
  22. Ellman G.L. Courtney K.D. Andres V. Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  23. McEwen C.M. Human plasma monoamine oxidase. J. Biol. Chem. 1965 240 5 2011 2018 10.1016/S0021‑9258(18)97418‑1 14299620
    [Google Scholar]
  24. Palladino M.J. Keegan L.P. O’Connell M.A. Reenan R.A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 2000 102 4 437 449 10.1016/S0092‑8674(00)00049‑0 10966106
    [Google Scholar]
  25. Ritche D.W. Venkataraman V. Ultra-fast FFT protein docking on graphics processors. Bioinformatics 2010 26 2398 2405 10.1093/bioinformatics/btq444 20685958
    [Google Scholar]
  26. Davla S. Daly E. Nedow J. An LC-MS/MS method for simultaneous analysis of up to six monoamines from brain tissues. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1216 123604 10.1016/j.jchromb.2023.123604 36682335
    [Google Scholar]
  27. Alzheimer's disease facts and figures 2025 Available from: https://www.alz.org/alzheimers-dementia/facts-figures
  28. Varshney V. Garabadu D. Ang(1-7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol. Biol. Rep. 2021 48 5 4319 4331 10.1007/s11033‑021‑06447‑1 34075536
    [Google Scholar]
  29. Chowdhury A.A. Gawali N.B. Munshi R. Juvekar A.R. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab. Brain Dis. 2018 33 3 681 691 10.1007/s11011‑017‑0147‑5 29277879
    [Google Scholar]
  30. Som S. Antony J. Dhanabal S.P. Ponnusankar S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1-42) induced neurotoxicity in animal model of Alzheimer’s disease. Metab. Brain Dis. 2022 37 2 359 372 10.1007/s11011‑021‑00880‑8 35023028
    [Google Scholar]
  31. Tohda C. Urano T. Umezaki M. Nemere I. Kuboyama T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci. Rep. 2012 2 1 535 10.1038/srep00535 22837815
    [Google Scholar]
  32. Brintha S. Rajesh S. Renuka R. Phytochemical analysis and bioactivity prediction of compounds in methanolic extracts of Curculigo orchioides Gaertn. J. Pharmacogn. Phytochem. 2017 6 192 197
    [Google Scholar]
  33. Chowdhury A.A. Gawali N.B. Bulani V.D. In vitro antiglycating effect and in vivo neuroprotective activity of Trigonelline in d -galactose induced cognitive impairment. Pharmacol. Rep. 2018 70 2 372 377 10.1016/j.pharep.2017.09.006 29477946
    [Google Scholar]
  34. Mahabaleshwara K. Chandrasekhar N. Govindappa M. Phytochemical investigations of methanol leaf extracts of Randia spinosa using column chromatography, HPTLC and GC-MS. Nat. Prod. Chem. Res. 2016 4 1 15
    [Google Scholar]
  35. Beg T. Jyoti S. Naz F. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2018 17 6 421 429 10.2174/1871527317666180508123050 29745345
    [Google Scholar]
  36. Zhao C. Widmer Y.F. Diegelmann S. Petrovici M.A. Sprecher S.G. Senn W. Predictive olfactory learning in Drosophila. Sci. Rep. 2021 11 1 6795 10.1038/s41598‑021‑85841‑y 33762640
    [Google Scholar]
  37. Becker R. Optimization of drosophila learning assays to evaluate Alzheimer’s disease model. Thesis The University of Arizona 2023
    [Google Scholar]
  38. Bhatt S. Puli L. Patil C.R. Role of reactive oxygen species in the progression of Alzheimer’s disease. Drug Discov. Today 2021 26 3 794 803 10.1016/j.drudis.2020.12.004 33306995
    [Google Scholar]
  39. Beura S.K. Dhapola R. Panigrahi A.R. Yadav P. Reddy D.H. Singh S.K. Redefining oxidative stress in Alzheimer’s disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci. 2022 306 120855 10.1016/j.lfs.2022.120855 35926591
    [Google Scholar]
  40. Marcus D.L. Thomas C. Rodriguez C. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp. Neurol. 1998 150 1 40 44 10.1006/exnr.1997.6750 9514828
    [Google Scholar]
  41. Moulton M.J. Barish S. Ralhan I. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes. Proc. Natl. Acad. Sci. USA 2021 118 52 e2112095118 10.1073/pnas.2112095118 34949639
    [Google Scholar]
  42. Behl T. Kaur D. Sehgal A. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021 26 12 3724 10.3390/molecules26123724 34207264
    [Google Scholar]
  43. Foroumandi E. Javan R. Moayed L. The effects of fenugreek seed extract supplementation in patients with Alzheimer’s disease: A randomized, double‐blind, placebo‐controlled trial. Phytother. Res. 2023 37 1 285 294 10.1002/ptr.7612 36199177
    [Google Scholar]
  44. Koh E.K. Yun W.B. Kim J.E. Beneficial effect of diosgenin as a stimulator of NGF on the brain with neuronal damage induced by Aβ-42 accumulation and neurotoxicant injection. Lab. Anim. Res. 2016 32 2 105 115 10.5625/lar.2016.32.2.105 27382379
    [Google Scholar]
  45. Cheng S.M. Ho Y.J. Yu S.H. Anti-apoptotic effects of diosgenin in D-galactose-induced aging brain. Am. J. Chin. Med. 2020 48 2 391 406 10.1142/S0192415X20500202 32138534
    [Google Scholar]
  46. Prema A. Thenmozhi A.J. Manivasagam T. Essa M.M. Akbar M.D. Akbar M. Fenugreek seed powder nullified aluminium chloride induced memory loss, biochemical changes, Aβ burden and apoptosis via regulating Akt/GSK3β signaling pathway. PLoS One 2016 11 11 e0165955 10.1371/journal.pone.0165955 27893738
    [Google Scholar]
  47. Hritcu L. Noumedem J.A. Cioanca O. Hancianu M. Kuete V. Mihasan M. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer’s disease. Cell. Mol. Neurobiol. 2014 34 3 437 449 10.1007/s10571‑014‑0028‑y 24442916
    [Google Scholar]
  48. Farid M.M. Nagase T. Yang X. Effects of Trigonellafoenum-graecum seeds extract on Alzheimer’s disease transgenic model mouse and its potential active compound transferred to the brain. Japanese J Food Chem Safety 2021 28 63 70
    [Google Scholar]
  49. Muqit M.M.K. Feany M.B. Modelling neurodegenerative diseases in Drosophila: A fruitful approach? Nat. Rev. Neurosci. 2002 3 3 237 243 10.1038/nrn751 11994755
    [Google Scholar]
  50. Wang Q. Ying L. Huang F. Lin J. Wang W. Effects of tau on Aβ-induced synaptic damage in a Drosophila model of Alzheimer’s disease. Neuroendocrinol. Lett. 2022 43 2 68 76 [PMID: 35786817
    [Google Scholar]
  51. Ugur B. Chen K. Bellen H.J. Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 2016 9 3 235 244 10.1242/dmm.023762 26935102
    [Google Scholar]
  52. Qiao M. Chen C. Liang Y. Luo Y. Wu W. The influence of serum uric acid level on Alzheimer’s disease: A narrative review. BioMed Res. Int. 2021 2021 1 5525710 10.1155/2021/5525710 34124244
    [Google Scholar]
  53. Alonso-Andrés P. Albasanz J.L. Ferrer I. Martín M. Purine‐related metabolites and their converting enzymes are altered in frontal, parietal and temporal cortex at early stages of Alzheimer’s disease pathology. Brain Pathol. 2018 28 6 933 946 10.1111/bpa.12592 29363833
    [Google Scholar]
  54. Louzada P.R. Lima A.C.P. Mendonca-Silva D.L. Noël F. De Mello F.G. Ferreira S.T. Taurine prevents the neurotoxicity of β‐amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J. 2004 18 3 511 518 10.1096/fj.03‑0739com 15003996
    [Google Scholar]
  55. Teixeira F.C. Gutierres J.M. Soares M.S.P. Inosine protects against impairment of memory induced by experimental model of Alzheimer disease: a nucleoside with multitarget brain actions. Psychopharmacology (Berl.) 2020 237 3 811 823 10.1007/s00213‑019‑05419‑5 31834453
    [Google Scholar]
  56. Kepka A. Ochocinska A. Borzym-Kluczyk M. Preventive role of L-carnitine and balanced diet in Alzheimer’s disease. Nutrients 2020 12 7 1987 10.3390/nu12071987 32635400
    [Google Scholar]
  57. Lai S.W. Lin C.L. Liao K.F. Association between allopurinol use and dementia in the elderly. Am. J. Geriatr. Psychiatry 2021 29 11 1174 1175 10.1016/j.jagp.2021.07.014 34400047
    [Google Scholar]
  58. Wang C.S. Lee R.K.K. Choline plus cytidine stimulate phospholipid production, and the expression and secretion of amyloid precursor protein in rat PC12 cells. Neurosci. Lett. 2000 283 1 25 28 10.1016/S0304‑3940(00)00906‑X 10729625
    [Google Scholar]
  59. Schneider F. Baldauf K. Wetzel W. Reymann K.G. Behavioral and EEG changes in male 5xFAD mice. Physiol. Behav. 2014 135 25 33 10.1016/j.physbeh.2014.05.041 24907698
    [Google Scholar]
  60. Hashim K.N.B. Matsuba Y. Takahashi M. Neuronal glutathione depletion elevates the Aβ42/Aβ40 ratio and tau aggregation in Alzheimer’s disease mice. FEBS Lett. 2024 598 13 1576 1590 10.1002/1873‑3468.14895 38789405
    [Google Scholar]
  61. Huang Q. Liao C. Ge F. Ao J. Liu T. Acetylcholine bidirectionally regulates learning and memory. J Neurorestoratology 2022 10 2 100002 10.1016/j.jnrt.2022.100002
    [Google Scholar]
  62. Rahim F. Khalafi M. Davoodi M. Shirbandi K. Metabolite changes in the posterior cingulate cortex could be a signature for early detection of Alzheimer’s disease: A systematic review and meta-analysis study based on 1H-NMR. Egypt. J. Neurol. Psychiat. Neurosurg. 2023 59 1 60 10.1186/s41983‑023‑00649‑z
    [Google Scholar]
  63. Zhang K. Cai T. Han Y. Association between dietary riboflavin intake and cognitive decline in older adults: a cross-sectional analysis. Nutr. Neurosci. 2024 1 1 0 [PMID: 39012764
    [Google Scholar]
  64. Zhang M. Chen H. Zhang W. Biomimetic remodeling of microglial riboflavin metabolism ameliorates cognitive impairment by modulating neuroinflammation. Adv. Sci. (Weinh.) 2023 10 12 2300180 10.1002/advs.202300180 36799538
    [Google Scholar]
  65. Walter A. Korth U. Hilgert M. Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol. Aging 2004 25 10 1299 1303 10.1016/j.neurobiolaging.2004.02.016 15465626
    [Google Scholar]
  66. Zlomuzica A. Dere D. Binder S. De Souza Silva M.A. Huston J.P. Dere E. Neuronal histamine and cognitive symptoms in Alzheimer’s disease. Neuropharmacology 2016 106 135 145 10.1016/j.neuropharm.2015.05.007 26025658
    [Google Scholar]
  67. Mathews P.M. Guerra C.B. Jiang Y. Alzheimer’s disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Abeta secretion: Role for altered lysosomal hydrolase distribution in β-amyloidogenesis. J. Biol. Chem. 2002 277 7 5299 5307 10.1074/jbc.M108161200 11551970
    [Google Scholar]
  68. Hawkes C. Kar S. The insulin-like growth factor-II/mannose-6-phosphate receptor: Structure, distribution and function in the central nervous system. Brain Res. Brain Res. Rev. 2004 44 2-3 117 140 10.1016/j.brainresrev.2003.11.002 15003389
    [Google Scholar]
  69. Gonçalves F.Q. Lopes J.P. Silva H.B. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol. Dis. 2019 132 104570 10.1016/j.nbd.2019.104570 31394204
    [Google Scholar]
  70. Janssens J. Vermeiren Y. Fransen E. Cerebrospinal fluid and serum MHPG improve Alzheimer’s disease versus dementia with Lewy bodies differential diagnosis. Alzheimers Dement. (Amst.) 2018 10 1 172 181 10.1016/j.dadm.2018.01.002 29552632
    [Google Scholar]
  71. Zhao Q. Ma Z. Lu S. Xanthurenic acid as a preclinical diagnostic marker and drug target of Alzheimer’s disease in rats and mice and associated effects of Schizandrin. Res Sq 2023 10.21203/rs.3.rs‑3235613/v1
    [Google Scholar]
/content/journals/car/10.2174/0115672050385870250721072643
Loading
/content/journals/car/10.2174/0115672050385870250721072643
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: oxidative stress ; Alzheimer’s disease ; Drosophila ; fenugreek ; metabolomics ; Aβ-42
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test