Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual onset and complex pathological mechanisms. Clinically, it presents with progressive cognitive decline and behavioral impairments, making it one of the most common causes of dementia. The intricacies of its pathogenesis are not fully understood, and current treatment options are limited, with diagnosis typically occurring at intermediate to advanced stages. The development of new biomarkers offers a crucial avenue for the early diagnosis of AD and improving patient outcomes. Several biomarkers with high specificity have been identified. This article reviews biomarkers related to tau protein, β-amyloid, and blood cells to deepen our understanding of AD and emphasize the advantages and disadvantages of various biomarkers in order to explore further and mine new biomarkers for AD diagnosis.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050366767241223050957
2024-12-26
2025-10-13
Loading full text...

Full text loading...

References

  1. WinbladB. AmouyelP. AndrieuS. BallardC. BrayneC. BrodatyH. Cedazo-MinguezA. DuboisB. EdvardssonD. FeldmanH. FratiglioniL. FrisoniG.B. GauthierS. GeorgesJ. GraffC. IqbalK. JessenF. JohanssonG. JönssonL. KivipeltoM. KnappM. MangialascheF. MelisR. NordbergA. RikkertM.O. QiuC. SakmarT.P. ScheltensP. SchneiderL.S. SperlingR. TjernbergL.O. WaldemarG. WimoA. ZetterbergH. Defeating Alzheimer’s disease and other dementias: A priority for European science and society.Lancet Neurol.201615545553210.1016/S1474‑4422(16)00062‑426987701
    [Google Scholar]
  2. ChenZ.Y. ZhangY. Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives.Zool. Res.20224361026104010.24272/j.issn.2095‑8137.2022.28936317468
    [Google Scholar]
  3. KinsellaG.J. MullalyE. RandE. OngB. BurtonC. PriceS. PhillipsM. StoreyE. Early intervention for mild cognitive impairment: A randomised controlled trial.J. Neurol. Neurosurg. Psychiatry200980773073610.1136/jnnp.2008.14834619332424
    [Google Scholar]
  4. GillisC. MirzaeiF. PotashmanM. IkramM.A. MaserejianN. The incidence of mild cognitive impairment: A systematic review and data synthesis.Alzheimers Dement. (Amst.)201911124825610.1016/j.dadm.2019.01.00430911599
    [Google Scholar]
  5. MonteiroA.R. BarbosaD.J. RemiãoF. SilvaR. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs.Biochem. Pharmacol.202321111552210.1016/j.bcp.2023.11552236996971
    [Google Scholar]
  6. MantzavinosV. AlexiouA. Biomarkers for Alzheimer’s disease diagnosis.Curr. Alzheimer Res.201714111149115428164766
    [Google Scholar]
  7. MagalingamK.B. RadhakrishnanA. PingN.S. HaleagraharaN. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease.BioMed Res. Int.2018201811210.1155/2018/374046129707568
    [Google Scholar]
  8. ImbimboB.P. WatlingM. Investigational BACE inhibitors for the treatment of Alzheimer’s disease.Expert Opin. Investig. Drugs2019281196797510.1080/13543784.2019.168316031661331
    [Google Scholar]
  9. WangX. SunG. FengT. ZhangJ. HuangX. WangT. XieZ. ChuX. YangJ. WangH. ChangS. GongY. RuanL. ZhangG. YanS. LianW. DuC. YangD. ZhangQ. LinF. LiuJ. ZhangH. GeC. XiaoS. DingJ. GengM. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression.Cell Res.2019291078780310.1038/s41422‑019‑0216‑x31488882
    [Google Scholar]
  10. WangH.Y. PeiZ. LeeK.C. Lopez-BrignoniE. NikolovB. CrowleyC.A. MarsmanM.R. BarbierR. FriedmannN. BurnsL.H. PTI-125 reduces biomarkers of Alzheimer’s disease in patients.J. Prev. Alzheimers Dis.20207425626432920628
    [Google Scholar]
  11. SavelieffM.G. NamG. KangJ. LeeH.J. LeeM. LimM.H. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, parkinson’s disease, and amyotrophic lateral sclerosis in the last decade.Chem. Rev.201911921221132210.1021/acs.chemrev.8b0013830095897
    [Google Scholar]
  12. IsmailiL. RefouveletB. BenchekrounM. BrogiS. BrindisiM. GemmaS. CampianiG. FilipicS. AgbabaD. EstebanG. UnzetaM. NikolicK. ButiniS. Marco-ContellesJ. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease.Prog. Neurobiol.201715143410.1016/j.pneurobio.2015.12.00326797191
    [Google Scholar]
  13. RaoC.V. AschA.S. CarrD.J.J. YamadaH.Y. “Amyloid-beta accumulation cycle” as a prevention and/or therapy target for Alzheimer’s disease.Aging Cell2020193e1310910.1111/acel.1310931981470
    [Google Scholar]
  14. SperlingR.A. JackC.R.Jr AisenP.S. Testing the right target and right drug at the right stage.Sci. Transl. Med.20113111111cm3310.1126/scitranslmed.300260922133718
    [Google Scholar]
  15. BlennowK. Biomarkers in Alzheimer’s disease drug development.Nat. Med.201016111218122210.1038/nm.222121052077
    [Google Scholar]
  16. BeachT.G. MonsellS.E. PhillipsL.E. KukullW. Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging Alzheimer disease centers, 2005–2010.J. Neuropathol. Exp. Neurol.201271426627310.1097/NEN.0b013e31824b211b22437338
    [Google Scholar]
  17. WegmannS. BiernatJ. MandelkowE. A current view on tau protein phosphorylation in Alzheimer’s disease.Curr. Opin. Neurobiol.20216913113810.1016/j.conb.2021.03.00333892381
    [Google Scholar]
  18. KarikariT.K. AshtonN.J. BrinkmalmG. BrumW.S. BenedetA.L. Montoliu-GayaL. Lantero-RodriguezJ. PascoalT.A. Suárez-CalvetM. Rosa-NetoP. BlennowK. ZetterbergH. Blood phospho-tau in Alzheimer disease: Analysis, interpretation, and clinical utility.Nat. Rev. Neurol.202218740041810.1038/s41582‑022‑00665‑235585226
    [Google Scholar]
  19. WaheedZ. ChoudharyJ. JatalaF.H. FatimahN.A. ZerrI. ZafarS. The role of tau proteoforms in health and disease.Mol. Neurobiol.20236095155516610.1007/s12035‑023‑03387‑837266762
    [Google Scholar]
  20. PalmqvistS. TidemanP. CullenN. ZetterbergH. BlennowK. DageJ.L. StomrudE. JanelidzeS. Mattsson-CarlgrenN. HanssonO. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures.Nat. Med.20212761034104210.1038/s41591‑021‑01348‑z34031605
    [Google Scholar]
  21. CampeseN. PalermoG. Del GambaC. BeatinoM.F. GalganiA. BelliE. Del PreteE. DellaV.A. VergalloA. SicilianoG. CeravoloR. HampelH. BaldacciF. Progress regarding the context-of-use of tau as biomarker of Alzheimer’s disease and other neurodegenerative diseases.Expert Rev. Proteomics2021181274810.1080/14789450.2021.188692933545008
    [Google Scholar]
  22. PapaliagkasV. KalinderiK. VareltzisP. MoraitouD. PapamitsouT. ChatzidimitriouM. CSF biomarkers in the early diagnosis of mild cognitive impairment and Alzheimer’s disease.Int. J. Mol. Sci.20232410897610.3390/ijms2410897637240322
    [Google Scholar]
  23. BlennowK. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease.NeuroRx20041221322510.1602/neurorx.1.2.21315717022
    [Google Scholar]
  24. SchönknechtP. PantelJ. KaiserE. ThomannP. SchröderJ. Increased tau protein differentiates mild cognitive impairment from geriatric depression and predicts conversion to dementia.Neurosci. Lett.20074161394210.1016/j.neulet.2007.01.07017331644
    [Google Scholar]
  25. MeredithJ.E.Jr SankaranarayananS. GussV. LanzettiA.J. BerishaF. NeelyR.J. SlemmonJ.R. PorteliusE. ZetterbergH. BlennowK. SoaresH. AhlijanianM. AlbrightC.F. Characterization of novel CSF Tau and ptau biomarkers for Alzheimer’s disease.PLoS One2013810e7652310.1371/journal.pone.007652324116116
    [Google Scholar]
  26. FiandacaM.S. KapogiannisD. MapstoneM. BoxerA. EitanE. SchwartzJ.B. AbnerE.L. PetersenR.C. FederoffH.J. MillerB.L. GoetzlE.J. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study.Alzheimers Dement.20151166007.e110.1016/j.jalz.2014.06.00825130657
    [Google Scholar]
  27. BlennowK. A review of fluid biomarkers for Alzheimer’s disease: Moving from CSF to blood.Neurol. Ther.20176Suppl 1152410.1007/s40120‑017‑0073‑928733960
    [Google Scholar]
  28. MarksteinerJ. DefrancescoM. HumpelC. Saliva tau and phospho-tau-181 measured by Lumipulse in patients with Alzheimer’s disease.Front. Aging Neurosci.202214101430510.3389/fnagi.2022.101430536247998
    [Google Scholar]
  29. Gonzalez-OrtizF. KarikariT.K. BentivengaG.M. BaiardiS. MammanaA. TurtonM. KacP.R. MastrangeloA. HarrisonP. CapellariS. ZetterbergH. BlennowK. ParchiP. Levels of plasma brain-derived tau and p-tau181 in Alzheimer’s disease and rapidly progressive dementias.Alzheimers Dement.202420174575110.1002/alz.1351637858957
    [Google Scholar]
  30. HansenN. JuhlA.L. GrenzerI.M. Cerebrospinal fluid total tau protein correlates with longitudinal, progressing cognitive dysfunction in anti-neural autoantibody-associated dementia and Alzheimer's dementia: A case-control study.Front. Immunol.20221383737610.3389/fimmu.2022.837376
    [Google Scholar]
  31. HesseC. RosengrenL. AndreasenN. DavidssonP. VandersticheleH. VanmechelenE. BlennowK. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke.Neurosci. Lett.2001297318719010.1016/S0304‑3940(00)01697‑911137759
    [Google Scholar]
  32. CicognolaC. BrinkmalmG. WahlgrenJ. PorteliusE. GobomJ. CullenN.C. HanssonO. ParnettiL. ConstantinescuR. WildsmithK. ChenH.H. BeachT.G. LashleyT. ZetterbergH. BlennowK. HöglundK. Novel tau fragments in cerebrospinal fluid: Relation to tangle pathology and cognitive decline in Alzheimer’s disease.Acta Neuropathol.2019137227929610.1007/s00401‑018‑1948‑230547227
    [Google Scholar]
  33. HallS. ÖhrfeltA. ConstantinescuR. AndreassonU. SurovaY. BostromF. NilssonC. WidnerH. DecraemerH. NäggaK. MinthonL. LondosE. VanmechelenE. HolmbergB. ZetterbergH. BlennowK. HanssonO. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders.Arch. Neurol.201269111445145210.1001/archneurol.2012.165422925882
    [Google Scholar]
  34. UrakamiK. WadaK. AraiH. SasakiH. KanaiM. ShojiM. IshizuH. KashiharaK. YamamotoM. Tsuchiya-IkemotoK. MorimatsuM. TakashimaH. NakagawaM. KurokawaK. MaruyamaH. KasedaY. NakamuraS. HasegawaK. OonoH. HikasaC. IkedaK. YamagataK. WakutaniY. TakeshimaT. NakashimaK. Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy.J. Neurol. Sci.20011831959810.1016/S0022‑510X(00)00480‑911166802
    [Google Scholar]
  35. IqbalK. AlonsoA.C. ChenS. ChohanM.O. El-AkkadE. GongC.X. KhatoonS. LiB. LiuF. RahmanA. TanimukaiH. Grundke-IqbalI. Tau pathology in Alzheimer disease and other tauopathies.Biochim. Biophys. Acta200517392-319821010.1016/j.bbadis.2004.09.00815615638
    [Google Scholar]
  36. ChongJ.R. AshtonN.J. KarikariT.K. TanakaT. SchöllM. ZetterbergH. BlennowK. ChenC.P. LaiM.K.P. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer’s disease: A focused review on recent advances.J. Neurol. Neurosurg. Psychiatry202192111231124110.1136/jnnp‑2021‑32737034510001
    [Google Scholar]
  37. JanelidzeS. MattssonN. PalmqvistS. SmithR. BeachT.G. SerranoG.E. ChaiX. ProctorN.K. EichenlaubU. ZetterbergH. BlennowK. ReimanE.M. StomrudE. DageJ.L. HanssonO. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia.Nat. Med.202026337938610.1038/s41591‑020‑0755‑132123385
    [Google Scholar]
  38. KarikariT.K. PascoalT.A. AshtonN.J. JanelidzeS. BenedetA.L. RodriguezJ.L. ChamounM. SavardM. KangM.S. TherriaultJ. SchöllM. MassarwehG. SoucyJ.P. HöglundK. BrinkmalmG. MattssonN. PalmqvistS. GauthierS. StomrudE. ZetterbergH. HanssonO. Rosa-NetoP. BlennowK. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts.Lancet Neurol.202019542243310.1016/S1474‑4422(20)30071‑532333900
    [Google Scholar]
  39. JanelidzeS. StomrudE. SmithR. PalmqvistS. MattssonN. AireyD.C. ProctorN.K. ChaiX. ShcherbininS. SimsJ.R. Triana-BaltzerG. TheunisC. SlemmonR. MerckenM. KolbH. DageJ.L. HanssonO. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease.Nat. Commun.2020111168310.1038/s41467‑020‑15436‑032246036
    [Google Scholar]
  40. PalmqvistS. JanelidzeS. QuirozY.T. ZetterbergH. LoperaF. StomrudE. SuY. ChenY. SerranoG.E. LeuzyA. Mattsson-CarlgrenN. StrandbergO. SmithR. VillegasA. Sepulveda-FallaD. ChaiX. ProctorN.K. BeachT.G. BlennowK. DageJ.L. ReimanE.M. HanssonO. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders.JAMA2020324877278110.1001/jama.2020.1213432722745
    [Google Scholar]
  41. WennströmM. JanelidzeS. NilssonK.P.R. SerranoG.E. BeachT.G. DageJ.L. HanssonO. Cellular localization of p-tau217 in brain and its association with p-tau217 plasma levels.Acta Neuropathol. Commun.2022101310.1186/s40478‑021‑01307‑234991721
    [Google Scholar]
  42. HuangS. WangY.J. GuoJ. Biofluid biomarkers of Alzheimer’s disease: Progress, problems, and perspectives.Neurosci. Bull.202238667769110.1007/s12264‑022‑00836‑735306613
    [Google Scholar]
  43. ThijssenE.H. La JoieR. StromA. FonsecaC. IaccarinoL. WolfA. SpinaS. AllenI.E. CobigoY. HeuerH. VandeVredeL. ProctorN.K. LagoA.L. BakerS. SivasankaranR. KielochA. KinhikarA. YuL. ValentinM.A. JerominA. ZetterbergH. HanssonO. Mattsson-CarlgrenN. GrahamD. BlennowK. KramerJ.H. GrinbergL.T. SeeleyW.W. RosenH. BoeveB.F. MillerB.L. TeunissenC.E. RabinoviciG.D. RojasJ.C. DageJ.L. BoxerA.L. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study.Lancet Neurol.202120973975210.1016/S1474‑4422(21)00214‑334418401
    [Google Scholar]
  44. JanelidzeS. BerronD. SmithR. StrandbergO. ProctorN.K. DageJ.L. StomrudE. PalmqvistS. Mattsson-CarlgrenN. HanssonO. Associations of plasma phospho-tau217 levels with tau positron emission tomography in early Alzheimer disease.JAMA Neurol.202178214915610.1001/jamaneurol.2020.420133165506
    [Google Scholar]
  45. BrickmanA.M. ManlyJ.J. HonigL.S. SanchezD. Reyes- DumeyerD. LantiguaR.A. LaoP.J. SternY. VonsattelJ.P. TeichA.F. AireyD.C. ProctorN.K. DageJ.L. MayeuxR. Plasma p-tau181, p-tau217, and other blood-based Alzheimer’s disease biomarkers in a multi-ethnic, community study.Alzheimers Dement.20211781353136410.1002/alz.1230133580742
    [Google Scholar]
  46. BiswasA. MukherjeeA. CSF P-tau 231 as biomarker in Alzheimer’s disease.Ann. Indian Acad. Neurol.2022256995-99636911494
    [Google Scholar]
  47. MichnoW. NyströmS. WehrliP. LashleyT. BrinkmalmG. GuerardL. SyvänenS. SehlinD. KayaI. BrinetD. NilssonK.P.R. HammarströmP. BlennowK. ZetterbergH. HanriederJ. Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1–40 deposition underlies plaque polymorphism in progressing Alzheimer’s disease pathology.J. Biol. Chem.2019294176719673210.1074/jbc.RA118.00660430814252
    [Google Scholar]
  48. SeubertP. Vigo-PelfreyC. EschF. LeeM. DoveyH. DavisD. SinhaS. SchiossmacherM. WhaleyJ. SwindlehurstC. McCormackR. WolfertR. SelkoeD. LieberburgI. SchenkD. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids.Nature1992359639332532710.1038/359325a01406936
    [Google Scholar]
  49. OrobetsK.S. KaramyshevA.L. Amyloid precursor protein and Alzheimer’s disease.Int. J. Mol. Sci.202324191479410.3390/ijms24191479437834241
    [Google Scholar]
  50. CaiW. LiL. SangS. PanX. ZhongC. Physiological roles of β-amyloid in regulating synaptic function: Implications for ad pathophysiology.Neurosci. Bull.20233981289130810.1007/s12264‑022‑00985‑936443453
    [Google Scholar]
  51. HuX. LeakR.K. ShiY. SuenagaJ. GaoY. ZhengP. ChenJ. Microglial and macrophage polarization—new prospects for brain repair.Nat. Rev. Neurol.2015111566410.1038/nrneurol.2014.20725385337
    [Google Scholar]
  52. MerighiS. NigroM. TravagliA. GessiS. Microglia and Alzheimer’s disease.Int. J. Mol. Sci.202223211299010.3390/ijms23211299036361780
    [Google Scholar]
  53. Hang-JuanW. LiL. XinL. Imperatorin alleviates Aβ-induced spatial learning memory impairment and neuroinflammation in model mice of Alzheimer disease.Zhongguo Yaolixue Yu Dulixue Zazhi20213509642643
    [Google Scholar]
  54. AndreasenN. HesseC. DavidssonP. MinthonL. WallinA. WinbladB. VandersticheleH. VanmechelenE. BlennowK. Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: Differences between early- and late-onset Alzheimer disease and stability during the course of disease.Arch. Neurol.199956667368010.1001/archneur.56.6.67310369305
    [Google Scholar]
  55. JarrettJ.T. BergerE.P. LansburyP.T.Jr. The C-terminus of the beta protein is critical in amyloidogenesis.Ann. N. Y. Acad. Sci.1993695114414810.1111/j.1749‑6632.1993.tb23043.x8239273
    [Google Scholar]
  56. KuoY.M. EmmerlingM.R. Vigo-PelfreyC. KasunicT.C. KirkpatrickJ.B. MurdochG.H. BallM.J. RoherA.E. Water- soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains.J. Biol. Chem.199627184077408110.1074/jbc.271.8.40778626743
    [Google Scholar]
  57. SturchioA. DwivediA.K. YoungC.B. MalmT. MarsiliL. SharmaJ.S. MahajanA. HillE.J. AndaloussiS.E.L. PostonK.L. ManfredssonF.P. SchneiderL.S. EzzatK. EspayA.J. High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis.EClin. Med.20213810098810.1016/j.eclinm.2021.10098834505023
    [Google Scholar]
  58. JanelidzeS. StomrudE. PalmqvistS. ZetterbergH. van WestenD. JerominA. SongL. HanlonD. TanH.C.A. BakerD. BlennowK. HanssonO. Plasma β-amyloid in Alzheimer’s disease and vascular disease.Sci. Rep.2016612680110.1038/srep2680127241045
    [Google Scholar]
  59. GuL. GuoZ. Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils.J. Neurochem.2013126330531110.1111/jnc.1220223406382
    [Google Scholar]
  60. JiannanL QiangM Study on the correlation between peripheral blood markers Aβ42,Aβ40,P-tau protein and Hcy in patients with Alzheimer’s disease.J. Neurochem.20224407965969+975
    [Google Scholar]
  61. HsuJ.L. LeeW.J. LiaoY.C. LirngJ.F. WangS.J. FuhJ.L. Plasma biomarkers are associated with agitation and regional brain atrophy in Alzheimer’s disease.Sci. Rep.201771503510.1038/s41598‑017‑05390‑128698646
    [Google Scholar]
  62. PalmqvistS. ZetterbergH. MattssonN. JohanssonP. MinthonL. BlennowK. OlssonM. HanssonO. HanssonO. MinthonL. ToressonH. NäggaK. PalmqvistS. StomrudE. JohanssonP. NilssonC. NilssonM. MattssonN. LindqvistD. VestbergS. JanelidzeS. ZetterbergH. BlennowK. AndreassonU. van WestenD. LättJ. MannfolkP. NilssonM. StrandbergO. SundgrenP. StåhlbergF. LindbergO. WestmanE. WahlundL-O. WollmerP. SmithR. OlssonT. WeinerM. AisenP. WeinerM. AisenP. PetersenR. JackC.R.Jr JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. GamstA. SaykinA.J. MorrisJ. PotterW.Z. GreenR.C. MontineT. PetersenR. AisenP. GamstA. ThomasR.G. DonohueM. WalterS. JackC.R.Jr DaleA. BernsteinM. FelmleeJ. FoxN. ThompsonP. SchuffN. AlexanderG. DeCarliC. JagustW. BandyD. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. MorrisJ. CairnsN.J. Taylor-ReinwaldL. TrojanowkiJ.Q. ShawL. LeeV.M-Y. KoreckaM. TogaA.W. CrawfordK. NeuS. BeckettL. HarveyD. GamstA. KornakJ. SaykinA.J. ForoudT.M. PotkinS. ShenL. KachaturianZ. FrankR. SnyderP.J. MolchanS. KayeJ. DolenS. QuinnJ. SchneiderL. PawluczykS. SpannB.M. BrewerJ. VanderswagH. HeidebrinkJ.L. LordJ.L. PetersenR. JohnsonK. DoodyR.S. Villanueva-MeyerJ. ChowdhuryM. SternY. HonigL.S. BellK.L. MorrisJ.C. MintunM.A. SchneiderS. MarsonD. GriffithR. ClarkD. GrossmanH. TangC. MarzloffG. deToledo-MorrellL. ShahR.C. DuaraR. VaronD. Roberts CANP. AlbertM.S. KozauerN. ZerrateM. RusinekH. de LeonM.J. De SantiS.M. DoraiswamyP.M. PetrellaJ.R. AielloM. ArnoldS. KarlawishJ.H. WolkD. SmithC.D. GivenC.A.II HardyP. LopezO.L. OakleyM.A. SimpsonD.M. IsmailM.S. BrandC. RichardJ. MulnardR.A. ThaiG. Mc-Adams-OrtizC. Diaz-ArrastiaR. Martin-CookK. DeVousM. LeveyA.I. LahJ.J. CellarJ.S. BurnsJ.M. AndersonH.S. LaubingerM.M. ApostolovaL. SilvermanD.H.S. LuP.H. Graff-RadfordN.R. ParfittF. JohnsonH. FarlowM. HerringS. HakeA.M. van DyckC.H. MacAvoyM.G. BenincasaA.L. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. Robin HsiungG-Y. FeldmanH. AssalyM. KerteszA. RogersJ. TrostD. BernickC. MunicD. WuC-K. JohnsonN. MesulamM. SadowskyC. MartinezW. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR.A. RentzD.M. JohnsonK.A. RosenA. TinklenbergJ. AshfordW. SabbaghM. ConnorD. JacobsonS. KillianyR. NorbashA. NairA. ObisesanT.O. Jayam-TrouthA. WangP. LernerA. HudsonL. OgrockiP. DeCarliC. FletcherE. CarmichaelO. KitturS. BorrieM. LeeT-Y. BarthaR. JohnsonS. AsthanaS. CarlssonC.M. PotkinS.G. PredaA. NguyenD. TariotP. FleisherA. ReederS. BatesV. CapoteH. RainkaM. HendinB.A. ScharreD.W. KatakiM. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG. BlankK. AndersonK. SaykinA.J. SantulliR.B. EnglertJ. WilliamsonJ.D. SinkK.M. WatkinsF. OttB.R. StopaE. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MintzerJ. LongmireC.F. SpicerK. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease.Neurology201585141240124910.1212/WNL.000000000000199126354982
    [Google Scholar]
  63. OvodV. RamseyK.N. MawuenyegaK.G. BollingerJ.G. HicksT. SchneiderT. SullivanM. PaumierK. HoltzmanD.M. MorrisJ.C. BenzingerT. FaganA.M. PattersonB.W. BatemanR.J. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis.Alzheimers Dement.201713884184910.1016/j.jalz.2017.06.226628734653
    [Google Scholar]
  64. WiltfangJ. EsselmannH. BiblM. HüllM. HampelH. KesslerH. FrölichL. SchröderJ. PetersO. JessenF. LuckhausC. PerneczkyR. JahnH. FiszerM. MalerJ.M. ZimmermannR. BruckmoserR. KornhuberJ. LewczukP. Amyloid β peptide ratio 42/40 but not Aβ42 correlates with phospho- Tau in patients with low- and high-CSF Aβ40 load.J. Neurochem.200710141053105910.1111/j.1471‑4159.2006.04404.x17254013
    [Google Scholar]
  65. Stevenson-HoareJ. HeslegraveA. LeonenkoG. FathallaD. BellouE. LuckcuckL. MarshallR. SimsR. MorganB.P. HardyJ. de StrooperB. WilliamsJ. ZetterbergH. Escott-PriceV. Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer’s disease.Brain2023146269069910.1093/brain/awac12835383826
    [Google Scholar]
  66. NakamuraA. KanekoN. VillemagneV.L. KatoT. DoeckeJ. DoréV. FowlerC. LiQ.X. MartinsR. RoweC. TomitaT. MatsuzakiK. IshiiK. IshiiK. ArahataY. IwamotoS. ItoK. TanakaK. MastersC.L. YanagisawaK. High performance plasma amyloid-β biomarkers for Alzheimer’s disease.Nature2018554769124925410.1038/nature2545629420472
    [Google Scholar]
  67. FaganA.M. ShawL.M. XiongC. VandersticheleH. MintunM.A. TrojanowskiJ.Q. CoartE. MorrisJ.C. HoltzmanD.M. Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1-42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology.Arch. Neurol.20116891137114410.1001/archneurol.2011.10521555603
    [Google Scholar]
  68. LiQ.X. VillemagneV.L. DoeckeJ.D. RembachA. SarrosS. VargheseS. McGladeA. LaughtonK.M. PertileK.K. FowlerC.J. RumbleR.L. TrounsonB.O. TaddeiK. Rainey- SmithS.R. LawsS.M. RobertsonJ.S. EveredL.A. SilbertB. EllisK.A. RoweC.C. MacaulayS.L. DarbyD. MartinsR.N. AmesD. MastersC.L. CollinsS. Alzheimer’s disease normative cerebrospinal fluid biomarkers validated in PET Amyloid-β characterized subjects from the australian imaging, biomarkers and lifestyle (AIBL) study.J. Alzheimers Dis.201548117518710.3233/JAD‑15024726401938
    [Google Scholar]
  69. QuanC. YongP. Research advances in the imaging findings of Alzheimer’s disease.J. Int. Neurol. Neurosurg.202249056066
    [Google Scholar]
  70. YuQ. MaiY. RuanY. LuoY. ZhaoL. FangW. CaoZ. LiY. LiaoW. XiaoS. MokV.C.T. ShiL. LiuJ. An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s disease.Alzheimers Res. Ther.20211312310.1186/s13195‑020‑00757‑533436059
    [Google Scholar]
  71. DashS. AgarwalY. JainS. SharmaA. ChaudhryN. Perfusion CT imaging as a diagnostic and prognostic tool for dementia: Prospective case-control study.Postgrad. Med. J.2022postgradmedj-2021-14126437076646
    [Google Scholar]
  72. ValotassiouV. MalamitsiJ. PapatriantafyllouJ. DardiotisE. TsougosI. PsimadasD. AlexiouS. HadjigeorgiouG. GeorgouliasP. SPECT and PET imaging in Alzheimer’s disease.Ann. Nucl. Med.201832958359310.1007/s12149‑018‑1292‑630128693
    [Google Scholar]
  73. ValotassiouV. WozniakG. SifakisN. DemakopoulosN. GeorgouliasP. Radiopharmaceuticals in neurological and psychiatric disorders.Curr. Clin. Pharmacol.2008329910710.2174/15748840878429367918690884
    [Google Scholar]
  74. KlunkW.E. EnglerH. NordbergA. WangY. BlomqvistG. HoltD.P. BergströmM. SavitchevaI. HuangG.F. EstradaS. AusénB. DebnathM.L. BarlettaJ. PriceJ.C. SandellJ. LoprestiB.J. WallA. KoivistoP. AntoniG. MathisC.A. LångströmB. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B.Ann. Neurol.200455330631910.1002/ana.2000914991808
    [Google Scholar]
  75. ChuL.W. Alzheimer’s disease: Early diagnosis and treatment.Hong Kong Med. J.201218322823722665688
    [Google Scholar]
  76. ChoH. SeoS.W. KimJ.H. SuhM.K. LeeJ.H. ChoeY.S. LeeK.H. KimJ.S. KimG.H. NohY. YeB.S. KimH.J. YoonC.W. ChinJ. NaD.L. Amyloid deposition in early onset versus late onset Alzheimer’s disease.J. Alzheimers Dis.201335481382110.3233/JAD‑12192723507771
    [Google Scholar]
  77. RabinoviciG.D. FurstA.J. O’NeilJ.P. RacineC.A. MorminoE.C. BakerS.L. ChettyS. PatelP. PagliaroT.A. KlunkW.E. MathisC.A. RosenH.J. MillerB.L. JagustW.J. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration.Neurology200768151205121210.1212/01.wnl.0000259035.98480.ed17420404
    [Google Scholar]
  78. MaY. ZhangS. LiJ. ZhengD.M. GuoY. FengJ. RenW.D. Predictive accuracy of amyloid imaging for progression from mild cognitive impairment to Alzheimer disease with different lengths of follow-up: A meta-analysis.Medicine (Baltimore)20149327e15010.1097/MD.000000000000015025501055
    [Google Scholar]
  79. VillemagneV.L. DoréV. BurnhamS.C. MastersC.L. RoweC.C. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions.Nat. Rev. Neurol.201814422523610.1038/nrneurol.2018.929449700
    [Google Scholar]
  80. KlunkW.E. MathisC.A. PriceJ.C. LoprestiB.J. DeKoskyS.T. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease.Brain2006129112805280710.1093/brain/awl28117071918
    [Google Scholar]
  81. KimuraY. IchiseM. ItoH. ShimadaH. IkomaY. SekiC. TakanoH. KitamuraS. ShinotohH. KawamuraK. ZhangM.R. SaharaN. SuharaT. HiguchiM. PET quantification of tau pathology in human brain with 11C-PBB3.J. Nucl. Med.20155691359136510.2967/jnumed.115.16012726182966
    [Google Scholar]
  82. ChiotisK. DodichA. BoccardiM. FestariC. DrzezgaA. HanssonO. OssenkoppeleR. FrisoniG. GaribottoV. NordbergA. Clinical validity of increased cortical binding of tau ligands of the THK family and PBB3 on PET as biomarkers for Alzheimer’s disease in the context of a structured 5-phase development framework.Eur. J. Nucl. Med. Mol. Imaging20214872086209610.1007/s00259‑021‑05277‑433723628
    [Google Scholar]
  83. OssenkoppeleR. van der KantR. HanssonO. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials.Lancet Neurol.202221872673410.1016/S1474‑4422(22)00168‑535643092
    [Google Scholar]
  84. PontecorvoM.J. DevousM.D. KennedyI. NavitskyM. LuM. GalanteN. SallowayS. DoraiswamyP.M. SouthekalS. AroraA.K. McGeehanA. LimN.C. XiongH. TruocchioS.P. JoshiA.D. ShcherbininS. TeskeB. FleisherA.S. MintunM.A. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia.Brain201914261723173510.1093/brain/awz09031009046
    [Google Scholar]
  85. La JoieR. VisaniA.V. BakerS.L. BrownJ.A. BourakovaV. ChaJ. ChaudharyK. EdwardsL. IaccarinoL. JanabiM. Lesman-SegevO.H. MillerZ.A. PerryD.C. O’NeilJ.P. PhamJ. RojasJ.C. RosenH.J. SeeleyW.W. TsaiR.M. MillerB.L. JagustW.J. RabinoviciG.D. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET.Sci. Transl. Med.202012524eaau573210.1126/scitranslmed.aau573231894103
    [Google Scholar]
  86. GrootC. VilleneuveS. SmithR. HanssonO. OssenkoppeleR. Tau PET imaging in neurodegenerative disorders.J. Nucl. Med.202263Suppl. 120S26S10.2967/jnumed.121.26319635649647
    [Google Scholar]
  87. LeuzyA. PascoalT.A. StrandbergO. InselP. SmithR. Mattsson-CarlgrenN. BenedetA.L. ChoH. LyooC.H. La JoieR. RabinoviciG.D. OssenkoppeleR. Rosa-NetoP. HanssonO. A multicenter comparison of [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis.Eur. J. Nucl. Med. Mol. Imaging20214872295230510.1007/s00259‑021‑05401‑434041562
    [Google Scholar]
  88. PlutaR. Ułamek-KoziołM. Lymphocytes, platelets, erythrocytes, and exosomes as possible biomarkers for Alzheimer’s disease clinical diagnosis.Adv. Exp. Med. Biol.20191118718210.1007/978‑3‑030‑05542‑4_430747418
    [Google Scholar]
  89. CanobbioI. AbubakerA.A. VisconteC. TortiM. PulaG. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer’s disease.Front. Cell. Neurosci.201596510.3389/fncel.2015.0006525784858
    [Google Scholar]
  90. HenekaM.T. CarsonM.J. KhouryJ.E. LandrethG.E. BrosseronF. FeinsteinD.L. JacobsA.H. Wyss-CorayT. VitoricaJ. RansohoffR.M. HerrupK. FrautschyS.A. FinsenB. BrownG.C. VerkhratskyA. YamanakaK. KoistinahoJ. LatzE. HalleA. PetzoldG.C. TownT. MorganD. ShinoharaM.L. PerryV.H. HolmesC. BazanN.G. BrooksD.J. HunotS. JosephB. DeigendeschN. GaraschukO. BoddekeE. DinarelloC.A. BreitnerJ.C. ColeG.M. GolenbockD.T. KummerM.P. Neuroinflammation in Alzheimer’s disease.Lancet Neurol.201514438840510.1016/S1474‑4422(15)70016‑525792098
    [Google Scholar]
  91. Mietelska-PorowskaA. WojdaU. T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: potential pools of new biomarkers.J. Immunol. Res.2017201711710.1155/2017/462654028293644
    [Google Scholar]
  92. KikoT. NakagawaK. SatohA. TsudukiT. FurukawaK. AraiH. MiyazawaT. Amyloid β levels in human red blood cells.PLoS One2012711e4962010.1371/journal.pone.004962023166730
    [Google Scholar]
  93. StevensonA. LopezD. KhooP. KalariaR.N. Mukaetova-LadinskaE.B. Exploring erythrocytes as blood biomarkers for alzheimer’s disease.J. Alzheimers Dis.201760384585710.3233/JAD‑17036328984593
    [Google Scholar]
  94. ZhuangX. XiangX. GrizzleW. SunD. ZhangS. AxtellR.C. JuS. MuJ. ZhangL. SteinmanL. MillerD. ZhangH.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain.Mol. Ther.201119101769177910.1038/mt.2011.16421915101
    [Google Scholar]
  95. PulliamL. SunB. MustapicM. ChawlaS. KapogiannisD. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease.J. Neurovirol.201925570270910.1007/s13365‑018‑0695‑430610738
    [Google Scholar]
  96. GawazM. LangerH. MayA.E. Platelets in inflammation and atherogenesis.J. Clin. Invest.2005115123378338410.1172/JCI2719616322783
    [Google Scholar]
  97. ThalD.R. GriffinW.S.T. de VosR.A.I. GhebremedhinE. Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease.Acta Neuropathol.2008115659960910.1007/s00401‑008‑0366‑218369648
    [Google Scholar]
  98. CatricalaS. TortiM. RicevutiG. Alzheimer disease and platelets: how’s that relevant.Immun. Ageing2012912010.1186/1742‑4933‑9‑2022985434
    [Google Scholar]
  99. GowertN.S. DonnerL. ChatterjeeM. EiseleY.S. TowhidS.T. MünzerP. WalkerB. OgorekI. BorstO. GrandochM. SchallerM. FischerJ.W. GawazM. WeggenS. LangF. JuckerM. ElversM. Blood platelets in the progression of Alzheimer’s disease.PLoS One201492e9052310.1371/journal.pone.009052324587388
    [Google Scholar]
  100. ProdanC.I. SzaszR. VincentA.S. RossE.D. DaleG.L. Coated-platelets retain amyloid precursor protein on their surface.Platelets2006171566010.1080/0953710050018191316308188
    [Google Scholar]
  101. ProdanC.I. RossE.D. VincentA.S. DaleG.L. Rate of progression in Alzheimer’s disease correlates with coated-platelet levels—a longitudinal study.Transl. Res.200815239910210.1016/j.trsl.2008.07.00118774538
    [Google Scholar]
  102. PlutaR. Ułamek-KoziołM. JanuszewskiS. CzuczwarS.J. Platelets, lymphocytes and erythrocytes from Alzheimer’s disease patients: The quest for blood cell-based biomarkers.Folia Neuropathol.2018561142010.5114/fn.2018.7465529663736
    [Google Scholar]
  103. MotaS.I. CostaR.O. FerreiraI.L. SantanaI. CaldeiraG.L. PadovanoC. FonsecaA.C. BaldeirasI. CunhaC. LetraL. OliveiraC.R. PereiraC.M.F. RegoA.C. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.2015185271428144110.1016/j.bbadis.2015.03.01525857617
    [Google Scholar]
  104. WojsiatJ. PrandelliC. Laskowska-KaszubK. Martín-RequeroA. WojdaU. Oxidative stress and aberrant cell cycle in Alzheimer’s disease lymphocytes: diagnostic prospects.J. Alzheimers Dis.201546232935010.3233/JAD‑14197725737047
    [Google Scholar]
  105. WojdaU. Alzheimer’s disease lymphocytes: Potential for biomarkers?Biomarkers Med.20161011410.2217/bmm.15.7926640978
    [Google Scholar]
  106. LuegG. GrossC.C. LohmannH. JohnenA. KemmlingA. DeppeM. GrogerJ. MinnerupJ. WiendlH. MeuthS.G. DuningT. Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer’s disease.Neurobiol. Aging2015361818910.1016/j.neurobiolaging.2014.08.00825277040
    [Google Scholar]
  107. MartoranaA. BulatiM. BuffaS. PellicanòM. CarusoC. CandoreG. Colonna-RomanoG. Immunosenescence, inflammation and Alzheimer’s disease.Longev. Healthspan201211810.1186/2046‑2395‑1‑824764513
    [Google Scholar]
  108. SchwartzM. DeczkowskaA. Neurological disease as a failure of brain–immune crosstalk: The multiple faces of neuroinflammation.Trends Immunol.2016371066867910.1016/j.it.2016.08.00127616557
    [Google Scholar]
  109. ZhangJ. KongQ. ZhangZ. GeP. BaD. HeW. Telomere dysfunction of lymphocytes in patients with Alzheimer disease.Cogn. Behav. Neurol.200316317017610.1097/00146965‑200309000‑0000414501538
    [Google Scholar]
  110. NakagawaK. KikoT. KuriwadaS. MiyazawaT. KimuraF. MiyazawaT. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.Biosci. Biotechnol. Biochem.201175102030203310.1271/bbb.11031821979080
    [Google Scholar]
  111. WojsiatJ. Laskowska-KaszubK. Mietelska-PorowskaA. WojdaU. Search for Alzheimer’s disease biomarkers in blood cells: Hypotheses-driven approach.Biomarkers Med.2017111091793110.2217/bmm‑2017‑004128976776
    [Google Scholar]
  112. FrühbeisC. FröhlichD. KuoW.P. Krämer-AlbersE.M. Extracellular vesicles as mediators of neuron-glia communication.Front. Cell. Neurosci.2013718210.3389/fncel.2013.0018224194697
    [Google Scholar]
  113. FrühbeisC. FröhlichD. KuoW.P. AmphornratJ. ThilemannS. SaabA.S. KirchhoffF. MöbiusW. GoebbelsS. NaveK.A. SchneiderA. SimonsM. KlugmannM. TrotterJ. Krämer-AlbersE.M. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.PLoS Biol.2013117e100160410.1371/journal.pbio.100160423874151
    [Google Scholar]
  114. SoaresM.T. TrindadeD. VazM. CampeloI. AlmeidaM. TrigoG. da Cruz e SilvaO.A.B. HenriquesA.G. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease.J. Neurochem.2021156216218110.1111/jnc.1511232618370
    [Google Scholar]
  115. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑12232625288114
    [Google Scholar]
  116. WelgeV. FiegeO. LewczukP. MollenhauerB. EsselmannH. KlafkiH.W. WolfS. TrenkwalderC. OttoM. KornhuberJ. WiltfangJ. BiblM. Combined CSF tau, p-tau181 and amyloid-β 38/40/42 for diagnosing Alzheimer’s disease.J. Neural Transm. (Vienna)2009116220321210.1007/s00702‑008‑0177‑619142572
    [Google Scholar]
  117. JiaL. QiuQ. ZhangH. ChuL. DuY. ZhangJ. ZhouC. LiangF. ShiS. WangS. QinW. WangQ. LiF. WangQ. LiY. ShenL. WeiY. JiaJ. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid.Alzheimers Dement.20191581071108010.1016/j.jalz.2019.05.00231422798
    [Google Scholar]
  118. DominguesC. da Cruz E SilvaO.A.B. HenriquesA.G. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks.Curr. Alzheimer Res.201714887088228317487
    [Google Scholar]
  119. GoetzlE.J. SchwartzJ.B. AbnerE.L. JichaG.A. KapogiannisD. High complement levels in astrocyte-derived exosomes of Alzheimer disease.Ann. Neurol.201883354455210.1002/ana.2517229406582
    [Google Scholar]
  120. GoetzlE.J. KapogiannisD. SchwartzJ.B. LobachI.V. GoetzlL. AbnerE.L. JichaG.A. KarydasA.M. BoxerA. MillerB.L. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease.FASEB J.201630124141414810.1096/fj.201600816R27601437
    [Google Scholar]
  121. GoetzlE.J. AbnerE.L. JichaG.A. KapogiannisD. SchwartzJ.B. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer’s disease.FASEB J.201832288889310.1096/fj.201700731R29025866
    [Google Scholar]
  122. ChengL. DoeckeJ.D. SharplesR.A. VillemagneV.L. FowlerC.J. RembachA. MartinsR.N. RoweC.C. MacaulayS.L. MastersC.L. HillA.F. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment.Mol. Psychiatry201520101188119610.1038/mp.2014.12725349172
    [Google Scholar]
/content/journals/car/10.2174/0115672050366767241223050957
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test