Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative disorder of cognition with clinical features and anatomical hallmarks of amyloid-β plaques and/or neurofibrillary tangles. New studies revealed that microglia, the native immune cells in the brain, are crucial in the development of AD. The present review aims at outlining various roles of microglia in AD especially targeting their role in neuroinflammation. These indicate that microglial dysfunction contributes to AD pathology by affecting both amyloid-β phagocytosis and tau hyperphosphorylation. Other investigative molecular perpetrators, including TREM2, also influence the microglial relevance to amyloid and tau, as well as the overall disease phase. The functional microglia can protect neurons, while the dysfunctional one has the capability of derailing neuronal potentials and aggravating neurodegeneration. We have also discussed therapeutic strategies that start with targeting microglia to reduce neuroinflammation and reinstate balance. However, certain problems, including the side effects of microglial modulation, cost constraint, and accessibility, are areas of concern. In this review, the author presents the current state of knowledge on the potential of microglia-targeted treatments, their risks, and benefits. Thus, this article emphasizes the importance of the expansion of research to decipher the exact manipulation of microglia in AD with the goal of applying these findings given therapeutic approaches.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050364292250113063513
2025-02-19
2025-10-13
Loading full text...

Full text loading...

References

  1. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑126921134
    [Google Scholar]
  2. WinbladB. AmouyelP. AndrieuS. BallardC. BrayneC. BrodatyH. Cedazo-MinguezA. DuboisB. EdvardssonD. FeldmanH. FratiglioniL. FrisoniG.B. GauthierS. GeorgesJ. GraffC. IqbalK. JessenF. JohanssonG. JönssonL. KivipeltoM. KnappM. MangialascheF. MelisR. NordbergA. RikkertM.O. QiuC. SakmarT.P. ScheltensP. SchneiderL.S. SperlingR. TjernbergL.O. WaldemarG. WimoA. ZetterbergH. Defeating Alzheimer’s disease and other dementias: A priority for European science and society.Lancet Neurol.201615545553210.1016/S1474‑4422(16)00062‑426987701
    [Google Scholar]
  3. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  4. SextonC. SolisM. Aharon-PeretzJ. AlexopoulosP. ApostolovaL.G. BayenE. BirkenhagerB. CappaS. ConstantinidouF. ForteaJ. GerritsenD.L. HassaninH.I. IbanezA. IoannidisP. KarageorgiouE. KorczynA. LeroiI. LichtwarckB. LogroscinoG. LynchC. MecocciP. MolinuevoJ.L. PapatriantafyllouJ. PapegeorgiouS. PolitisA. RamanR. RitchieK. Sanchez-JuanP. SanoM. ScarmeasN. SpiruL. StathiA. TsolakiM. YenerG. ZaganasI. ZygourisS. CarrilloM. Alzheimer’s disease research progress in the Mediterranean region: The Alzheimer’s Association International Conference Satellite Symposium.Alzheimers Dement.202218101957196810.1002/alz.1258835184367
    [Google Scholar]
  5. Better, M.A. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  6. BanoN. KhanS. AhamadS. KanshanaJ.S. DarN.J. KhanS. NazirA. BhatS.A. Microglia and gut microbiota: A double-edged sword in Alzheimer’s disease.Ageing Res. Rev.202410110251510.1016/j.arr.2024.10251539321881
    [Google Scholar]
  7. LiH. TanY. ChengX. ZhangZ. HuangJ. HuiS. ZhuL. LiuY. ZhaoD. LiuZ. PengW. Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen Tiansui formula in an aβ25-35-induced rat model of Alzheimer’s disease.Front. Pharmacol.20221399030710.3389/fphar.2022.99030736339577
    [Google Scholar]
  8. MalmT.M. JayT.R. LandrethG.E. The evolving biology of microglia in Alzheimer’s disease.Neurotherapeutics2015121819310.1007/s13311‑014‑0316‑825404051
    [Google Scholar]
  9. UllandT.K. ColonnaM. TREM2 — a key player in microglial biology and Alzheimer disease.Nat. Rev. Neurol.2018141166767510.1038/s41582‑018‑0072‑130266932
    [Google Scholar]
  10. QinQ. TengZ. LiuC. LiQ. YinY. TangY. TREM2, microglia, and Alzheimer’s disease.Mech. Ageing Dev.202119511143810.1016/j.mad.2021.11143833516818
    [Google Scholar]
  11. HussainM.S. SharmaS. KumariA. KamranA. BahlG. BishtA.S. SultanaA. AshiqueS. RamalingamP.S. ArumugamS. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: Pathogenesis and therapeutic potential.Epigenomics20241623-241453146410.1080/17501911.2024.243017039601046
    [Google Scholar]
  12. UppalJ. ChawlaA. RehmanR. HussainM.S. MaqboolM. ChawlaP.A. Mohi-ud-dinR. MirR.H. Chapter 11 - Novel drug delivery systems in treating epilepsy: An update. Novel Drug Delivery Systems in the management of CNS DisordersAcademic Press202516718310.1016/B978‑0‑443‑13474‑6.00019‑6
    [Google Scholar]
  13. ChaurasiaS. DograS.S. HussainM.S. KumarR. KhuranaN. Novel pharmaceutical interventions for drug targeting in Parkinson’s disease.Curr. Drug Ther.202420.10.2174/0115748855311148240923100039
    [Google Scholar]
  14. FatobaO. ItokazuT. YamashitaT. Microglia as therapeutic target in central nervous system disorders.J. Pharmacol. Sci.2020144310211810.1016/j.jphs.2020.07.00432921391
    [Google Scholar]
  15. PaolicelliR.C. BolascoG. PaganiF. MaggiL. ScianniM. PanzanelliP. GiustettoM. FerreiraT.A. GuiducciE. DumasL. RagozzinoD. GrossC.T. Synaptic pruning by microglia is necessary for normal brain development.Science201133360481456145810.1126/science.120252921778362
    [Google Scholar]
  16. SierraA. EncinasJ.M. DeuderoJ.J.P. ChanceyJ.H. EnikolopovG. Overstreet-WadicheL.S. TsirkaS.E. Maletic-SavaticM. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis.Cell Stem Cell20107448349510.1016/j.stem.2010.08.01420887954
    [Google Scholar]
  17. WangH. ShangY. WangE. XuX. ZhangQ. QianC. YangZ. WuS. ZhangT. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer’s disease.Prog. Neurobiol.202221410228010.1016/j.pneurobio.2022.10228035525373
    [Google Scholar]
  18. ChengX. HuangJ. LiH. ZhaoD. LiuZ. ZhuL. ZhangZ. PengW. Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis.Phytomedicine202412615488710.1016/j.phymed.2023.15488738377720
    [Google Scholar]
  19. NayakD. RothT.L. McGavernD.B. Microglia development and function.Annu. Rev. Immunol.201432136740210.1146/annurev‑immunol‑032713‑12024024471431
    [Google Scholar]
  20. ColonnaM. ButovskyO. Microglia function in the central nervous system during health and neurodegeneration.Annu. Rev. Immunol.201735144146810.1146/annurev‑immunol‑051116‑05235828226226
    [Google Scholar]
  21. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  22. WalterS. LetiembreM. LiuY. HeineH. PenkeB. HaoW. BodeB. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer's disease.Cell Physiol. Biochem.200720694795610.1159/00011045517982277
    [Google Scholar]
  23. UlrichJ.D. FinnM.B. WangY. ShenA. MahanT.E. JiangH. StewartF.R. PiccioL. ColonnaM. HoltzmanD.M. Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2.Mol. Neurodegener.2014912010.1186/1750‑1326‑9‑2024893973
    [Google Scholar]
  24. HussainM.S. SharmaP. DhanjalD.S. KhuranaN. VyasM. SharmaN. MehtaM. TambuwalaM.M. SatijaS. SohalS.S. OliverB.G.G. SharmaH.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases.Chem. Biol. Interact.202134810963710.1016/j.cbi.2021.10963734506765
    [Google Scholar]
  25. ChenL. MaY. MaX. LiuL. JvX. LiA. ShenQ. JiaW. QuL. ShiL. XieJ. TFEB regulates cellular labile iron and prevents ferroptosis in a TfR1-dependent manner.Free Radic. Biol. Med.202320844545710.1016/j.freeradbiomed.2023.09.00437683766
    [Google Scholar]
  26. RansohoffR.M. How neuroinflammation contributes to neurodegeneration.Science2016353630177778310.1126/science.aag259027540165
    [Google Scholar]
  27. WangW.Y. TanM.S. YuJ.T. TanL. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.Ann. Transl. Med.201531013626207229
    [Google Scholar]
  28. ZhuX. YuG. LvY. YangN. ZhaoY. LiF. ZhaoJ. ChenZ. LaiY. ChenL. WangX. XiaoJ. CaiY. FengY. DingJ. GaoW. ZhouK. XuH. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps.Burns Trauma202412tkae03510.1093/burnst/tkae03538855574
    [Google Scholar]
  29. HeppnerF.L. RansohoffR.M. BecherB. Immune attack: The role of inflammation in Alzheimer disease.Nat. Rev. Neurosci.201516635837210.1038/nrn388025991443
    [Google Scholar]
  30. FrüholzI. Meyer-LuehmannM. The intricate interplay between microglia and adult neurogenesis in Alzheimer’s disease.Front. Cell. Neurosci.202418145625310.3389/fncel.2024.145625339360265
    [Google Scholar]
  31. HongS. Beja-GlasserV.F. NfonoyimB.M. FrouinA. LiS. RamakrishnanS. MerryK.M. ShiQ. RosenthalA. BarresB.A. LemereC.A. SelkoeD.J. StevensB. Complement and microglia mediate early synapse loss in Alzheimer mouse models.Science2016352628671271610.1126/science.aad837327033548
    [Google Scholar]
  32. LiuY. YinH. LiuX. ZhangL. WuD. ShiY. ChenY. ZhouX. Alcohol use disorder and time perception: The mediating role of attention and working memory.Addict. Biol.2024292e1336710.1111/adb.1336738380757
    [Google Scholar]
  33. JayT.R. von SauckenV.E. LandrethG.E. TREM2 in neurodegenerative diseases.Mol. Neurodegener.20171215610.1186/s13024‑017‑0197‑528768545
    [Google Scholar]
  34. GuerreiroR. WojtasA. BrasJ. CarrasquilloM. RogaevaE. MajounieE. CruchagaC. SassiC. KauweJ.S. YounkinS. HazratiL. CollingeJ. PocockJ. LashleyT. WilliamsJ. LambertJ.C. AmouyelP. GoateA. RademakersR. MorganK. PowellJ. St George-HyslopP. SingletonA. HardyJ. Alzheimer Genetic Analysis Group TREM2 variants in Alzheimer’s disease.N. Engl. J. Med.2013368211712710.1056/NEJMoa121185123150934
    [Google Scholar]
  35. JonssonT. StefanssonH. SteinbergS. JonsdottirI. JonssonP.V. SnaedalJ. BjornssonS. HuttenlocherJ. LeveyA.I. LahJ.J. RujescuD. HampelH. GieglingI. AndreassenO.A. EngedalK. UlsteinI. DjurovicS. Ibrahim-VerbaasC. HofmanA. IkramM.A. van DuijnC.M. ThorsteinsdottirU. KongA. StefanssonK. Variant of TREM2 associated with the risk of Alzheimer’s disease.N. Engl. J. Med.2013368210711610.1056/NEJMoa121110323150908
    [Google Scholar]
  36. RoussosP. KatselP. FamP. TanW. PurohitD.P. HaroutunianV. The triggering receptor expressed on myeloid cells 2 (TREM2) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer’s dementia.Alzheimers Dement.201511101163117010.1016/j.jalz.2014.10.01325499537
    [Google Scholar]
  37. JinS.C. BenitezB.A. KarchC.M. CooperB. SkorupaT. CarrellD. NortonJ.B. HsuS. HarariO. CaiY. BertelsenS. GoateA.M. CruchagaC. Coding variants in TREM2 increase risk for Alzheimer’s disease.Hum. Mol. Genet.201423215838584610.1093/hmg/ddu27724899047
    [Google Scholar]
  38. JiangT. TanL. ChenQ. TanM.S. ZhouJ.S. ZhuX.C. LuH. WangH.F. ZhangY.D. YuJ.T. A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese.Neurobiol. Aging201642217.e1217.e310.1016/j.neurobiolaging.2016.02.02327067662
    [Google Scholar]
  39. OliveC. IbanezL. FariasF.H.G. WangF. BuddeJ.P. NortonJ.B. GentschJ. MorrisJ.C. LiZ. DubeU. Del-AguilaJ. BergmannK. BradleyJ. BenitezB.A. HarariO. FaganA. AncesB. CruchagaC. FernandezM.V. Examination of the effect of rare variants in TREM2, ABI3, and PLCG2 in LOAD through multiple phenotypes.J. Alzheimers Dis.20207741469148210.3233/JAD‑20001932894242
    [Google Scholar]
  40. WangY. CellaM. MallinsonK. UlrichJ.D. YoungK.L. RobinetteM.L. GilfillanS. KrishnanG.M. SudhakarS. ZinselmeyerB.H. HoltzmanD.M. CirritoJ.R. ColonnaM. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model.Cell201516061061107110.1016/j.cell.2015.01.04925728668
    [Google Scholar]
  41. ParhizkarS. ArzbergerT. BrendelM. KleinbergerG. DeussingM. FockeC. NuscherB. XiongM. GhasemigharagozA. KatzmarskiN. KrasemannS. LichtenthalerS.F. MüllerS.A. ColomboA. MonasorL.S. TahirovicS. HermsJ. WillemM. PettkusN. ButovskyO. BartensteinP. EdbauerD. RomingerA. ErtürkA. GrathwohlS.A. NeherJ.J. HoltzmanD.M. Meyer-LuehmannM. HaassC. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE.Nat. Neurosci.201922219120410.1038/s41593‑018‑0296‑930617257
    [Google Scholar]
  42. SchlepckowK. MonroeK.M. KleinbergerG. Cantuti-CastelvetriL. ParhizkarS. XiaD. WillemM. WernerG. PettkusN. BrunnerB. SülzenA. NuscherB. HampelH. XiangX. FeederleR. TahirovicS. ParkJ.I. ProrokR. MahonC. LiangC.C. ShiJ. KimD.J. SabelströmH. HuangF. Di PaoloG. SimonsM. LewcockJ.W. HaassC. Enhancing protective microglial activities with a dual function TREM 2 antibody to the stalk region.EMBO Mol. Med.2020124e1122710.15252/emmm.20191122732154671
    [Google Scholar]
  43. WangS. MustafaM. YuedeC.M. SalazarS.V. KongP. LongH. WardM. SiddiquiO. PaulR. GilfillanS. IbrahimA. RhinnH. TassiI. RosenthalA. SchwabeT. ColonnaM. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model.J. Exp. Med.20202179e2020078510.1084/jem.2020078532579671
    [Google Scholar]
  44. ZhaoP. XuY. JiangL. FanX. LiL. LiX. AraseH. ZhaoY. CaoW. ZhengH. XuH. TongQ. ZhangN. AnZ. A tetravalent TREM2 agonistic antibody reduced amyloid pathology in a mouse model of Alzheimer’s disease.Sci. Transl. Med.202214661eabq009510.1126/scitranslmed.abq009536070367
    [Google Scholar]
  45. HammondT.R. MarshS.E. StevensB. Immune signaling in neurodegeneration.Immunity201950495597410.1016/j.immuni.2019.03.01630995509
    [Google Scholar]
  46. Keren-ShaulH. SpinradA. WeinerA. Matcovitch-NatanO. Dvir-SzternfeldR. UllandT.K. DavidE. BaruchK. Lara-AstaisoD. TothB. ItzkovitzS. ColonnaM. SchwartzM. AmitI. A unique microglia type associated with restricting development of Alzheimer’s disease.Cell2017169712761290.e1710.1016/j.cell.2017.05.01828602351
    [Google Scholar]
  47. GratuzeM. ChenY. ParhizkarS. JainN. StricklandM.R. SerranoJ.R. ColonnaM. UlrichJ.D. HoltzmanD.M. Activated microglia mitigate Aβ-associated tau seeding and spreading.J. Exp. Med.20212188e2021054210.1084/jem.2021054234100905
    [Google Scholar]
  48. LeynsC.E.G. GratuzeM. NarasimhanS. JainN. KoscalL.J. JiangH. ManisM. ColonnaM. LeeV.M.Y. UlrichJ.D. HoltzmanD.M. TREM2 function impedes tau seeding in neuritic plaques.Nat. Neurosci.20192281217122210.1038/s41593‑019‑0433‑031235932
    [Google Scholar]
  49. LeeS.H. MeilandtW.J. XieL. GandhamV.D. NguH. BarckK.H. RezzonicoM.G. ImperioJ. LalehzadehG. HuntleyM.A. StarkK.L. ForemanO. CaranoR.A.D. FriedmanB.A. ShengM. EastonA. BohlenC.J. HansenD.V. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology.Neuron2021109812831301.e610.1016/j.neuron.2021.02.01033675684
    [Google Scholar]
  50. LeynsC.E.G. UlrichJ.D. FinnM.B. StewartF.R. KoscalL.J. Remolina SerranoJ. RobinsonG.O. AndersonE. ColonnaM. HoltzmanD.M. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy.Proc. Natl. Acad. Sci. USA201711443115241152910.1073/pnas.171031111429073081
    [Google Scholar]
  51. SayedF.A. TelpoukhovskaiaM. KodamaL. LiY. ZhouY. LeD. HauducA. LudwigC. GaoF. ClellandC. ZhanL. CooperY.A. DavalosD. AkassoglouK. CoppolaG. GanL. Differential effects of partial and complete loss of TREM2 on microglial injury response and tauopathy.Proc. Natl. Acad. Sci. USA201811540101721017710.1073/pnas.181141111530232263
    [Google Scholar]
  52. SchochK.M. EzerskiyL.A. MorhausM.M. BannonR.N. SauerbeckA.D. ShabsovichM. Acute Trem2 reduction triggers increased microglial phagocytosis, slowing amyloid deposition in mice.Proc. Natl. Acad. Sci. USA2021118,e2100356118.10.1073/pnas.2100356118
    [Google Scholar]
  53. GratuzeM. LeynsC.E.G. SauerbeckA.D. St-PierreM.K. XiongM. KimN. SerranoJ.R. TremblayM.È. KummerT.T. ColonnaM. UlrichJ.D. HoltzmanD.M. Impact of TREM2R47H variant on tau pathology–induced gliosis and neurodegeneration.J. Clin. Invest.202013094954496810.1172/JCI13817932544086
    [Google Scholar]
  54. BemillerS.M. McCrayT.J. AllanK. FormicaS.V. XuG. WilsonG. Kokiko-CochranO.N. CrishS.D. Lasagna-ReevesC.A. RansohoffR.M. LandrethG.E. LambB.T. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy.Mol. Neurodegener.20171217410.1186/s13024‑017‑0216‑629037207
    [Google Scholar]
  55. WunderlichP. GlebovK. KemmerlingN. TienN.T. NeumannH. WalterJ. Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and γ-secretase-dependent intramembranous cleavage.J. Biol. Chem.201328846330273303610.1074/jbc.M113.51754024078628
    [Google Scholar]
  56. PiccioL. BuonsantiC. CellaM. TassiI. SchmidtR.E. FenoglioC. RinkerJ.II NaismithR.T. Panina-BordignonP. PassiniN. GalimbertiD. ScarpiniE. ColonnaM. CrossA.H. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation.Brain2008131113081309110.1093/brain/awn21718790823
    [Google Scholar]
  57. PiccioL. DemingY. Del-ÁguilaJ.L. GhezziL. HoltzmanD.M. FaganA.M. FenoglioC. GalimbertiD. BorroniB. CruchagaC. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status.Acta Neuropathol.2016131692593310.1007/s00401‑016‑1533‑526754641
    [Google Scholar]
  58. HeslegraveA. HeywoodW. PatersonR. MagdalinouN. SvenssonJ. JohanssonP. ÖhrfeltA. BlennowK. HardyJ. SchottJ. MillsK. ZetterbergH. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease.Mol. Neurodegener.2016111310.1186/s13024‑016‑0071‑x26754172
    [Google Scholar]
  59. EwersM. BiecheleG. Suárez-CalvetM. SacherC. BlumeT. Morenas-RodriguezE. DemingY. PiccioL. CruchagaC. KleinbergerG. ShawL. TrojanowskiJ.Q. HermsJ. DichgansM. BrendelM. HaassC. FranzmeierN. Alzheimer’s Disease Neuroimaging Initiative (ADNI) Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation.EMBO Mol. Med.2020129e1230810.15252/emmm.20201230832790063
    [Google Scholar]
  60. EwersM. FranzmeierN. Suárez-CalvetM. Morenas-RodriguezE. CaballeroM.A.A. KleinbergerG. PiccioL. CruchagaC. DemingY. DichgansM. TrojanowskiJ.Q. ShawL.M. WeinerM.W. HaassC. Alzheimer’s Disease Neuroimaging Initiative Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease.Sci. Transl. Med.201911507eaav622110.1126/scitranslmed.aav622131462511
    [Google Scholar]
  61. ZhongL. XuY. ZhuoR. WangT. WangK. HuangR. WangD. GaoY. ZhuY. ShengX. ChenK. WangN. ZhuL. CanD. MartenY. ShinoharaM. LiuC.C. DuD. SunH. WenL. XuH. BuG. ChenX.F. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model.Nat. Commun.2019101136510.1038/s41467‑019‑09118‑930911003
    [Google Scholar]
  62. ZhongL. ChenX.F. WangT. WangZ. LiaoC. WangZ. HuangR. WangD. LiX. WuL. JiaL. ZhengH. PainterM. AtagiY. LiuC.C. ZhangY.W. FryerJ.D. XuH. BuG. Soluble TREM2 induces inflammatory responses and enhances microglial survival.J. Exp. Med.2017214359760710.1084/jem.2016084428209725
    [Google Scholar]
  63. VilaltaA. ZhouY. SevalleJ. GriffinJ.K. SatohK. AllendorfD.H. DeS. PuigdellívolM. BruzasA. BurguillosM.A. DoddR.B. ChenF. ZhangY. FlagmeierP. NeedhamL.M. EnomotoM. QamarS. HendersonJ. WalterJ. FraserP.E. KlenermanD. LeeS.F. St George-HyslopP. BrownG.C. Wild-type sTREM2 blocks Aβ aggregation and neurotoxicity, but the Alzheimer’s R47H mutant increases Aβ aggregation.J. Biol. Chem.202129610063110.1016/j.jbc.2021.10063133823153
    [Google Scholar]
  64. SchlepckowK. KleinbergerG. FukumoriA. FeederleR. LichtenthalerS.F. SteinerH. HaassC. An Alzheimer-associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function.EMBO Mol. Med.20179101356136510.15252/emmm.20170767228855300
    [Google Scholar]
  65. ThorntonP. SevalleJ. DeeryM.J. FraserG. ZhouY. StåhlS. FranssenE.H. DoddR.B. QamarS. Gomez Perez-NievasB. NicolL.S.C. EketjällS. RevellJ. JonesC. BillintonA. St George-HyslopP.H. ChessellI. CrowtherD.C. TREM 2 shedding by cleavage at the H157-S158 bond is accelerated for the Alzheimer’s disease-associated H157Y variant.EMBO Mol. Med.20179101366137810.15252/emmm.20170767328855301
    [Google Scholar]
  66. SongW.M. JoshitaS. ZhouY. UllandT.K. GilfillanS. ColonnaM. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism.J. Exp. Med.2018215374576010.1084/jem.2017152929321225
    [Google Scholar]
  67. MoutinhoM. CoronelI. TsaiA.P. Di PriscoG.V. PenningtonT. AtwoodB.K. PuntambekarS.S. SmithD.C. MartinezP. HanS. LeeY. Lasagna-ReevesC.A. LambB.T. BisselS.J. NhoK. LandrethG.E. TREM2 splice isoforms generate soluble TREM2 species that disrupt long-term potentiation.Genome Med.20231511110.1186/s13073‑023‑01160‑z36805764
    [Google Scholar]
  68. UllandT.K. SongW.M. HuangS.C.C. UlrichJ.D. SergushichevA. BeattyW.L. LobodaA.A. ZhouY. CairnsN.J. KambalA. LoginichevaE. GilfillanS. CellaM. VirginH.W. UnanueE.R. WangY. ArtyomovM.N. HoltzmanD.M. ColonnaM. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease.Cell20171704649663.e1310.1016/j.cell.2017.07.02328802038
    [Google Scholar]
  69. KloskeC.M. WilcockD.M. The important interface between apolipoprotein E and neuroinflammation in Alzheimer’s disease.Front. Immunol.20201175410.3389/fimmu.2020.0075432425941
    [Google Scholar]
  70. BradshawE.M. ChibnikL.B. KeenanB.T. OttoboniL. RajT. TangA. RosenkrantzL.L. ImboywaS. LeeM. Von KorffA. MorrisM.C. EvansD.A. JohnsonK. SperlingR.A. SchneiderJ.A. BennettD.A. De JagerP.L. Alzheimer Disease Neuroimaging Initiative CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology.Nat. Neurosci.201316784885010.1038/nn.343523708142
    [Google Scholar]
  71. HussainM.S. ChaturvediV. GoyalS. SinghS. MirR.H. An update on the application of nano phytomedicine as an emerging therapeutic tool for neurodegenerative diseases.Curr. Bioact. Compd.2024205e25102322264810.2174/0115734072258656231013085318
    [Google Scholar]
  72. JiaZ. GuoM. GeX. ChenF. LeiP. IL-33/ST2 axis: A potential therapeutic target in neurodegenerative diseases.Biomolecules20231310149410.3390/biom1310149437892176
    [Google Scholar]
  73. DuL.X. WangY.Q. HuaG.Q. MiW.L. IL-33/ST2 pathway as a rational therapeutic target for CNS diseases.Neuroscience201836922223010.1016/j.neuroscience.2017.11.02829175156
    [Google Scholar]
  74. ChuangK.A. LiM.H. LinN.H. ChangC.H. LuI.H. PanI.H. TakahashiT. PerngM.D. WenS.F. Rhinacanthin C alleviates Amyloid- β Fibrils’ toxicity on neurons and attenuates neuroinflammation triggered by LPS, Amyloid- β, and Interferon- γ in glial cells.Oxid. Med. Cell. Longev.201720171541429710.1155/2017/541429729181126
    [Google Scholar]
  75. HussainM.S. GuptaG. SamuelV.P. AlmalkiW.H. KazmiI. AlzareaS.I. SaleemS. KhanR. AltwaijryN. PatelS. PatelA. SinghS.K. DuaK. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries.Rev. Med. Virol.2024341e249110.1002/rmv.249137985599
    [Google Scholar]
  76. BishopN.A. LuT. YanknerB.A. Neural mechanisms of ageing and cognitive decline.Nature2010464728852953510.1038/nature0898320336135
    [Google Scholar]
  77. HanischU.K. KettenmannH. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain.Nat. Neurosci.200710111387139410.1038/nn199717965659
    [Google Scholar]
  78. StreitW.J. GraeberM.B. KreutzbergG.W. Functional plasticity of microglia: A review.Glia19881530130710.1002/glia.4400105022976393
    [Google Scholar]
  79. LuH.J. GuoD. WeiQ.Q. Potential of neuroinflammation-modulating strategies in tuberculous meningitis: Targeting microglia.Aging Dis.20241531255127637196131
    [Google Scholar]
  80. PerryV.H. GordonS. Macrophages and microglia in the nervous system.Trends Neurosci.198811627327710.1016/0166‑2236(88)90110‑52465626
    [Google Scholar]
  81. KettenmannH. HanischU.K. NodaM. VerkhratskyA. Physiology of microglia.Physiol. Rev.201191246155310.1152/physrev.00011.201021527731
    [Google Scholar]
  82. UddinM.S. KabirM.T. JalouliM. RahmanM.A. JeandetP. BehlT. AlexiouA. AlbadraniG.M. Abdel-DaimM.M. PerveenA. AshrafG.M. Neuroinflammatory signaling in the pathogenesis of Alzheimer’s disease.Curr. Neuropharmacol.202220112614610.2174/1570159X1966621082613021034525932
    [Google Scholar]
  83. BambergerM.E. HarrisM.E. McDonaldD.R. HusemannJ. LandrethG.E. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation.J. Neurosci.20032372665267410.1523/JNEUROSCI.23‑07‑02665.200312684452
    [Google Scholar]
  84. HickmanS.E. AllisonE.K. El KhouryJ. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice.J. Neurosci.200828338354836010.1523/JNEUROSCI.0616‑08.200818701698
    [Google Scholar]
  85. LanZ. TanF. HeJ. LiuJ. LuM. HuZ. ZhuoY. LiuJ. TangX. JiangZ. LianA. ChenY. HuangY. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization.Phytomedicine202412915563510.1016/j.phymed.2024.15563538701541
    [Google Scholar]
  86. VarnumM.M. IkezuT. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain.Arch. Immunol. Ther. Exp. (Warsz.)201260425126610.1007/s00005‑012‑0181‑222710659
    [Google Scholar]
  87. ZouG.J. ChenZ.R. WangX.Q. CuiY.H. LiF. LiC.Q. WangL.F. HuangF. Microglial activation in the medial prefrontal cortex after remote fear recall participates in the regulation of auditory fear extinction.Eur. J. Pharmacol.202497817675910.1016/j.ejphar.2024.17675938901527
    [Google Scholar]
  88. GuoS. WangH. YinY. Microglia polarization from M1 to M2 in neurodegenerative diseases.Front. Aging Neurosci.20221481534710.3389/fnagi.2022.81534735250543
    [Google Scholar]
  89. TangY. LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases.Mol. Neurobiol.20165321181119410.1007/s12035‑014‑9070‑525598354
    [Google Scholar]
  90. JinJ. GuoJ. CaiH. ZhaoC. WangH. LiuZ. GeZ.M. M2-Like microglia polarization attenuates neuropathic pain associated with Alzheimer’s disease.J. Alzheimers Dis.20207641255126510.3233/JAD‑20009932280102
    [Google Scholar]
  91. SongG.J. SukK. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases.Front. Aging Neurosci.2017913910.3389/fnagi.2017.0013928555105
    [Google Scholar]
  92. JhaM.K. LeeW.H. SukK. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders.Biochem. Pharmacol.201610311610.1016/j.bcp.2015.11.00326556658
    [Google Scholar]
  93. DuanW.W. YangL.T. LiuJ. DaiZ.Y. WangZ.Y. ZhangH. ZhangX. LiangX.S. LuoP. ZhangJ. LiuZ.Q. ZhangN. MoH.Y. QuC.R. XiaZ.W. ChengQ. A TGF -β signaling-related lncRNA signature for prediction of glioma prognosis, immune microenvironment, and immunotherapy response.CNS Neurosci. Ther.2024304e1448910.1111/cns.1448937850692
    [Google Scholar]
  94. HenekaM.T. Inflammasome activation and innate immunity in A lzheimer’s disease.Brain Pathol.201727222022210.1111/bpa.1248328019679
    [Google Scholar]
  95. HansenD.V. HansonJ.E. ShengM. Microglia in Alzheimer’s disease.J. Cell Biol.2018217245947210.1083/jcb.20170906929196460
    [Google Scholar]
  96. CondelloC. YuanP. SchainA. GrutzendlerJ. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques.Nat. Commun.201561617610.1038/ncomms717625630253
    [Google Scholar]
  97. WangY. YuZ. ChengM. HuE. YanQ. ZhengF. GuoX. ZhangW. LiH. LiZ. ZhuW. WuY. TangT. LiT. Buyang huanwu decoction promotes remyelination via miR-760-3p/GPR17 axis after intracerebral hemorrhage.J. Ethnopharmacol.202432811812610.1016/j.jep.2024.11812638556140
    [Google Scholar]
  98. BaalmanK. MarinM.A. HoT.S.Y. GodoyM. CherianL. RobertsonC. RasbandM.N. Axon initial segment-associated microglia.J. Neurosci.20153552283229210.1523/JNEUROSCI.3751‑14.201525653382
    [Google Scholar]
  99. BertolottoA. AgrestiC. CastelloA. ManzardoE. RiccioA. 5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma.J. Neuroimmunol.1998851697710.1016/S0165‑5728(97)00251‑89626999
    [Google Scholar]
  100. FoyezT. Takeda-UchimuraY. IshigakiS. Narentuya ZhangZ. SobueG. KadomatsuK. UchimuraK. Microglial keratan sulfate epitope elicits in central nervous tissues of transgenic model mice and patients with amyotrophic lateral sclerosis.Am. J. Pathol.2015185113053306510.1016/j.ajpath.2015.07.01626362733
    [Google Scholar]
  101. NagarajanN. JonesB.W. WestP.J. MarcR.E. CapecchiM.R. Corticostriatal circuit defects in Hoxb8 mutant mice.Mol. Psychiatry20182391868187710.1038/mp.2017.18028948967
    [Google Scholar]
  102. WlodarczykA. HoltmanI.R. KruegerM. YogevN. BruttgerJ. KhorooshiR. Benmamar-BadelA. de Boer-BergsmaJ.J. MartinN.A. KarramK. KramerI. BoddekeE.W.G.M. WaismanA. EggenB.J.L. OwensT. A novel microglial subset plays a key role in myelinogenesis in developing brain.EMBO J.201736223292330810.15252/embj.20169605628963396
    [Google Scholar]
  103. SchaferD.P. LehrmanE.K. KautzmanA.G. KoyamaR. MardinlyA.R. YamasakiR. RansohoffR.M. GreenbergM.E. BarresB.A. StevensB. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.Neuron201274469170510.1016/j.neuron.2012.03.02622632727
    [Google Scholar]
  104. JoostE. JordãoM.J.C. MagesB. PrinzM. BechmannI. KruegerM. Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue.Brain Struct. Funct.201922431301131410.1007/s00429‑019‑01834‑830706162
    [Google Scholar]
  105. Koenigsknecht-TalbooJ. LandrethG.E. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines.J. Neurosci.200525368240824910.1523/JNEUROSCI.1808‑05.200516148231
    [Google Scholar]
  106. HeP. ZhongZ. LindholmK. BerningL. LeeW. LemereC. StaufenbielM. LiR. ShenY. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice.J. Cell Biol.2007178582984110.1083/jcb.20070504217724122
    [Google Scholar]
  107. HussainM.S. GuptaG. GoyalA. ThapaR. almalkiW.H. KazmiI. AlzareaS.I. FuloriaS. MeenakshiD.U. JakhmolaV. PandeyM. SinghS.K. DuaK. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders.J. Biochem. Mol. Toxicol.20233711e2348210.1002/jbt.2348237530602
    [Google Scholar]
  108. XiangW. ChaoZ.Y. FengD.Y. Role of Toll-like receptor/MYD88 signaling in neurodegenerative diseases.Rev. Neurosci.201526440741410.1515/revneuro‑2014‑006725870959
    [Google Scholar]
  109. BossùP. CiaramellaA. SalaniF. VanniD. PalladinoI. CaltagironeC. ScapigliatiG. Interleukin-18, from neuroinflammation to Alzheimer’s disease.Curr. Pharm. Des.201016384213422410.2174/13816121079451914721184660
    [Google Scholar]
  110. TsengW.Y. HuangY.S. LinH.H. LuoS.F. McCannF. McNameeK. ClanchyF. WilliamsR. TNFR signalling and its clinical implications.Cytokine2018101192510.1016/j.cyto.2016.08.02733730773
    [Google Scholar]
  111. HussainM.S. AfzalO. GuptaG. AltamimiA.S.A. AlmalkiW.H. AlzareaS.I. KazmiI. FuloriaN.K. SekarM. MeenakshiD.U. ThangaveluL. SharmaA. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling.Pathol. Res. Pract.202324915473810.1016/j.prp.2023.15473837595448
    [Google Scholar]
  112. ZhuH. WangZ. YuJ. YangX. HeF. LiuZ. CheF. ChenX. RenH. HongM. WangJ. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage.Prog. Neurobiol.201917810161010.1016/j.pneurobio.2019.03.00330923023
    [Google Scholar]
  113. BaikS.H. KangS. LeeW. ChoiH. ChungS. KimJ.I. Mook-JungI. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease.Cell Metab.2019303493507.e610.1016/j.cmet.2019.06.00531257151
    [Google Scholar]
  114. RangarajuS. DammerE.B. RazaS.A. RathakrishnanP. XiaoH. GaoT. DuongD.M. PenningtonM.W. LahJ.J. SeyfriedN.T. LeveyA.I. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease.Mol. Neurodegener.20181312410.1186/s13024‑018‑0254‑829784049
    [Google Scholar]
  115. HussainM.S. MogladE. AfzalM. SharmaS. GuptaG. SivaprasadG.V. DeorariM. AlmalkiW.H. KazmiI. AlzareaS.I. ShahwanM. PantK. AliH. SinghS.K. DuaK. SubramaniyanV. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson’s disease pathogenesis.CNS Neurosci. Ther.2024305e1476310.1111/cns.1476338790149
    [Google Scholar]
  116. FattorelliN. Martinez-MurianaA. WolfsL. GericI. De StrooperB. MancusoR. Stem-cell-derived human microglia transplanted into mouse brain to study human disease.Nat. Protoc.20211621013103310.1038/s41596‑020‑00447‑433424025
    [Google Scholar]
  117. ZhouY. SongW.M. AndheyP.S. SwainA. LevyT. MillerK.R. PolianiP.L. CominelliM. GroverS. GilfillanS. CellaM. UllandT.K. ZaitsevK. MiyashitaA. IkeuchiT. SainouchiM. KakitaA. BennettD.A. SchneiderJ.A. NicholsM.R. BeausoleilS.A. UlrichJ.D. HoltzmanD.M. ArtyomovM.N. ColonnaM. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease.Nat. Med.202026113114210.1038/s41591‑019‑0695‑931932797
    [Google Scholar]
  118. SrinivasanK. FriedmanB.A. EtxeberriaA. HuntleyM.A. van der BrugM.P. ForemanO. PawJ.S. ModrusanZ. BeachT.G. SerranoG.E. HansenD.V. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation.Cell Rep.2020311310784310.1016/j.celrep.2020.10784332610143
    [Google Scholar]
  119. FemminellaG.D. DaniM. WoodM. FanZ. CalsolaroV. AtkinsonR. EdgintonT. HinzR. BrooksD.J. EdisonP. Microglial activation in early Alzheimer trajectory is associated with higher gray matter volume.Neurology20199212e1331e134310.1212/WNL.000000000000713330796139
    [Google Scholar]
  120. SchwabeT. SrinivasanK. RhinnH. Shifting paradigms: The central role of microglia in Alzheimer’s disease.Neurobiol. Dis.202014310496210.1016/j.nbd.2020.10496232535152
    [Google Scholar]
  121. OlahM. MenonV. HabibN. TagaM.F. MaY. YungC.J. CimpeanM. KhairallahA. Coronas-SamanoG. SankowskiR. GrünD. KroshilinaA.A. DionneD. SarkisR.A. CosgroveG.R. HelgagerJ. GoldenJ.A. PennellP.B. PrinzM. VonsattelJ.P.G. TeichA.F. SchneiderJ.A. BennettD.A. RegevA. ElyamanW. BradshawE.M. De JagerP.L. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease.Nat. Commun.2020111612910.1038/s41467‑020‑19737‑233257666
    [Google Scholar]
  122. ChakrabartyP. HerringA. Ceballos-DiazC. DasP. GoldeT.E. Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo.Mol. Neurodegener.2011611610.1186/1750‑1326‑6‑1621324189
    [Google Scholar]
  123. AbduljaleelZ. Al-AllafF.A. KhanW. AtharM. ShahzadN. TaherM.M. ElrobhM. AlanaziM.S. El-HuneidiW. Evidence of trem2 variant associated with triple risk of Alzheimer’s disease.PLoS One201493e9264810.1371/journal.pone.009264824663666
    [Google Scholar]
  124. LiY. XiaX. WangY. ZhengJ.C. Mitochondrial dysfunction in microglia: A novel perspective for pathogenesis of Alzheimer’s disease.J. Neuroinflammation202219124810.1186/s12974‑022‑02613‑936203194
    [Google Scholar]
  125. CalsolaroV. EdisonP. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions.Alzheimers Dement.201612671973210.1016/j.jalz.2016.02.01027179961
    [Google Scholar]
  126. GuptaM. HussainM.S. ThapaR. BhatA.A. KumarN. Nurturing hope: Uncovering the potential of herbal remedies against amyotrophic lateral sclerosis.PharmaNutrition20242910040610.1016/j.phanu.2024.100406
    [Google Scholar]
  127. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y33318676
    [Google Scholar]
  128. Meraz-RíosM.A. Toral-RiosD. Franco-BocanegraD. Villeda-HernándezJ. Campos-PeñaV. Inflammatory process in Alzheimer’s disease.Front. Integr. Nuerosci.201375910.3389/fnint.2013.0005923964211
    [Google Scholar]
  129. Wyss-CorayT. RogersJ. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature.Cold Spring Harb. Perspect. Med.201221a00634610.1101/cshperspect.a00634622315714
    [Google Scholar]
  130. CunninghamC. WilcocksonD.C. CampionS. LunnonK. PerryV.H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration.J. Neurosci.200525409275928410.1523/JNEUROSCI.2614‑05.200516207887
    [Google Scholar]
  131. HolmesC. El-OklM. WilliamsA.L. CunninghamC. WilcocksonD. PerryV.H. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry200374678878910.1136/jnnp.74.6.78812754353
    [Google Scholar]
  132. HayesA. GreenE.K. PritchardA. HarrisJ.M. ZhangY. LambertJ.C. Chartier-HarlinM.C. Pickering-BrownS.M. LendonC.L. MannD.M. A polymorphic variation in the interleukin 1A gene increases brain microglial cell activity in Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry200475101475147710.1136/jnnp.2003.03086615377701
    [Google Scholar]
  133. NicollJ.A.R. MrakR.E. GrahamD.I. StewartJ. WilcockG. MacGowanS. EsiriM.M. MurrayL.S. DewarD. LoveS. MossT. GriffinW.S.T. Association of interleukin-1 gene polymorphisms with Alzheimer’s disease.Ann. Neurol.200047336536810.1002/1531‑8249(200003)47:3<365::AID‑ANA13>3.0.CO;2‑G10716257
    [Google Scholar]
  134. McCuskerS.M. CurranM.D. DynanK.B. McCullaghC.D. UrquhartD.D. MiddletonD. PattersonC.C. McIlroyS.P. Peter PassmoreA. Association between polymorphism in regulatory region of gene encoding tumour necrosis factor α and risk of Alzheimer’s disease and vascular dementia: A case-control study.Lancet2001357925443643910.1016/S0140‑6736(00)04008‑311273064
    [Google Scholar]
  135. Rubio-PerezJ.M. Morillas-RuizJ.M. A review: inflammatory process in Alzheimer’s disease, role of cytokines.ScientificWorldJournal2012201211510.1100/2012/75635722566778
    [Google Scholar]
  136. Lopez-RodriguezA.B. HennessyE. MurrayC.L. NazmiA. DelaneyH.J. HealyD. FaganS.G. RooneyM. StewartE. LewisA. de BarraN. ScarryP. Riggs-MillerL. BocheD. CunninghamM.O. CunninghamC. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction.Alzheimers Dement.202117101735175510.1002/alz.1234134080771
    [Google Scholar]
  137. YuanP. CondelloC. KeeneC.D. WangY. BirdT.D. PaulS.M. LuoW. ColonnaM. BaddeleyD. GrutzendlerJ. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy.Neuron201690472473910.1016/j.neuron.2016.05.00327196974
    [Google Scholar]
  138. CzirrE. CastelloN.A. MosherK.I. CastellanoJ.M. HinksonI.V. LucinK.M. Baeza-RajaB. RyuJ.K. LiL. FarinaS.N. BelichenkoN.P. LongoF.M. AkassoglouK. BritschgiM. CirritoJ.R. Wyss-CorayT. Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity.J. Exp. Med.201721441081109210.1084/jem.2016201128298456
    [Google Scholar]
  139. LuoH. XiangY. QuX. LiuH. LiuC. LiG. HanL. QinX. Apelin-13 suppresses neuroinflammation against cognitive deficit in a streptozotocin-induced rat model of Alzheimer’s disease through activation of BDNF-TrkB signaling pathway.Front. Pharmacol.20191039510.3389/fphar.2019.0039531040784
    [Google Scholar]
  140. ItagakiS. McGeerP. AkiyamaH. ZhuS. SelkoeD. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease.J. Neuroimmunol.198924317318210.1016/0165‑5728(89)90115‑X2808689
    [Google Scholar]
  141. HenekaM.T. SastreM. Dumitrescu-OzimekL. DewachterI. WalterJ. KlockgetherT. Van LeuvenF. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice.J. Neuroinflammation2005212210.1186/1742‑2094‑2‑2216212664
    [Google Scholar]
  142. JungC.K.E. KepplerK. SteinbachS. Blazquez-LlorcaL. HermsJ. Fibrillar amyloid plaque formation precedes microglial activation.PLoS One2015103e011976810.1371/journal.pone.011976825799372
    [Google Scholar]
  143. RodríguezJ.J. WittonJ. OlabarriaM. NoristaniH.N. VerkhratskyA. Increase in the density of resting microglia precedes neuritic plaque formation and microglial activation in a transgenic model of Alzheimer’s disease.Cell Death Dis.201011e110.1038/cddis.2009.221364611
    [Google Scholar]
  144. JanaM. PalenciaC.A. PahanK. Fibrillar amyloid-beta peptides activate microglia via TLR2: Implications for Alzheimer's disease.J. Immunol.2008181107254726210.4049/jimmunol.181.10.725418981147
    [Google Scholar]
  145. RichardK.L. FilaliM. PréfontaineP. RivestS. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease.J. Neurosci.200828225784579310.1523/JNEUROSCI.1146‑08.200818509040
    [Google Scholar]
  146. Reed-GeaghanE.G. SavageJ.C. HiseA.G. LandrethG.E. CD14 and toll-like receptors 2 and 4 are required for fibrillar Abeta-stimulated microglial activation.J. Neurosci.20092938119821199210.1523/JNEUROSCI.3158‑09.200919776284
    [Google Scholar]
  147. LeeC.Y. LandrethG.E. The role of microglia in amyloid clearance from the AD brain.J. Neural. Transm. (Vienna)2010117894996010.1007/s00702‑010‑0433‑420552234
    [Google Scholar]
  148. QiaoO. JiH. ZhangY. ZhangX. ZhangX. LiuN. HuangL. New insights in drug development for Alzheimer's disease based on microglia function.Biomed Pharmacother.202114011170310.1016/j.biopha.2021.11170334083109
    [Google Scholar]
  149. QiuW.Q. YeZ. KholodenkoD. SeubertP. SelkoeD.J. Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells.J. Biol. Chem.1997272106641664610.1074/jbc.272.10.66419045694
    [Google Scholar]
  150. El KhouryJ. ToftM. HickmanS.E. MeansT.K. TeradaK. GeulaC. LusterA.D. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease.Nat. Med.200713443243810.1038/nm155517351623
    [Google Scholar]
  151. KrabbeG. HalleA. MatyashV. RinnenthalJ.L. EomG.D. BernhardtU. MillerK.R. ProkopS. KettenmannH. HeppnerF.L. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology.PLoS One201384e6092110.1371/journal.pone.006092123577177
    [Google Scholar]
  152. CaiH. LiangQ. GeG. Gypenoside attenuates β amyloid-induced inflammation in N9 microglial cells via SOCS1 signaling.Neural Plast.2016201611010.1155/2016/636270727213058
    [Google Scholar]
  153. CombsC.K. KarloJ.C. KaoS.C. LandrethG.E. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis.J. Neurosci.20012141179118810.1523/JNEUROSCI.21‑04‑01179.200111160388
    [Google Scholar]
  154. SajjaV.S.S.S. HlavacN. VandeVordP.J. Role of glia in memory deficits following traumatic brain injury: Biomarkers of glia dysfunction.Front. Integr. Nuerosci.201610710.3389/fnint.2016.0000726973475
    [Google Scholar]
  155. LuoW. LiuW. HuX. HannaM. CaravacaA. PaulS.M. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody.Sci. Rep.2015511116110.1038/srep1116126057852
    [Google Scholar]
  156. BolósM. Llorens-MartínM. Jurado-ArjonaJ. HernándezF. RábanoA. AvilaJ. Direct evidence of internalization of tau by microglia in vitro and in vivo.J. Alzheimers Dis.2016501778710.3233/JAD‑15070426638867
    [Google Scholar]
  157. HuY. FryattG.L. GhorbaniM. ObstJ. MenassaD.A. Martin-EstebaneM. MuntslagT.A.O. Olmos-AlonsoA. Guerrero-CarrascoM. ThomasD. CraggM.S. Gomez-NicolaD. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology.Cell Rep.2021351010922810.1016/j.celrep.2021.10922834107254
    [Google Scholar]
  158. YamamotoM. KiyotaT. WalshS.M. LiuJ. KipnisJ. IkezuT. Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes.J Immunol.200818163877388610.4049/jimmunol.181.6.387718768842
    [Google Scholar]
  159. MichelucciA. HeurtauxT. GrandbarbeL. MorgaE. HeuschlingP. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-β.J. Neuroimmunol.20092101-231210.1016/j.jneuroim.2009.02.00319269040
    [Google Scholar]
  160. VodovotzY. LuciaM.S. FlandersK.C. CheslerL. XieQ.W. SmithT.W. WeidnerJ. MumfordR. WebberR. NathanC. RobertsA.B. LippaC.F. SpornM.B. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer’s disease.J. Exp. Med.199618441425143310.1084/jem.184.4.14258879214
    [Google Scholar]
  161. GoodwinJ.L. UemuraE. CunnickJ.E. Microglial release of nitric oxide by the synergistic action of β-amyloid and IFN-γ.Brain Res.19956921-220721410.1016/0006‑8993(95)00646‑88548305
    [Google Scholar]
  162. KummerM.P. HermesM. DelekarteA. HammerschmidtT. KumarS. TerwelD. WalterJ. PapeH.C. KönigS. RoeberS. JessenF. KlockgetherT. KorteM. HenekaM.T. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation.Neuron201171583384410.1016/j.neuron.2011.07.00121903077
    [Google Scholar]
  163. KummerM.P. VoglT. AxtD. GriepA. Vieira-SaeckerA. JessenF. GelpiE. RothJ. HenekaM.T. Mrp14 deficiency ameliorates amyloid β burden by increasing microglial phagocytosis and modulation of amyloid precursor protein processing.J. Neurosci.20123249178241782910.1523/JNEUROSCI.1504‑12.201223223301
    [Google Scholar]
  164. TaupenotL. Ciesielski-TreskaJ. UlrichG. Chasserot-GolazS. AunisD. BaderM.F. Chromogranin a triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells.Neuroscience199672237738910.1016/0306‑4522(96)83172‑18737408
    [Google Scholar]
  165. PickfordF. MasliahE. BritschgiM. LucinK. NarasimhanR. JaegerP.A. SmallS. SpencerB. RockensteinE. LevineB. Wyss-CorayT. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice.J. Clin. Invest.200811862190219918497889
    [Google Scholar]
  166. LucinK.M. O’BrienC.E. BieriG. CzirrE. MosherK.I. AbbeyR.J. MastroeniD.F. RogersJ. SpencerB. MasliahE. Wyss-CorayT. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease.Neuron201379587388610.1016/j.neuron.2013.06.04624012002
    [Google Scholar]
  167. CaldeiraC. CunhaC. VazA.R. FalcãoA.S. BarateiroA. SeixasE. FernandesA. BritesD. Key aging-associated alterations in primary microglia response to beta-amyloid stimulation.Front. Aging Neurosci.2017927710.3389/fnagi.2017.0027728912710
    [Google Scholar]
  168. DariaA. ColomboA. LloveraG. HampelH. WillemM. LieszA. HaassC. TahirovicS. Young microglia restore amyloid plaque clearance of aged microglia.EMBO J.201736558360310.15252/embj.20169459128007893
    [Google Scholar]
  169. ShibuyaY. KumarK.K. MaderM.M.D. YooY. AyalaL.A. ZhouM. MohrM.A. NeumayerG. KumarI. YamamotoR. MarcouxP. LiouB. BennettF.C. NakauchiH. SunY. ChenX. HeppnerF.L. Wyss-CorayT. SüdhofT.C. WernigM. Treatment of a genetic brain disease by CNS-wide microglia replacement.Sci. Transl. Med.202214636eabl994510.1126/scitranslmed.abl994535294256
    [Google Scholar]
  170. HeckmannB.L. TeubnerB.J.W. TummersB. Boada-RomeroE. HarrisL. YangM. GuyC.S. ZakharenkoS.S. GreenD.R. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease.Cell20191783536551.e1410.1016/j.cell.2019.05.05631257024
    [Google Scholar]
  171. WangJ. QinX. SunH. HeM. LvQ. GaoC. HeX. LiaoH. Nogo receptor impairs the clearance of fibril amyloid-β by microglia and accelerates Alzheimer’s-like disease progression.Aging Cell20212012e1351510.1111/acel.1351534821024
    [Google Scholar]
  172. SinghN. BenoitM.R. ZhouJ. DasB. Davila-VelderrainJ. KellisM. TsaiL.H. HuX. YanR. BACE-1 inhibition facilitates the transition from homeostatic microglia to DAM-1.Sci. Adv.2022824eabo128610.1126/sciadv.abo128635714196
    [Google Scholar]
  173. SinghN. DasB. ZhouJ. HuX. YanR. Targeted BACE-1 inhibition in microglia enhances amyloid clearance and improved cognitive performance.Sci. Adv.2022829eabo361010.1126/sciadv.abo361035857844
    [Google Scholar]
  174. McAlpineC.S. ParkJ. GriciucA. KimE. ChoiS.H. IwamotoY. KissM.G. ChristieK.A. VinegoniC. PollerW.C. MindurJ.E. ChanC.T. HeS. JanssenH. WongL.P. DowneyJ. SinghS. AnzaiA. KahlesF. JorfiM. FeruglioP.F. SadreyevR.I. WeisslederR. KleinstiverB.P. NahrendorfM. TanziR.E. SwirskiF.K. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease.Nature2021595786970170610.1038/s41586‑021‑03734‑634262178
    [Google Scholar]
  175. FitzN.F. NamK.N. WolfeC.M. LetronneF. PlaysoB.E. IordanovaB.E. KozaiT.D.Y. BiedrzyckiR.J. KaganV.E. TyurinaY.Y. HanX. LefterovI. KoldamovaR. Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease.Nat. Commun.2021121341610.1038/s41467‑021‑23762‑034099706
    [Google Scholar]
  176. HuangY. HapponenK.E. BurrolaP.G. O’ConnorC. HahN. HuangL. NimmerjahnA. LemkeG. Microglia use TAM receptors to detect and engulf amyloid β plaques.Nat. Immunol.202122558659410.1038/s41590‑021‑00913‑533859405
    [Google Scholar]
  177. ItoD. ImaiY. OhsawaK. NakajimaK. FukuuchiY. KohsakaS. Microglia-specific localisation of a novel calcium binding protein, Iba1.Brain Res. Mol. Brain Res.19985711910.1016/S0169‑328X(98)00040‑09630473
    [Google Scholar]
  178. VenegasC. KumarS. FranklinB.S. DierkesT. BrinkschulteR. TejeraD. Vieira-SaeckerA. SchwartzS. SantarelliF. KummerM.P. GriepA. GelpiE. BeilharzM. RiedelD. GolenbockD.T. GeyerM. WalterJ. LatzE. HenekaM.T. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease.Nature2017552768535536110.1038/nature2515829293211
    [Google Scholar]
  179. d’ErricoP. Ziegler-WaldkirchS. AiresV. HoffmannP. MezöC. ErnyD. MonasorL.S. LiebscherS. RaviV.M. JosephK. SchnellO. KierdorfK. StaszewskiO. TahirovicS. PrinzM. Meyer-LuehmannM. Microglia contribute to the propagation of Aβ into unaffected brain tissue.Nat. Neurosci.2022251202510.1038/s41593‑021‑00951‑034811521
    [Google Scholar]
  180. IsingC. VenegasC. ZhangS. ScheiblichH. SchmidtS.V. Vieira-SaeckerA. SchwartzS. AlbassetS. McManusR.M. TejeraD. GriepA. SantarelliF. BrosseronF. OpitzS. StundenJ. MertenM. KayedR. GolenbockD.T. BlumD. LatzE. BuéeL. HenekaM.T. NLRP3 inflammasome activation drives tau pathology.Nature2019575778466967310.1038/s41586‑019‑1769‑z31748742
    [Google Scholar]
  181. WangC. FanL. KhawajaR.R. LiuB. ZhanL. KodamaL. ChinM. LiY. LeD. ZhouY. CondelloC. GrinbergL.T. SeeleyW.W. MillerB.L. MokS.A. GestwickiJ.E. CuervoA.M. LuoW. GanL. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy.Nat. Commun.2022131196910.1038/s41467‑022‑29552‑635413950
    [Google Scholar]
  182. PomilioC. GorojodR.M. RiudavetsM. VinuesaA. PresaJ. GregosaA. BentivegnaM. AlaimoA. AlconS.P. SevleverG. KotlerM.L. BeauquisJ. SaraviaF. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients.Geroscience202042261363210.1007/s11357‑020‑00161‑931975051
    [Google Scholar]
  183. XuY. PropsonN.E. DuS. XiongW. ZhengH. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading.Proc. Natl. Acad. Sci. USA202111827202341811810.1073/pnas.2023418118
    [Google Scholar]
  184. TrottaT. Antonietta PanaroM. CianciulliA. MoriG. Di BenedettoA. PorroC. Microglia-derived extracellular vesicles in Alzheimer’s Disease: A double-edged sword.Biochem. Pharmacol.201814818419210.1016/j.bcp.2017.12.02029305855
    [Google Scholar]
  185. ClaytonK. DelpechJ.C. HerronS. IwaharaN. EricssonM. SaitoT. SaidoT.C. IkezuS. IkezuT. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model.Mol. Neurodegener.20211611810.1186/s13024‑021‑00440‑933752701
    [Google Scholar]
  186. RuanZ. DelpechJ.C. Venkatesan KalavaiS. Van EnooA.A. HuJ. IkezuS. IkezuT. P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice.Mol. Neurodegener.20201514710.1186/s13024‑020‑00396‑232811520
    [Google Scholar]
  187. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  188. YoungJ.E. JayadevS. Neighborhood matters: Altered lipid metabolism in APOE4 microglia causes problems for neurons.Cell Stem Cell20222981159116010.1016/j.stem.2022.07.00135931027
    [Google Scholar]
  189. GabrielliM. PradaI. JoshiP. FalcicchiaC. D’ArrigoG. RutiglianoG. BattocchioE. ZenatelliR. TozziF. RadeghieriA. ArancioO. OrigliaN. VerderioC. Microglial large extracellular vesicles propagate early synaptic dysfunction in Alzheimer’s disease.Brain202214582849286810.1093/brain/awac08335254410
    [Google Scholar]
  190. SweeneyM.D. SagareA.P. ZlokovicB.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders.Nat. Rev. Neurol.201814313315010.1038/nrneurol.2017.18829377008
    [Google Scholar]
  191. MerliniM. RafalskiV.A. Rios CoronadoP.E. GillT.M. EllismanM. MuthukumarG. SubramanianK.S. RyuJ.K. SymeC.A. DavalosD. SeeleyW.W. MuckeL. NelsonR.B. AkassoglouK. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model.Neuron2019101610991108.e610.1016/j.neuron.2019.01.01430737131
    [Google Scholar]
  192. WangC. XiongM. GratuzeM. BaoX. ShiY. AndheyP.S. ManisM. SchroederC. YinZ. MadoreC. ButovskyO. ArtyomovM. UlrichJ.D. HoltzmanD.M. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia.Neuron20211091016571674.e710.1016/j.neuron.2021.03.02433831349
    [Google Scholar]
  193. FawcettJ.W. OohashiT. PizzorussoT. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function.Nat. Rev. Neurosci.201920845146510.1038/s41583‑019‑0196‑331263252
    [Google Scholar]
  194. CrapserJ.D. SpangenbergE.E. BarahonaR.A. ArreolaM.A. HohsfieldL.A. GreenK.N. Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain.EBioMedicine20205810291910.1016/j.ebiom.2020.10291932745992
    [Google Scholar]
  195. WangL. WangX. DengL. ZhangH. HeB. CaoW. CuiY. Pexidartinib (PLX3397) through restoring hippocampal synaptic plasticity ameliorates social isolation-induced mood disorders.Int. Immunopharmacol.2022113Pt B10943610.1016/j.intimp.2022.10943636395673
    [Google Scholar]
  196. SinghD. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease.J. Neuroinflammation202219120610.1186/s12974‑022‑02565‑035978311
    [Google Scholar]
  197. HuR. FengH. Lenticulostriate artery and lenticulostriate-artery neural complex: New concept for intracerebral hemorrhage.Curr. Pharm. Des.201723152206221128228074
    [Google Scholar]
  198. Di BenedettoG. BurgalettoC. BellancaC.M. MunafòA. BernardiniR. CantarellaG. Role of microglia and astrocytes in Alzheimer’s disease: From neuroinflammation to Ca2+ homeostasis dysregulation.Cells20221117272810.3390/cells1117272836078138
    [Google Scholar]
  199. WendimuM.Y. HooksS.B. Microglia phenotypes in aging and neurodegenerative diseases.Cells20221113209110.3390/cells1113209135805174
    [Google Scholar]
  200. SpittauB. Aging microglia—phenotypes, functions and implications for age-related neurodegenerative diseases.Front. Aging Neurosci.2017919410.3389/fnagi.2017.0019428659790
    [Google Scholar]
  201. WangQ. YaoH. LiuW. YaB. ChengH. XingZ. WuY. Microglia polarization in Alzheimer’s disease: Mechanisms and a potential therapeutic target.Front. Aging Neurosci.20211377271710.3389/fnagi.2021.77271734819850
    [Google Scholar]
  202. SunE. MotolaniA. CamposL. LuT. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease.Int. J. Mol. Sci.20222316897210.3390/ijms2316897236012242
    [Google Scholar]
  203. WuY. EiselU.L.M. Microglia-astrocyte communication in Alzheimer’s disease.J. Alzheimers Dis.202395378580310.3233/JAD‑23019937638434
    [Google Scholar]
  204. ZhangC. GeH. ZhangS. LiuD. JiangZ. LanC. LiL. FengH. HuR. Hematoma evacuation via image-guided para-corticospinal tract approach in patients with spontaneous intracerebral hemorrhage.Neurol. Ther.20211021001101310.1007/s40120‑021‑00279‑834515953
    [Google Scholar]
  205. SanginetoM. CiarnelliM. CassanoT. RadescoA. MoolaA. BukkeV.N. RomanoA. VillaniR. KanwalH. CapitanioN. DudaL. AvolioC. ServiddioG. Metabolic reprogramming in inflammatory microglia indicates a potential way of targeting inflammation in Alzheimer’s disease.Redox Biol.20236610284610.1016/j.redox.2023.10284637586250
    [Google Scholar]
  206. ChenH. GuoZ. SunY. DaiX. The immunometabolic reprogramming of microglia in Alzheimerʼs disease.Neurochem. Int.202317110561410.1016/j.neuint.2023.10561437748710
    [Google Scholar]
  207. FasslerM. RappaportM.S. CuñoC.B. GeorgeJ. Engagement of TREM2 by a novel monoclonal antibody induces activation of microglia and improves cognitive function in Alzheimer’s disease models.J. Neuroinflammation20211811910.1186/s12974‑020‑01980‑533422057
    [Google Scholar]
  208. EllwangerD.C. WangS. BrioschiS. ShaoZ. GreenL. CaseR. YooD. WeishuhnD. RathanaswamiP. BradleyJ. RaoS. ChaD. LuanP. SambashivanS. GilfillanS. HassonS.A. FoltzI.N. van Lookeren CampagneM. ColonnaM. Prior activation state shapes the microglia response to antihuman TREM2 in a mouse model of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA20211183e201774211810.1073/pnas.201774211833446504
    [Google Scholar]
  209. EtxeberriaA. ShenY.A.A. VitoS. SilvermanS.M. ImperioJ. LalehzadehG. SoungA.L. DuC. XieL. ChoyM.K. HsiaoY. NguH. ChoC.H. GhoshS. NovikovaG. RezzonicoM.G. LeaheyR. WeberM. GogineniA. ElstrottJ. XiongM. GreeneJ.J. StarkK.L. ChanP. RothG.A. AdrianM. LiQ. ChoiM. WongW.R. SandovalW. ForemanO. NugentA.A. FriedmanB.A. SadekarS. HötzelI. HansenD.V. ChihB. YuenT.J. WeimerR.M. EastonA. MeilandtW.J. BohlenC.J. Neutral or detrimental effects of TREM2 agonist antibodies in preclinical models of Alzheimer’s disease and multiple sclerosis.J. Neurosci.20244429e234723202410.1523/JNEUROSCI.2347‑23.202438830764
    [Google Scholar]
  210. RayaproluS. GaoT. XiaoH. RameshaS. WeinstockL.D. ShahJ. DuongD.M. DammerE.B. WebsterJ.A.Jr LahJ.J. WoodL.B. BetarbetR. LeveyA.I. SeyfriedN.T. RangarajuS. Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer’s disease.Mol. Neurodegener.20201512810.1186/s13024‑020‑00377‑532381088
    [Google Scholar]
  211. RangarajuS. DammerE.B. RazaS.A. GaoT. XiaoH. BetarbetR. DuongD.M. WebsterJ.A. HalesC.M. LahJ.J. LeveyA.I. SeyfriedN.T. Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer’s disease-related proteins.Mol. Neurodegener.20181313410.1186/s13024‑018‑0266‑429954413
    [Google Scholar]
  212. MorrisG.P. ClarkI.A. ZinnR. VisselB. Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research.Neurobiol. Learn. Mem.2013105405310.1016/j.nlm.2013.07.00223850597
    [Google Scholar]
  213. Lepiarz-RabaI. GbadamosiI. FloreaR. PaolicelliR.C. JawaidA. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer’s disease therapeutics.Transl. Neurodegener.20231214810.1186/s40035‑023‑00382‑w37908010
    [Google Scholar]
  214. RogersJ. MastroeniD. LeonardB. JoyceJ. GroverA. Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: Are microglia pathogenic in either disorder?Int. Rev. Neurobiol.20078223524610.1016/S0074‑7742(07)82012‑517678964
    [Google Scholar]
  215. WangC. ZongS. CuiX. WangX. WuS. WangL. LiuY. LuZ. The effects of microglia-associated neuroinflammation on Alzheimer’s disease.Front. Immunol.202314111717210.3389/fimmu.2023.111717236911732
    [Google Scholar]
  216. BabyN. PatnalaR. LingE.A. DheenS.T. Nanomedicine and its application in treatment of microglia-mediated neuroinflammation.Curr. Med. Chem.201421374215422610.2174/092986732166614071610125825039775
    [Google Scholar]
  217. ZhaoP. XuY. FanX. LiL. LiX. AraseH. TongQ. ZhangN. AnZ. Discovery and engineering of an anti-TREM2 antibody to promote amyloid plaque clearance by microglia in 5XFAD mice.MAbs2022141210797110.1080/19420862.2022.210797135921534
    [Google Scholar]
  218. SharmaM. TanwarA.K. PurohitP.K. PalP. KumarD. VaidyaS. PrajapatiS.K. KumarA. DhamaN. KumarS. GuptaS.K. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer’s disease pathogenesis.Neurosci. Biobehav. Rev.202416110568510.1016/j.neubiorev.2024.10568538670299
    [Google Scholar]
  219. WolfeC.M. FitzN.F. NamK.N. LefterovI. KoldamovaR. The role of APOE and TREM2 in Alzheimer′s disease-current understanding and perspectives.Int. J. Mol. Sci.20182018110.3390/ijms2001008130587772
    [Google Scholar]
  220. BredesenD.E. ToupsK. HathawayA. GordonD. ChungH. RajiC. BoydA. HillB.D. Hausman-CohenS. AttarhaM. ChwaW.J. KurakinA. JarrettM. Precision medicine approach to Alzheimer’s disease: Rationale and implications.J. Alzheimers Dis.202396242943710.3233/JAD‑23046737807782
    [Google Scholar]
  221. ShiQ. ChangC. SalibaA. BhatM.A. Microglial mTOR activation upregulates Trem2 and enhances β-amyloid plaque clearance in the 5XFAD Alzheimer’s disease model.J. Neurosci.202242275294531310.1523/JNEUROSCI.2427‑21.202235672148
    [Google Scholar]
  222. FerrettiM.T. BrunoM.A. DucatenzeilerA. KleinW.L. CuelloA.C. Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease.Neurobiol. Aging20123371329134210.1016/j.neurobiolaging.2011.01.00721414686
    [Google Scholar]
  223. IsaacsonR.S. GanzerC.A. HristovH. HackettK. CaesarE. CohenR. KachkoR. Meléndez-CabreroJ. RahmanA. ScheyerO. HwangM.J. BerkowitzC. HendrixS. MurebM. SchelkeM.W. MosconiL. SeifanA. KrikorianR. The clinical practice of risk reduction for Alzheimer’s disease: A precision medicine approach.Alzheimers Dement.201814121663167310.1016/j.jalz.2018.08.00430446421
    [Google Scholar]
  224. WalkerD.G. LueL-F. Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer’s disease and other neurodegenerative diseases.J. Neurosci. Res.200581341242510.1002/jnr.2048415957156
    [Google Scholar]
  225. McKeeC.G. HoffosM. VecchiarelliH.A. TremblayM.È. Microglia: A pharmacological target for the treatment of age-related cognitive decline and Alzheimer’s disease.Front. Pharmacol.202314112598210.3389/fphar.2023.112598236969855
    [Google Scholar]
  226. SunX. LiL. DongQ.X. ZhuJ. HuangY. HouS. YuX. LiuR. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease.J. Neuroinflammation202118113110.1186/s12974‑021‑02182‑334116706
    [Google Scholar]
  227. DengQ. WuC. ParkerE. LiuT.C. DuanR. YangL. Microglia and astrocytes in Alzheimer’s disease: Significance and summary of recent advances.Aging Dis.20241541537156437815901
    [Google Scholar]
  228. QuW. LiL. Microglial TREM2 at the intersection of brain aging and Alzheimer’s disease.Neuroscientist202329330231610.1177/1073858421104078634470515
    [Google Scholar]
  229. SunZ. ZhangX. SoK.F. JiangW. ChiuK. Targeting microglia in Alzheimer’s disease: Pathogenesis and potential therapeutic strategies.Biomolecules202414783310.3390/biom1407083339062547
    [Google Scholar]
  230. AnwarS. RivestS. Alzheimer’s disease: Microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation.Expert Opin. Ther. Targets202024433134410.1080/14728222.2020.173839132129117
    [Google Scholar]
  231. BashaS.K.C. RamaiahM.J. KosagisharafJ.R. Untangling the Role of TREM2 in conjugation with microglia in neuronal dysfunction: A hypothesis on a novel pathway in the pathophysiology of Alzheimer’s disease.J. Alzheimers Dis.202394s1S319S33310.3233/JAD‑22107036683512
    [Google Scholar]
  232. GratuzeM. LeynsC.E.G. HoltzmanD.M. New insights into the role of TREM2 in Alzheimer’s disease.Mol. Neurodegener.20181316610.1186/s13024‑018‑0298‑930572908
    [Google Scholar]
  233. SinghA.K. MishraG. MauryaA. AwasthiR. KumariK. ThakurA. RaiA. RaiG.K. SharmaB. KulkarniG.T. SinghS.K. Role of TREM2 in Alzheimer’s disease and its consequences on β- amyloid, tau and neurofibrillary tangles.Curr. Alzheimer Res.202016131216122910.2174/156720501666619090310282231481003
    [Google Scholar]
  234. Lepiarz-RabaI. HidayatT. HannanA.J. JawaidA. Potential Alzheimer’s disease drug targets identified through microglial biology research.Expert Opin. Drug Discov.202419558760210.1080/17460441.2024.233521038590098
    [Google Scholar]
  235. SumsuzzmanD.M. UddinM.S. KabirM.T. HasanaS. PerveenA. AlanaziI.S. AlbadraniG.M. Abdel-DaimM.M. AshrafG.M. Microglia in Alzheimer’s disease: A favorable cellular target to ameliorate Alzheimer’s pathogenesis.Mediators Inflamm.2022202211710.1155/2022/605293235693110
    [Google Scholar]
  236. ZhangJ. ZhangY. WangJ. XiaY. ZhangJ. ChenL. Recent advances in Alzheimer’s disease: mechanisms, clinical trials and new drug development strategies.Signal Transduct. Target. Ther.20249121110.1038/s41392‑024‑01911‑339174535
    [Google Scholar]
  237. MitraS. GeraR. SundheimerJ. LemeeM. WahlbergL.U. LinderothB. EriksdotterM. BehbahaniH. Microglia impairs proliferation and induces senescence in-vitro in NGF releasing cells used in encapsulated cell biodelivery for Alzheimer’s disease therapy.Int. J. Mol. Sci.20222316901110.3390/ijms2316901136012296
    [Google Scholar]
  238. SchuetzE. ThanosS. Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases.Curr. Drug Targets20045761962710.2174/138945004334516415473251
    [Google Scholar]
  239. LouboutinJ.P. StrayerD. Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: Consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy.CNS Neurol. Disord. Drug Targets201312681582910.2174/1871527311312666017324047524
    [Google Scholar]
  240. RangarajanP. Eng-AngL. ThameemD.S. Potential drugs targeting microglia: Current knowledge and future prospects.CNS Neurol. Disord. Drug Targets201312679980610.2174/1871527311312666017524047522
    [Google Scholar]
  241. HickmanS.E. El KhouryJ. TREM2 and the neuroimmunology of Alzheimer’s disease.Biochem. Pharmacol.201488449549810.1016/j.bcp.2013.11.02124355566
    [Google Scholar]
  242. ElmoreM.R.P. NajafiA.R. KoikeM.A. DagherN.N. SpangenbergE.E. RiceR.A. KitazawaM. MatusowB. NguyenH. WestB.L. GreenK.N. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain.Neuron201482238039710.1016/j.neuron.2014.02.04024742461
    [Google Scholar]
  243. TaraleP. AlamM.M. Colony-stimulating factor 1 receptor signaling in the central nervous system and the potential of its pharmacological inhibitors to halt the progression of neurological disorders.Inflammopharmacology202230382184210.1007/s10787‑022‑00958‑435290551
    [Google Scholar]
  244. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature0720118650913
    [Google Scholar]
  245. BhuniaS. KolishettiN. VashistA. YndartA.A. BrooksD. NairM. Drug delivery to the brain: Recent advances and unmet challenges.Pharmaceutics20231512265810.3390/pharmaceutics1512265838139999
    [Google Scholar]
  246. DesaiP. SheteH. AdnaikR. DisouzaJ. PatravaleV. Therapeutic targets and delivery challenges for Alzheimer’s disease.World J. Pharmacol.20154323626410.5497/wjp.v4.i3.236
    [Google Scholar]
  247. KuligaS. BerwigM. RoesM. Wayfinding in people with Alzheimer’s disease: Perspective taking and architectural cognition—a vision paper on future dementia care research opportunities.Sustainability (Basel)2021133108410.3390/su13031084
    [Google Scholar]
  248. Medrano-JiménezE. Jiménez-Ferrer CarrilloI. Pedraza-EscalonaM. Ramírez-SerranoC.E. Álvarez-ArellanoL. Cortés-MendozaJ. Herrera-RuizM. Jiménez-FerrerE. ZamilpaA. TortorielloJ. Pedraza-AlvaG. Pérez-MartínezL. Malva parviflora extract ameliorates the deleterious effects of a high fat diet on the cognitive deficit in a mouse model of Alzheimer’s disease by restoring microglial function via a PPAR-γ-dependent mechanism.J. Neuroinflammation201916114310.1186/s12974‑019‑1515‑331291963
    [Google Scholar]
  249. ThangwaritornS. LeeC. MetchikoffE. RazdanV. GhafaryS. RiveraD. PintoA. PemminatiS. A review of recent advances in the management of Alzheimer’s disease.Cureus2024164e5841610.7759/cureus.5841638756263
    [Google Scholar]
  250. FengD. LiP. XiaoW. PeiZ. ChenP. HuM. YangZ. LiT. XiaZ. CuiH. LiH. HuangQ. ZhangW. TangT. WangY. N-methyladenosine profiling reveals that Xuefu Zhuyu decoction upregulates METTL14 and BDNF in a rat model of traumatic brain injury.J. Ethnopharmacol.202331711682310.1016/j.jep.2023.11682337348798
    [Google Scholar]
  251. ZgorzynskaE. TREM2 in Alzheimer’s disease: Structure, function, therapeutic prospects, and activation challenges.Mol. Cell. Neurosci.202412810391710.1016/j.mcn.2024.10391738244651
    [Google Scholar]
  252. JendresenC. ÅrskogV. DawsM.R. NilssonL.N.G. The Alzheimer’s disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway.J. Neuroinflammation20171415910.1186/s12974‑017‑0835‑428320424
    [Google Scholar]
  253. ToupsK. HathawayA. GordonD. ChungH. RajiC. BoydA. HillB.D. Hausman-CohenS. AttarhaM. ChwaW.J. JarrettM. BredesenD.E. Precision medicine approach to Alzheimer’s disease: Successful pilot project.J. Alzheimers Dis.20228841411142110.3233/JAD‑21570735811518
    [Google Scholar]
  254. KrasemannS. MadoreC. CialicR. BaufeldC. CalcagnoN. El FatimyR. BeckersL. O’LoughlinE. XuY. FanekZ. GrecoD.J. SmithS.T. TweetG. HumulockZ. ZrzavyT. Conde-SanromanP. GaciasM. WengZ. ChenH. TjonE. MazaheriF. HartmannK. MadiA. UlrichJ.D. GlatzelM. WorthmannA. HeerenJ. BudnikB. LemereC. IkezuT. HeppnerF.L. LitvakV. HoltzmanD.M. LassmannH. WeinerH.L. OchandoJ. HaassC. ButovskyO. The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases.Immunity2017473566581.e910.1016/j.immuni.2017.08.00828930663
    [Google Scholar]
  255. MueedZ. TandonP. MauryaS.K. DevalR. KamalM.A. PoddarN.K. Tau and mTOR: The Hotspots for Multifarious Diseases in Alzheimer’s Development.Front. Neurosci.201912101710.3389/fnins.2018.0101730686983
    [Google Scholar]
  256. BellenguezC. KüçükaliF. JansenI.E. KleineidamL. Moreno-GrauS. AminN. NajA.C. Campos-MartinR. Grenier-BoleyB. AndradeV. HolmansP.A. BolandA. DamotteV. van der LeeS.J. CostaM.R. KuulasmaaT. YangQ. de RojasI. BisJ.C. YaqubA. ProkicI. ChapuisJ. AhmadS. GiedraitisV. AarslandD. Garcia-GonzalezP. AbdelnourC. Alarcón-MartínE. AlcoleaD. AlegretM. AlvarezI. ÁlvarezV. ArmstrongN.J. TsolakiA. AntúnezC. AppollonioI. ArcaroM. ArchettiS. PastorA.A. ArosioB. AthanasiuL. BaillyH. BanajN. BaqueroM. BarralS. BeiserA. PastorA.B. BelowJ.E. BenchekP. BenussiL. BerrC. BesseC. BessiV. BinettiG. BizarroA. BlesaR. BoadaM. BoerwinkleE. BorroniB. BoschiS. BossùP. BråthenG. BresslerJ. BresnerC. BrodatyH. BrookesK.J. BruscoL.I. Buiza-RuedaD. BûrgerK. BurholtV. BushW.S. CaleroM. CantwellL.B. CheneG. ChungJ. CuccaroM.L. CarracedoÁ. CecchettiR. Cervera-CarlesL. CharbonnierC. ChenH.H. ChillottiC. CicconeS. ClaassenJ.A.H.R. ClarkC. ContiE. Corma-GómezA. CostantiniE. CustoderoC. DaianD. DalmassoM.C. DanieleA. DardiotisE. DartiguesJ.F. de DeynP.P. de Paiva LopesK. de WitteL.D. DebetteS. DeckertJ. del SerT. DenningN. DeStefanoA. DichgansM. Diehl-SchmidJ. Diez-FairenM. RossiP.D. DjurovicS. DuronE. DüzelE. DufouilC. EiriksdottirG. EngelborghsS. Escott-PriceV. EspinosaA. EwersM. FaberK.M. FabrizioT. NielsenS.F. FardoD.W. FarottiL. FenoglioC. Fernández-FuertesM. FerrariR. FerreiraC.B. FerriE. FinB. FischerP. FladbyT. FließbachK. FongangB. FornageM. ForteaJ. ForoudT.M. FostinelliS. FoxN.C. Franco-MacíasE. BullidoM.J. Frank-GarcíaA. FroelichL. Fulton-HowardB. GalimbertiD. García-AlbercaJ.M. García-GonzálezP. Garcia-MadronaS. Garcia-RibasG. GhidoniR. GieglingI. GiorgioG. GoateA.M. GoldhardtO. Gomez-FonsecaD. González-PérezA. GraffC. GrandeG. GreenE. GrimmerT. GrünblattE. GruninM. GudnasonV. Guetta-BaranesT. HaapasaloA. HadjigeorgiouG. HainesJ.L. Hamilton-NelsonK.L. HampelH. HanonO. HardyJ. HartmannA.M. HausnerL. HarwoodJ. Heilmann-HeimbachS. HelisalmiS. HenekaM.T. HernándezI. HerrmannM.J. HoffmannP. HolmesC. HolstegeH. VilasR.H. HulsmanM. HumphreyJ. BiesselsG.J. JianX. JohanssonC. JunG.R. KastumataY. KauweJ. KehoeP.G. KilanderL. StåhlbomA.K. KivipeltoM. KoivistoA. KornhuberJ. KosmidisM.H. KukullW.A. KuksaP.P. KunkleB.W. KuzmaA.B. LageC. LaukkaE.J. LaunerL. LauriaA. LeeC.Y. LehtisaloJ. LerchO. LleóA. LongstrethW.Jr LopezO. de MunainA.L. LoveS. LöwemarkM. LuckcuckL. LunettaK.L. MaY. MacíasJ. MacLeodC.A. MaierW. MangialascheF. SpallazziM. MarquiéM. MarshallR. MartinE.R. MontesA.M. RodríguezC.M. MasulloC. MayeuxR. MeadS. MecocciP. MedinaM. MeggyA. MehrabianS. MendozaS. Menéndez-GonzálezM. MirP. MoebusS. MolM. Molina-PorcelL. MontrrealL. MorelliL. MorenoF. MorganK. MosleyT. NöthenM.M. MuchnikC. MukherjeeS. NacmiasB. NganduT. NicolasG. NordestgaardB.G. OlasoR. OrellanaA. OrsiniM. OrtegaG. PadovaniA. PaoloC. PapenbergG. ParnettiL. PasquierF. PastorP. PelosoG. Pérez-CordónA. Pérez-TurJ. PericardP. PetersO. PijnenburgY.A.L. PinedaJ.A. Piñol-RipollG. PisanuC. PolakT. PoppJ. PosthumaD. PrillerJ. PuertaR. QuenezO. QuintelaI. ThomassenJ.Q. RábanoA. RaineroI. RajabliF. RamakersI. RealL.M. ReindersM.J.T. ReitzC. Reyes-DumeyerD. RidgeP. Riedel-HellerS. RiedererP. RobertoN. Rodriguez-RodriguezE. RongveA. AllendeI.R. Rosende-RocaM. RoyoJ.L. RubinoE. RujescuD. SáezM.E. SakkaP. SaltvedtI. SanabriaÁ. Sánchez-ArjonaM.B. Sanchez-GarciaF. JuanP.S. Sánchez-ValleR. SandoS.B. SarnowskiC. SatizabalC.L. ScamosciM. ScarmeasN. ScarpiniE. ScheltensP. ScherbaumN. SchererM. SchmidM. SchneiderA. SchottJ.M. SelbækG. SeripaD. SerranoM. ShaJ. ShadrinA.A. SkrobotO. SliferS. SnijdersG.J.L. SoininenH. SolfrizziV. SolomonA. SongY. SorbiS. Sotolongo-GrauO. SpallettaG. SpottkeA. SquassinaA. StordalE. TartanJ.P. TárragaL. TesíN. ThalamuthuA. ThomasT. TostoG. TraykovL. TremolizzoL. Tybjærg-HansenA. UitterlindenA. UllgrenA. UlsteinI. ValeroS. ValladaresO. BroeckhovenC.V. VanceJ. VardarajanB.N. van der LugtA. DongenJ.V. van RooijJ. van SwietenJ. VandenbergheR. VerheyF. VidalJ.S. VogelgsangJ. VyhnalekM. WagnerM. WallonD. WangL.S. WangR. WeinholdL. WiltfangJ. WindleG. WoodsB. YannakouliaM. ZareH. ZhaoY. ZhangX. ZhuC. ZulaicaM. LaczoJ. MatoskaV. SerpenteM. AssognaF. PirasF. PirasF. CiulloV. ShofanyJ. FerrareseC. AndreoniS. SalaG. ZoiaC.P. ZompoM.D. BenussiA. BastianiP. TakaloM. NatunenT. LaatikainenT. TuomilehtoJ. AntikainenR. StrandbergT. LindströmJ. PeltonenM. AbrahamR. Al-ChalabiA. BassN.J. BrayneC. BrownK.S. CollingeJ. CraigD. DeloukasP. FoxN. GerrishA. GillM. GwilliamR. HaroldD. HollingworthP. JohnstonJ.A. JonesL. LawlorB. LivingstonG. LovestoneS. LuptonM. LynchA. MannD. McGuinnessB. McQuillinA. O’DonovanM.C. OwenM.J. PassmoreP. PowellJ.F. ProitsiP. RossorM. ShawC.E. SmithA.D. GurlingH. ToddS. MummeryC. RyanN. LacidognaG. Adarmes-GómezA. MauleónA. PanchoA. GailhajenetA. LafuenteA. Macias-GarcíaD. MartínE. PelejàE. CarrilloF. MerlínI.S. Garrote-EspinaL. VargasL. Carrion-ClaroM. MarínM. LabradorM. BuendiaM. AlonsoM.D. GuitartM. MorenoM. IbarriaM. PeriñánM. AguileraN. Gómez-GarreP. CañabateP. EscuelaR. Pineda-SánchezR. Vigo-OrtegaR. JesúsS. PrecklerS. Rodrigo-HerreroS. DiegoS. VaccaA. RovetaF. SalvadoriN. ChipiE. BoeckerH. LaskeC. PerneczkyR. AnastasiouC. JanowitzD. MalikR. AnastasiouA. ParveenK. LageC. López-GarcíaS. AntonellA. MihovaK.Y. BelezhanskaD. WeberH. KochenS. SolisP. MedelN. LissoJ. SevillanoZ. PolitisD.G. CoresV. CuestaC. OrtizC. BachaJ.I. RiosM. SaenzA. AbalosM.S. KohlerE. PalacioD.L. EtcheparebordaI. KohlerM. NovackG. PrestiaF.A. GaleanoP. CastañoE.M. GermaniS. TosoC.R. RojoM. InginoC. MangoneC. RubinszteinD.C. TeipelS. FievetN. DeramerourtV. ForsellC. ThonbergH. BjerkeM. RoeckE.D. Martínez-LarradM.T. OlivarN. AguileraN. CanoA. CañabateP. MaciasJ. MaroñasO. Nuñez-LlavesR. OlivéC. PelejáE. Adarmes-GómezA.D. AlonsoM.D. Amer-FerrerG. AntequeraM. BurgueraJ.A. CarrilloF. Carrión-ClaroM. CasajerosM.J. Martinez de PancorboM. EscuelaR. Garrote-EspinaL. Gómez-GarreP. HevillaS. JesúsS. EspinosaM.A.L. LegazA. López-GarcíaS. Macias-GarcíaD. ManzanaresS. MarínM. Marín-MuñozJ. MarínT. MartínezB. MartínezV. Martínez-Lage ÁlvarezP. IriarteM.M. Periñán-TocinoM.T. Pineda-SánchezR. Real de AsúaD. RodrigoS. SastreI. VicenteM.P. Vigo-OrtegaR. VivancosL. EpelbaumJ. HannequinD. campionD. DeramecourtV. TzourioC. BriceA. DuboisB. WilliamsA. ThomasC. DaviesC. NashW. DowzellK. MoralesA.C. Bernardo-HarringtonM. TurtonJ. LordJ. BrownK. VardyE. FisherE. WarrenJ.D. RossorM. RyanN.S. GuerreiroR. UphillJ. BassN. HeunR. KölschH. SchürmannB. LacourA. HeroldC. JohnstonJ.A. PassmoreP. PowellJ. PatelY. HodgesA. BeckerT. WardenD. WilcockG. ClarkeR. DeloukasP. Ben-ShlomoY. HooperN.M. Pickering-BrownS. SussamsR. WarnerN. BayerA. HeuserI. DrichelD. KloppN. MayhausM. RiemenschneiderM. PinchlerS. FeulnerT. GuW. van den BusscheH. HüllM. FrölichL. WichmannH-E. JöckelK-H. O’DonovanM. OwenM. BahramiS. BosnesI. SelnesP. BerghS. PalotieA. DalyM. JacobH. MatakidouA. RunzH. JohnS. PlengeR. McCarthyM. HunkapillerJ. EhmM. WaterworthD. FoxC. MalarstigA. KlingerK. CallK. BehrensT. LoerchP. MäkeläT. KaprioJ. VirolainenP. PulkkiK. KilpiT. PerolaM. PartanenJ. PitkärantaA. KaarteenahoR. VainioS. TurpeinenM. SerpiR. LaitinenT. MäkeläJ. KosmaV-M. KujalaU. TuovilaO. HendolinM. PakkanenR. WaringJ. Riley-GillisB. LiuJ. BiswasS. DiogoD. MarshallC. HuX. GosselM. GrahamR. CummingsB. RipattiS. SchleutkerJ. ArvasM. CarpénO. HinttalaR. KettunenJ. MannermaaA. LaukkanenJ. JulkunenV. RemesA. KälviäinenR. PeltolaJ. TienariP. RinneJ. ZiemannA. WaringJ. EsmaeeliS. SmaouiN. LehtonenA. EatonS. LahdenperäS. van AdelsbergJ. MichonJ. KerchnerG. BowersN. TengE. EicherJ. MehtaV. GormleyP. LindenK. WhelanC. XuF. PulfordD. FärkkiläM. PikkarainenS. JussilaA. BlomsterT. KiviniemiM. VoutilainenM. GeorgantasB. HeapG. RahimovF. UsiskinK. LuT. OhD. KalpalaK. MillerM. McCarthyL. EklundK. PalomäkiA. IsomäkiP. PiriläL. Kaipiainen-SeppänenO. HuhtakangasJ. LertratanakulA. HochfeldM. BingN. GordilloJ.E. MarsN. PelkonenM. KauppiP. KankaanrantaH. HarjuT. CloseD. GreenbergS. ChenH. BettsJ. GhoshS. SalomaaV. NiiranenT. JuonalaM. MetsärinneK. KähönenM. JunttilaJ. LaaksoM. PihlajamäkiJ. SinisaloJ. TaskinenM-R. TuomiT. ChallisB. PetersonA. ChuA. ParkkinenJ. MuslinA. JoensuuH. MeretojaT. AaltonenL. MattsonJ. AuranenA. KarihtalaP. KauppilaS. AuvinenP. EleniusK. PopovicR. SchutzmanJ. LobodaA. ChhibberA. LehtonenH. McDonoughS. CrohnsM. KulkarniD. KaarnirantaK. TurunenJ.A. OllilaT. SeitsonenS. UusitaloH. AaltonenV. Uusitalo-JärvinenH. LuodonpääM. HautalaN. LoomisS. StraussE. ChenH. PodgornaiaA. HoffmanJ. TasanenK. HuilajaL. Hannula-JouppiK. SalmiT. PeltonenS. KouluL. HarvimaI. WuY. ChoyD. PussinenP. SalminenA. SaloT. RiceD. NieminenP. PalotieU. SiponenM. SuominenL. MäntyläP. GursoyU. AnttonenV. SipiläK. DavisJ.W. QuarlessD. PetrovskiS. WigmoreE. ChenC-Y. BronsonP. TsaiE. HuangY. MaranvilleJ. ShaikhoE. MohammedE. WadhawanS. KvikstadE. CaliskanM. ChangD. BhangaleT. PendergrassS. HolzingerE. ChenX. HedmanÅ. KingK.S. WangC. XuE. AugeF. ChatelainC. RajpalD. LiuD. CallK. XiaT. BrauerM. KurkiM. KarjalainenJ. HavulinnaA. JalankoA. PaltaP. della Briotta ParoloP. ZhouW. LemmeläS. RivasM. HarjuJ. LehistoA. GannaA. LlorensV. LaivuoriH. RüegerS. NiemiM.E. TukiainenT. ReeveM.P. HeyneH. PalinK. Garcia-TabuencaJ. SiirtolaH. KiiskinenT. LeeJ. TsuoK. ElliottA. KristianssonK. HyvärinenK. RitariJ. KoskinenM. PylkäsK. KalaojaM. KarjalainenM. MantereT. KangasniemiE. HeikkinenS. LaakkonenE. SipekyC. HeronS. KarlssonA. JambulingamD. RathinakannanV.S. KajanneR. AavikkoM. JiménezM.G. della Briotta ParolaP. LehistöA. KanaiM. KaunistoM. KilpeläinenE. SipiläT.P. BreinG. AwaisaG. ShcherbanA. DonnerK. LoukolaA. LaihoP. SistonenT. KaiharjuE. LaukkanenM. JärvensivuE. LähteenmäkiS. MännikköL. WongR. MattssonH. HiekkalinnaT. PaajanenT. PärnK. Gracia-TabuencaJ. AbnerE. AdamsP.M. AguirreA. AlbertM.S. AlbinR.L. AllenM. AlvarezL. ApostolovaL.G. ArnoldS.E. AsthanaS. AtwoodC.S. AyresG. BaldwinC.T. BarberR.C. BarnesL.L. BarralS. BeachT.G. BeckerJ.T. BeechamG.W. BeeklyD. BelowJ.E. BenchekP. BenitezB.A. BennettD. BertelsonJ. MargaretF.E. BirdT.D. BlackerD. BoeveB.F. BowenJ.D. BoxerA. BrewerJ. BurkeJ.R. BurnsJ.M. BushW.S. BuxbaumJ.D. CairnsN.J. CaoC. CarlsonC.S. CarlssonC.M. CarneyR.M. CarrasquilloM.M. ChasseS. ChesseletM-F. ChesiA. ChinN.A. ChuiH.C. ChungJ. CraftS. CraneP.K. CribbsD.H. CroccoE.A. CruchagaC. CuccaroM.L. CullumM. DarbyE. DavisB. De JagerP.L. DeCarliC. DeToledoJ. DickM. DicksonD.W. DombroskiB.A. DoodyR.S. DuaraR. Ertekin-TanerN. EvansD.A. FairchildT.J. FallonK.B. FarlowM.R. FarrellJ.J. Fernandez-HernandezV. FerrisS. FroschM.P. Fulton-HowardB. GalaskoD.R. GamboaA. GearingM. GeschwindD.H. GhettiB. GilbertJ.R. GrabowskiT.J. Graff-RadfordN.R. GrantS.F.A. GreenR.C. GrowdonJ.H. HainesJ.L. HakonarsonH. HallJ. HamiltonR.L. HarariO. HarrellL.E. HautJ. HeadE. HendersonV.W. HernandezM. HohmanT. HonigL.S. HuebingerR.M. HuentelmanM.J. HuletteC.M. HymanB.T. HynanL.S. IbanezL. JarvikG.P. JayadevS. JinL-W. JohnsonK. JohnsonL. KambohM.I. KarydasA.M. KatzM.J. KayeJ.A. KeeneC.D. KhaleeqA. KimR. KneblJ. KowallN.W. KramerJ.H. KuksaP.P. LaFerlaF.M. LahJ.J. LarsonE.B. LeeC-Y. LeeE.B. LernerA. LeungY.Y. LeverenzJ.B. LeveyA.I. LiM. LiebermanA.P. LiptonR.B. LogueM. LyketsosC.G. MalamonJ. MainsD. MarsonD.C. MartiniukF. MashD.C. MasliahE. MassmanP. MasurkarA. McCormickW.C. McCurryS.M. McDavidA.N. McDonoughS. McKeeA.C. MesulamM. MezJ. MillerB.L. MillerC.A. MillerJ.W. MontineT.J. MonukiE.S. MorrisJ.C. MyersA.J. NguyenT. O’BryantS. OlichneyJ.M. OryM. PalmerR. ParisiJ.E. PaulsonH.L. PavlikV. PaydarfarD. PerezV. PeskindE. PetersenR.C. Phillips-CreminsJ.E. PierceA. PolkM. PoonW.W. PotterH. QuL. QuicenoM. QuinnJ.F. RajA. RaskindM. ReimanE.M. ReisbergB. ReischJ.S. RingmanJ.M. RobersonE.D. RodriguearM. RogaevaE. RosenH.J. RosenbergR.N. RoyallD.R. SagerM.A. SanoM. SaykinA.J. SchneiderJ.A. SchneiderL.S. SeeleyW.W. SliferS.H. SmallS. SmithA.G. SmithJ.P. SongY.E. SonnenJ.A. SpinaS. George-HyslopP.S. SternR.A. StevensA.B. StrittmatterS.M. SultzerD. SwerdlowR.H. TanziR.E. TilsonJ.L. TrojanowskiJ.Q. TroncosoJ.C. TsuangD.W. ValladaresO. Van DeerlinV.M. van EldikL.J. VassarR. VintersH.V. VonsattelJ-P. WeintraubS. Welsh-BohmerK.A. WhiteheadP.L. WijsmanE.M. WilhelmsenK.C. WilliamsB. WilliamsonJ. WilmsH. WingoT.S. WisniewskiT. WoltjerR.L. WoonM. WrightC.B. WuC-K. YounkinS.G. YuC-E. YuL. ZhangY. ZhaoY. ZhuX. AdamsH. AkinyemiR.O. AliM. ArmstrongN. AparicioH.J. BahadoriM. BeckerJ.T. BretelerM. ChasmanD. ChauhanG. ComicH. CoxS. CupplesA.L. DaviesG. DeCarliC.S. DuperronM-G. DupuisJ. EvansT. FanF. FitzpatrickA. FohnerA.E. GanguliM. GeerlingsM. GlattS.J. GonzalezH.M. GossM. GrabeH. HabesM. HeckbertS.R. HoferE. HongE. HughesT. KautzT.F. KnolM. KremenW. LacazeP. LahtiJ. GrandQ.L. LitkowskiE. LiS. LiuD. LiuX. LoitfelderM. ManningA. MaillardP. MarioniR. MazoyerB. van LentD.M. MeiH. MishraA. NyquistP. O’ConnellJ. PatelY. PausT. PausovaZ. Raikkonen-TalvitieK. RiazM. RichS. RotterJ. RomeroJ. RoshchupkinG. SabaY. SargurupremrajM. SchmidtH. SchmidtR. ShulmanJ.M. SmithJ. SekharH. RajulaR. ShinJ. SiminoJ. SlizE. TeumerA. ThomasA. TinA. Tucker-DrobE. VojinovicD. WangY. WeinsteinG. WilliamsD. WittfeldK. YanekL. YangY. FarrerL.A. PsatyB.M. GhanbariM. RajT. SachdevP. MatherK. JessenF. IkramM.A. de MendonçaA. HortJ. TsolakiM. Pericak-VanceM.A. AmouyelP. WilliamsJ. Frikke-SchmidtR. ClarimonJ. DeleuzeJ-F. RossiG. SeshadriS. AndreassenO.A. IngelssonM. HiltunenM. SleegersK. SchellenbergG.D. van DuijnC.M. SimsR. van der FlierW.M. RuizA. RamirezA. LambertJ-C. EADB GR@ACE DEGESCO EADI GERAD Demgene FinnGen ADGC CHARGE New insights into the genetic etiology of Alzheimer’s disease and related dementias.Nat. Genet.202254441243610.1038/s41588‑022‑01024‑z35379992
    [Google Scholar]
  257. PaolicelliR.C. SierraA. StevensB. TremblayM.E. AguzziA. AjamiB. AmitI. AudinatE. BechmannI. BennettM. BennettF. BessisA. BiberK. BilboS. Blurton-JonesM. BoddekeE. BritesD. BrôneB. BrownG.C. ButovskyO. CarsonM.J. CastellanoB. ColonnaM. CowleyS.A. CunninghamC. DavalosD. De JagerP.L. de StrooperB. DenesA. EggenB.J.L. EyoU. GaleaE. GarelS. GinhouxF. GlassC.K. GokceO. Gomez-NicolaD. GonzálezB. GordonS. GraeberM.B. GreenhalghA.D. GressensP. GreterM. GutmannD.H. HaassC. HenekaM.T. HeppnerF.L. HongS. HumeD.A. JungS. KettenmannH. KipnisJ. KoyamaR. LemkeG. LynchM. MajewskaA. MalcangioM. MalmT. MancusoR. MasudaT. MatteoliM. McCollB.W. MironV.E. MolofskyA.V. MonjeM. MracskoE. NadjarA. NeherJ.J. NeniskyteU. NeumannH. NodaM. PengB. PeriF. PerryV.H. PopovichP.G. PridansC. PrillerJ. PrinzM. RagozzinoD. RansohoffR.M. SalterM.W. SchaeferA. SchaferD.P. SchwartzM. SimonsM. SmithC.J. StreitW.J. TayT.L. TsaiL.H. VerkhratskyA. von BernhardiR. WakeH. WittamerV. WolfS.A. WuL.J. Wyss-CorayT. Microglia states and nomenclature: A field at its crossroads.Neuron2022110213458348310.1016/j.neuron.2022.10.02036327895
    [Google Scholar]
  258. NakagawaY. ChibaK. Diversity and plasticity of microglial cells in psychiatric and neurological disorders.Pharmacol. Ther.2015154213510.1016/j.pharmthera.2015.06.01026129625
    [Google Scholar]
  259. Rodriguez-VieitezE. KumarA. MalarteM.L. IoannouK. RochaF.M. ChiotisK. Imaging neuroinflammation: Quantification of astrocytosis in a multitracer PET approach.Methods Mol. Biol.2024278519521810.1007/978‑1‑0716‑3774‑6_1338427196
    [Google Scholar]
  260. NakagawaY. ChibaK. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases.Pharmaceuticals (Basel)20147121028104810.3390/ph712102825429645
    [Google Scholar]
  261. HampelH. CaraciF. CuelloA.C. CarusoG. NisticòR. CorboM. BaldacciF. ToschiN. GaraciF. ChiesaP.A. VerdoonerS.R. Akman-AndersonL. HernándezF. ÁvilaJ. EmanueleE. ValenzuelaP.L. LucíaA. WatlingM. ImbimboB.P. VergalloA. ListaS. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease.Front. Immunol.20201145610.3389/fimmu.2020.0045632296418
    [Google Scholar]
  262. Villegas-LlerenaC. PhillipsA. Garcia-ReitboeckP. HardyJ. PocockJ.M. Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease.Curr. Opin. Neurobiol.201636748110.1016/j.conb.2015.10.00426517285
    [Google Scholar]
  263. HampelH. VergalloA. CaraciF. CuelloA.C. LemercierP. VellasB. GiudiciK.V. BaldacciF. HänischB. HaberkampM. BroichK. NisticòR. EmanueleE. LlaveroF. ZugazaJ.L. LucíaA. GiacobiniE. ListaS. Alzheimer Precision Medicine Initiative Future avenues for Alzheimer’s disease detection and therapy: Liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery.Neuropharmacology202118510808110.1016/j.neuropharm.2020.10808132407924
    [Google Scholar]
  264. KeineD. WalkerJ.Q. KennedyB.K. SabbaghM.N. Development, application, and results from a precision-medicine platform that personalizes multi-modal treatment plans for mild Alzheimer’s disease and at-risk individuals.Curr. Aging Sci.201911317318110.2174/187460981166618101910143030338750
    [Google Scholar]
  265. RaoR.V. SubramaniamK.G. GregoryJ. BredesenA.L. CowardC. OkadaS. KellyL. BredesenD.E. Rationale for a multi-factorial approach for the reversal of cognitive decline in Alzheimer’s disease and MCI: A review.Int. J. Mol. Sci.2023242165910.3390/ijms2402165936675177
    [Google Scholar]
/content/journals/car/10.2174/0115672050364292250113063513
Loading
/content/journals/car/10.2174/0115672050364292250113063513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test