Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Aims

This study aims to explore the potential association between nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in oligodendrocytes and Alzheimer's disease (AD), utilizing a combination of bioinformatics analysis and molecular biology experiments to validate this relationship.

Methods

Public datasets related to AD were systematically retrieved and downloaded from the Gene Expression Omnibus (GEO) database at the National Center for Biotechnology Information (NCBI). Subsequently, the SVA package was employed to merge the data and eliminate batch effects, allowing for the precise identification of differentially expressed genes (DEGs) between AD patients and healthy controls. Advanced machine learning techniques, including LASSO regression analysis, random forest algorithms, and support vector machines (SVM), were utilized to analyze further the DEGs associated with the NLRP3 inflammasome to determine the gene set most closely related to AD. The effectiveness and clinical value of the gene-based diagnostic model were comprehensively assessed through receiver operating characteristic (ROC) curve analysis, nomogram construction, and decision curve analysis (DCA). Immune infiltration analysis evaluated the extent of various immune cell infiltrations in the brain tissue of AD patients. Single-cell transcriptomics and experiments were conducted to verify the molecular expression of NLRP3 in oligodendrocytes within the AD model.

Results

A total of 11 significant DEGs were identified, with 4 genes showing downregulation and 7 genes exhibiting upregulation. All three algorithms—LASSO regression, random forest, and SVM—consistently identified PANX1, APP, P2RX7, MEFV, and NLRP3 as key genes closely associated with AD. ROC curve analysis, nomogram modeling, and DCA results demonstrated that the diagnostic model constructed based on these five genes exhibited high diagnostic accuracy and clinical applicability. Immune infiltration analysis revealed a significant correlation between key genes associated with AD and various immune cells, particularly CD8+ T cells, monocytes, activated NK cells, and neutrophils, suggesting that these cells may play important roles in the immunopathological process of AD. Single-cell transcriptomics indicated that the expression level of NLRP3 in oligodendrocytes was higher in the AD group compared to the control group ( < 0.05). Additionally, cell experiments using Reverse transcription quantitative PCR(RT-qPCR), immunofluorescence (IF), and Western blot (WB) analysis confirmed that the expression level of NLRP3 in oligodendrocytes was elevated in the AD model relative to the control group ( < 0.05).

Conclusion

This study corroborates the high expression of NLRP3 in AD and its close relationship with the disease through integrated bioinformatics analysis and molecular biology experiments. Furthermore, the diagnostic model constructed based on the five key genes—PANX1, APP, P2RX7, MEFV, and NLRP3—not only provides a robust tool for early diagnosis of AD but also offers new insights for the development of treatment targets for AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050376534250310061951
2025-04-09
2025-10-13
Loading full text...

Full text loading...

References

  1. KnopmanD.S. AmievaH. PetersenR.C. ChételatG. HoltzmanD.M. HymanB.T. NixonR.A. JonesD.T. Alzheimer disease.Nat. Rev. Dis. Primers2021713310.1038/s41572‑021‑00269‑y33986301
    [Google Scholar]
  2. WangM. JoJ. SongJ. Adiponectin improves long-term potentiation in the 5XFAD mouse brain.Sci. Rep.201991891810.1038/s41598‑019‑45509‑031222110
    [Google Scholar]
  3. LashleyT. SchottJ.M. WestonP. MurrayC.E. WellingtonH. KeshavanA. FotiS.C. FoianiM. ToombsJ. RohrerJ.D. HeslegraveA. ZetterbergH. Molecular biomarkers of Alzheimer’s disease: Progress and prospects.Dis. Model. Mech.2018115dmm03178110.1242/dmm.03178129739861
    [Google Scholar]
  4. QiuS. PalaviciniJ.P. WangJ. GonzalezN.S. HeS. DustinE. ZouC. DingL. BhattacharjeeA. Van SkikeC.E. GalvanV. DupreeJ.L. HanX. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment.Mol. Neurodegener.20211616410.1186/s13024‑021‑00488‑734526055
    [Google Scholar]
  5. NasrabadyS.E. RizviB. GoldmanJ.E. BrickmanA.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes.Acta Neuropathol. Commun.2018612210.1186/s40478‑018‑0515‑329499767
    [Google Scholar]
  6. HoriuchiM. MaezawaI. ItohA. WakayamaK. JinL.W. ItohT. DeCarliC. Amyloid β1–42 oligomer inhibits myelin sheet formation in vitro.Neurobiol. Aging201233349950910.1016/j.neurobiolaging.2010.05.00720594620
    [Google Scholar]
  7. DeppC. SunT. SasmitaA.O. SpiethL. BerghoffS.A. NazarenkoT. OverhoffK. Steixner-KumarA.A. SubramanianS. ArinradS. RuhwedelT. MöbiusW. GöbbelsS. SaherG. WernerH.B. DamkouA. ZamparS. WirthsO. ThalmannM. SimonsM. SaitoT. SaidoT. Krueger-BurgD. KawaguchiR. WillemM. HaassC. GeschwindD. EhrenreichH. StassartR. NaveK.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease.Nature2023618796434935710.1038/s41586‑023‑06120‑637258678
    [Google Scholar]
  8. MaitreM. Jeltsch-DavidH. OkechukwuN.G. KleinC. Patte-MensahC. Mensah-NyaganA.G. Myelin in Alzheimer’s disease: Culprit or bystander?Acta Neuropathol. Commun.20231115610.1186/s40478‑023‑01554‑537004127
    [Google Scholar]
  9. ElbazB. PopkoB. Molecular control of oligodendrocyte development.Trends Neurosci.201942426327710.1016/j.tins.2019.01.00230770136
    [Google Scholar]
  10. BarateiroA. BritesD. FernandesA. Oligodendrocyte development and myelination in neurodevelopment: Molecular mechanisms in health and disease.Curr. Pharm. Des.201622665667910.2174/138161282266615120400063626635271
    [Google Scholar]
  11. EmeryB. WoodT.L. Regulators of oligodendrocyte differentiation.Cold Spring Harb. Perspect. Biol.2024166a04135810.1101/cshperspect.a04135838503504
    [Google Scholar]
  12. MakhijaE.P. Espinosa-HoyosD. JagielskaA. Van VlietK.J. Mechanical regulation of oligodendrocyte biology.Neurosci. Lett.202071713467310.1016/j.neulet.2019.13467331838017
    [Google Scholar]
  13. YoussefM.I. ZhouY. EissaI.H. WangY. ZhangJ. JiangL. HuW. QiJ. ChenZ. Tetradecyl 2,3-dihydroxybenzoate alleviates oligodendrocyte damage following chronic cerebral hypoperfusion through IGF-1 receptor.Neurochem. Int.202013810474910.1016/j.neuint.2020.10474932387468
    [Google Scholar]
  14. DuY. DreyfusC.F. Oligodendrocytes as providers of growth factors.J. Neurosci. Res.200268664765410.1002/jnr.1024512111826
    [Google Scholar]
  15. LeeX. YangZ. ShaoZ. RosenbergS.S. LevesqueM. PepinskyR.B. QiuM. MillerR.H. ChanJ.R. MiS. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination.J. Neurosci.200727122022510.1523/JNEUROSCI.4175‑06.200717202489
    [Google Scholar]
  16. ButtA.M. De La RochaI.C. RiveraA. Oligodendroglial cells in alzheimer’s disease.Adv. Exp. Med. Biol.2019117532533310.1007/978‑981‑13‑9913‑8_1231583593
    [Google Scholar]
  17. CaiZ. XiaoM. Oligodendrocytes and alzheimer’s disease.Int. J. Neurosci.201612629710410.3109/00207454.2015.102577826000818
    [Google Scholar]
  18. DesaiM.K. MastrangeloM.A. RyanD.A. SudolK.L. NarrowW.C. BowersW.J. Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target.Am. J. Pathol.201017731422143510.2353/ajpath.2010.10008720696774
    [Google Scholar]
  19. SitaG. GraziosiA. HreliaP. MorroniF. NLRP3 and infections: β-amyloid in inflammasome beyond neurodegeneration.Int. J. Mol. Sci.20212213698410.3390/ijms2213698434209586
    [Google Scholar]
  20. YaoJ. WangZ. SongW. ZhangY. Targeting NLRP3 inflammasome for neurodegenerative disorders.Mol. Psychiatry202328114512452710.1038/s41380‑023‑02239‑037670126
    [Google Scholar]
  21. McManusR.M. LatzE. NLRP3 inflammasome signalling in Alzheimer’s disease.Neuropharmacology202425210994110.1016/j.neuropharm.2024.10994138565393
    [Google Scholar]
  22. TaoS. FanW. LiuJ. WangT. ZhengH. QiG. ChenY. ZhangH. GuoZ. ZhouF. NLRP3 inflammasome: An emerging therapeutic target for alzheimer’s disease.J. Alzheimers Dis.20239641383139810.3233/JAD‑23056737980662
    [Google Scholar]
  23. SongL. PeiL. YaoS. WuY. ShangY. NLRP3 inflammasome in neurological diseases, from functions to therapies.Front. Cell. Neurosci.2017116310.3389/fncel.2017.0006328337127
    [Google Scholar]
  24. ShaoB.Z. CaoQ. LiuC. Targeting NLRP3 inflammasome in the treatment of CNS diseases.Front. Mol. Neurosci.20181132010.3389/fnmol.2018.0032030233319
    [Google Scholar]
  25. LiuY. DaiY. LiQ. ChenC. ChenH. SongY. HuaF. ZhangZ. Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia.Neurosci. Lett.202073613527910.1016/j.neulet.2020.13527932726591
    [Google Scholar]
  26. BarczukJ. SiweckaN. LusaW. Rozpędek-KamińskaW. KucharskaE. MajsterekI. Targeting NLRP3-mediated neuroinflammation in alzheimer’s disease treatment.Int. J. Mol. Sci.20222316897910.3390/ijms2316897936012243
    [Google Scholar]
  27. JiX. TianL. NiuS. YaoS. QuC. Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes.Front. Aging Neurosci.20221496387610.3389/fnagi.2022.96387636072486
    [Google Scholar]
  28. LinQ. RongL. JiaX. LiR. YuB. HuJ. LuoX. BadeaS.R. XuC. FuG. LaiK. LeeM. ZhangB. GongH. ZhouN. ChenX.L. LinS. FuG. HuangJ.D. IFN-γ-dependent NK cell activation is essential to metastasis suppression by engineered Salmonella.Nat. Commun.2021121253710.1038/s41467‑021‑22755‑333953170
    [Google Scholar]
  29. ChoeK. AliM. LardenoijeR. RiemensR.J.M. PishvaE. BickelH. WeyererS. HoffmannP. PentzekM. Riedel-HellerS. WieseB. SchererM. WagnerM. MastroeniD. ColemanP.D. RamirezA. RamakersI.H.G.B. VerheyF.R.J. RuttenB.P.F. KenisG. van den HoveD.L.A. Alzheimer’s disease-specific transcriptomic and epigenomic changes in the tryptophan catabolic pathway.Alzheimers Res. Ther.202416125910.1186/s13195‑024‑01623‑439616392
    [Google Scholar]
  30. PereiraC.F. SantosA.E. MoreiraP.I. PereiraA.C. SousaF.J. CardosoS.M. CruzM.T. Is Alzheimer’s disease an inflammasomopathy?Ageing Res. Rev.20195610096610.1016/j.arr.2019.10096631577960
    [Google Scholar]
  31. XuY.J. AuN.P.B. MaC.H.E. Functional and phenotypic diversity of microglia: Implication for microglia-based therapies for alzheimer’s disease.Front. Aging Neurosci.20221489685210.3389/fnagi.2022.89685235693341
    [Google Scholar]
  32. HenekaM.T. KummerM.P. StutzA. DelekateA. SchwartzS. Vieira-SaeckerA. GriepA. AxtD. RemusA. TzengT.C. GelpiE. HalleA. KorteM. LatzE. GolenbockD.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice.Nature2013493743467467810.1038/nature1172923254930
    [Google Scholar]
  33. IsingC. VenegasC. ZhangS. ScheiblichH. SchmidtS.V. Vieira-SaeckerA. SchwartzS. AlbassetS. McManusR.M. TejeraD. GriepA. SantarelliF. BrosseronF. OpitzS. StundenJ. MertenM. KayedR. GolenbockD.T. BlumD. LatzE. BuéeL. HenekaM.T. NLRP3 inflammasome activation drives tau pathology.Nature2019575778466967310.1038/s41586‑019‑1769‑z31748742
    [Google Scholar]
  34. HuangX. LiuS. WuL. JiangM. HouY. High throughput single cell RNA sequencing, bioinformatics analysis and applications.Adv. Exp. Med. Biol.20181068334310.1007/978‑981‑13‑0502‑3_429943294
    [Google Scholar]
  35. VandereykenK. SifrimA. ThienpontB. VoetT. Methods and applications for single-cell and spatial multi-omics.Nat. Rev. Genet.202324849451510.1038/s41576‑023‑00580‑236864178
    [Google Scholar]
  36. KlimontovV.V. KoshechkinK.A. OrlovaN.G. SekachevaM.I. OrlovY.L. Medical genetics, genomics and bioinformatics—2022.Int. J. Mol. Sci.20232410896810.3390/ijms2410896837240312
    [Google Scholar]
  37. SongT. ChenY. LiC. YaoY. MaS. ShangY. ChengJ. Identification of molecular correlations of GSDMD with pyroptosis in alzheimer’s disease.Comb. Chem. High Throughput Screen.202427142125213910.2174/011386207328549724022606193639099451
    [Google Scholar]
  38. HokamaM. OkaS. LeonJ. NinomiyaT. HondaH. SasakiK. IwakiT. OharaT. SasakiT. LaFerlaF.M. KiyoharaY. NakabeppuY. Altered expression of diabetes-related genes in Alzheimer’s disease brains: The Hisayama study.Cereb. Cortex20142492476248810.1093/cercor/bht10123595620
    [Google Scholar]
  39. BerchtoldN.C. ColemanP.D. CribbsD.H. RogersJ. GillenD.L. CotmanC.W. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease.Neurobiol. Aging20133461653166110.1016/j.neurobiolaging.2012.11.02423273601
    [Google Scholar]
  40. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  41. GuZ. EilsR. SchlesnerM. Complex heatmaps reveal patterns and correlations in multidimensional genomic data.Bioinformatics201632182847284910.1093/bioinformatics/btw31327207943
    [Google Scholar]
  42. TibshiraniR. The lasso method for variable selection in the Cox model.Stat. Med.199716438539510.1002/(SICI)1097‑0258(19970228)16:4<385::AID‑SIM380>3.0.CO;2‑39044528
    [Google Scholar]
  43. DegenhardtF. SeifertS. SzymczakS. Evaluation of variable selection methods for random forests and omics data sets.Brief. Bioinform.201920249250310.1093/bib/bbx12429045534
    [Google Scholar]
  44. DingY. WilkinsD. Improving the performance of SVM-RFE to select genes in microarray data.BMC Bioinformatics20067Suppl 2S1210.1186/1471‑2105‑7‑S2‑S12
    [Google Scholar]
  45. YanC. ChenL. YinhuiY. YazhenS. Identifying the role of oligodendrocyte genes in the diagnosis of alzheimer’s disease through machine learning and bioinformatics analysis.Curr. Alzheimer Res.202421643745510.2174/011567205033877724102807195539506420
    [Google Scholar]
  46. WangY. YaoY. HuJ. LinY. CaiC. ZhaoY. Development of a predictive nomogram for estimating medication nonadherence in hemodialysis patients.Med. Sci. Monit.202228e93448210.12659/MSM.93448235290293
    [Google Scholar]
  47. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_1229344893
    [Google Scholar]
  48. GrubmanA. ChewG. OuyangJ.F. SunG. ChooX.Y. McLeanC. SimmonsR.K. BuckberryS. Vargas-LandinD.B. PoppeD. PfluegerJ. ListerR. RackhamO.J.L. PetrettoE. PoloJ.M. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation.Nat. Neurosci.201922122087209710.1038/s41593‑019‑0539‑431768052
    [Google Scholar]
  49. YaoY. LiuQ. DingS. ChenY. SongT. ShangY. Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis.Heliyon2024106e2716110.1016/j.heliyon.2024.e2716138533079
    [Google Scholar]
  50. AcostaM. Mat NorM. GuoC. MugishoO. CoutinhoF. RupenthalI. GreenC. Connexin therapeutics: Blocking connexin hemichannel pores is distinct from blocking pannexin channels or gap junctions.Neural Regen. Res.202116348248810.4103/1673‑5374.29009732985469
    [Google Scholar]
  51. YangK. XiaoZ. HeX. WengR. ZhaoX. SunT. Mechanisms of pannexin 1 (PANX1) channel mechanosensitivity and its pathological roles.Int. J. Mol. Sci.2022233152310.3390/ijms2303152335163442
    [Google Scholar]
  52. RusieckaO.M. TournierM. MolicaF. KwakB.R. Pannexin1 channels—a potential therapeutic target in inflammation.Front. Cell Dev. Biol.202210102082610.3389/fcell.2022.102082636438559
    [Google Scholar]
  53. Whyte-FagundesP. ZoidlG. Mechanisms of pannexin1 channel gating and regulation.Biochim. Biophys. Acta Biomembr.201818601657110.1016/j.bbamem.2017.07.00928735901
    [Google Scholar]
  54. ShestopalovV.I. SlepakV.Z. Molecular pathways of pannexin1-mediated neurotoxicity.Front. Physiol.201452310.3389/fphys.2014.0002324575045
    [Google Scholar]
  55. HurJ.Y. γ-Secretase in Alzheimer’s disease.Exp. Mol. Med.202254443344610.1038/s12276‑022‑00754‑835396575
    [Google Scholar]
  56. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑321214928
    [Google Scholar]
  57. SasaguriH. NilssonP. HashimotoS. NagataK. SaitoT. De StrooperB. HardyJ. VassarR. WinbladB. SaidoT.C. APP mouse models for Alzheimer’s disease preclinical studies.EMBO J.201736172473248710.15252/embj.20179739728768718
    [Google Scholar]
  58. WuM.Y. ZouW.J. LeeD. MeiL. XiongW.C. APP in the neuromuscular junction for the development of sarcopenia and alzheimer’s disease.Int. J. Mol. Sci.2023249780910.3390/ijms2409780937175515
    [Google Scholar]
  59. HefterD. LudewigS. DraguhnA. KorteM. Amyloid, APP, and electrical activity of the brain.Neuroscientist202026323125110.1177/107385841988261931779518
    [Google Scholar]
  60. Akasaka-ManyaK. ManyaH. The role of APP O-glycosylation in alzheimer’s disease.Biomolecules20201011156910.3390/biom1011156933218200
    [Google Scholar]
  61. SolleM. LabasiJ. PerregauxD.G. StamE. PetrushovaN. KollerB.H. GriffithsR.J. GabelC.A. Altered cytokine production in mice lacking P2X(7) receptors.J. Biol. Chem.2001276112513210.1074/jbc.M00678120011016935
    [Google Scholar]
  62. ChenY.H. LinR.R. TaoQ.Q. The role of P2X7R in neuroinflammation and implications in Alzheimer’s disease.Life Sci.202127111918710.1016/j.lfs.2021.11918733577858
    [Google Scholar]
  63. SunB. PengA. LiuP. WangM. DingH. HuY. KangL. Neuroprotection of exercise: P2X4R and P2X7R regulate BDNF actions.Purinergic Signal.202319129730310.1007/s11302‑022‑09879‑x35821455
    [Google Scholar]
  64. Di VirgilioF. Dal BenD. SartiA.C. GiulianiA.L. FalzoniS. The P2X7 receptor in infection and inflammation.Immunity2017471153110.1016/j.immuni.2017.06.02028723547
    [Google Scholar]
  65. Beltran-LoboP. ReidM.J. Jimenez-SanchezM. VerkhratskyA. Perez-NievasB.G. NobleW. Astrocyte adaptation in Alzheimer’s disease: A focus on astrocytic P2X7R.Essays Biochem.202367111913010.1042/EBC2022007936449279
    [Google Scholar]
  66. KrainerJ. SiebenhandlS. WeinhäuselA. Systemic autoinflammatory diseases.J. Autoimmun.202010910242110.1016/j.jaut.2020.10242132019685
    [Google Scholar]
  67. SchnappaufO. ChaeJ.J. KastnerD.L. AksentijevichI. The pyrin inflammasome in health and disease.Front. Immunol.201910174510.3389/fimmu.2019.0174531456795
    [Google Scholar]
  68. PlaceD.E. KannegantiT.D. Recent advances in inflammasome biology.Curr. Opin. Immunol.201850323810.1016/j.coi.2017.10.01129128729
    [Google Scholar]
  69. MathurA. HaywardJ.A. ManS.M. Molecular mechanisms of inflammasome signaling.J. Leukoc. Biol.2018103223325710.1189/jlb.3MR0617‑250R28855232
    [Google Scholar]
  70. HarapasC.R. SteinerA. DavidsonS. MastersS.L. An update on autoinflammatory diseases: Inflammasomopathies.Curr. Rheumatol. Rep.20182074010.1007/s11926‑018‑0750‑429846819
    [Google Scholar]
  71. YangJ. WiseL. FukuchiK. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in alzheimer’s disease.Front. Immunol.20201172410.3389/fimmu.2020.0072432391019
    [Google Scholar]
  72. LiY. ChenX. ZhouM. FengS. PengX. WangY. Microglial TLR4/NLRP3 inflammasome signaling in alzheimer’s disease.J. Alzheimers Dis.2024971758810.3233/JAD‑23027338043010
    [Google Scholar]
  73. LongJ.X. TianM.Z. ChenX.Y. YuH.H. DingH. LiuF. DuK. The role of NLRP3 inflammasome-mediated pyroptosis in ischemic stroke and the intervention of traditional Chinese medicine.Front. Pharmacol.202314115119610.3389/fphar.2023.115119637153784
    [Google Scholar]
  74. ZhangC. YangY. Targeting toll-like receptor 4 (TLR4) and the NLRP3 inflammasome: Novel and emerging therapeutic targets for hyperuricaemia nephropathy.Biomolecules and Biomedicine202324468869710.17305/bb.2023.983838041694
    [Google Scholar]
  75. PengM. FuY. WuC. ZhangY. RenH. ZhouS. Signaling pathways related to oxidative stress in diabetic cardiomyopathy.Front. Endocrinol.20221390775710.3389/fendo.2022.90775735784531
    [Google Scholar]
  76. GaoY. LiS. ZhangY. ZhangJ. ZhaoY. ChangC. GaoX. YangG. Cattle encephalon glycoside and ignotin attenuates Aβ1-42-mediated neurotoxicity by preventing NLRP3 inflammasome activation and modulating microglial polarization via TLR4/NF-κB signaling pathway.Neurotox. Res.20224061802181110.1007/s12640‑022‑00585‑536214996
    [Google Scholar]
  77. ZhangX. WangR. HuD. SunX. FujiokaH. LundbergK. ChanE.R. WangQ. XuR. FlanaganM.E. PieperA.A. QiX. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease.Sci. Adv.2020649eabb868010.1126/sciadv.abb868033277246
    [Google Scholar]
  78. YaoR.Q. RenC. XiaZ.F. YaoY.M. Organelle-specific autophagy in inflammatory diseases: A potential therapeutic target underlying the quality control of multiple organelles.Autophagy202117238540110.1080/15548627.2020.172537732048886
    [Google Scholar]
  79. SbaiO. BazzaniV. TapaswiS. McHaleJ. VascottoC. PerroneL. Is Drp1 a link between mitochondrial dysfunction and inflammation in Alzheimer’s disease?Front. Mol. Neurosci.202316116687910.3389/fnmol.2023.116687937251647
    [Google Scholar]
  80. ChenY. YangC. ZouM. WangD. ShengR. ZhanM. ChenQ. YangW. LiuX. XuS. Inhibiting mitochondrial inflammation through Drp1/ HK1 / NLRP3 pathway: A mechanism of alpinetin attenuated aging-associated cognitive impairment.Phytother. Res.20233762454247110.1002/ptr.776736772986
    [Google Scholar]
  81. YaoY. ChenS. CaoM. FanX. YangT. HuangY. SongX. LiY. YeL. ShenN. ShiY. LiX. WangF. QianY. Antigen-specific CD8+ T cell feedback activates NLRP3 inflammasome in antigen-presenting cells through perforin.Nat. Commun.2017811540210.1038/ncomms1540228537251
    [Google Scholar]
  82. LaiY. ZhuangL. ZhuJ. WangS. GuoC. ChenB. LiJ. ShiJ. LiM. YangN. ZhouM. Novel approach to alleviate lupus nephritis: targeting the NLRP3 inflammasome in CD8+CD69+CD103+ TRM cells.J. Transl. Med.2024221113910.1186/s12967‑024‑05951‑939716284
    [Google Scholar]
  83. JiangW. LedermanM.M. HardingC.V. SiegS.F. Presentation of soluble antigens to CD8+ T cells by CpG oligodeoxynucleotide-primed human naive B cells.J. Immunol.201118642080208610.4049/jimmunol.100186921239717
    [Google Scholar]
/content/journals/car/10.2174/0115672050376534250310061951
Loading
/content/journals/car/10.2174/0115672050376534250310061951
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test