Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease (AD) is one of the leading causes of cognitive decline, which leads to dementia and poses significant challenges for its therapy. The reason is primarily the ineffective available treatments targeting the underlying pathology of AD. It is a neurodegenerative disease that is mainly characterised by the various molecular pathways contributing to its complex pathology, including extracellular amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles (NFTs), oxidative stress, and neuroinflammation. One of the crucial features is the hyperphosphorylation of tau proteins, which is facilitated by microtubule affinity-regulating kinase-4 (MARK-4). The kinase plays a crucial role in the disease development by modifying microtubule integrity, leading to neuronal dysfunction and death. MARK-4 is thus a druggable target and has a pivotal role in AD. Amongst MARK-4 inhibitors, 16 compounds demonstrate significant capacity in molecular docking studies, showing high binding affinity to MARK-4 and promising potential for tau inhibition. Further, investigations provide evidence of their neuroprotective properties. The present review mainly focuses on the role of MARK-4 and its potential inhibitors used in treating AD, which have been thoroughly investigated and .

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050358397250126151707
2025-02-10
2025-10-13
Loading full text...

Full text loading...

References

  1. BreijyehZ. KaramanR. Comprehensive review on alzheimer’s Disease: Causes and treatment.Molecules20202524578910.3390/molecules2524578933302541
    [Google Scholar]
  2. KumarA. SinghA. A review on Alzheimer’s disease pathophysiology and its management: An update.Pharmacol. Rep.201567219520310.1016/j.pharep.2014.09.00425712639
    [Google Scholar]
  3. BrookmeyerR. JohnsonE. Ziegler-GrahamK. ArrighiH.M. Forecasting the global burden of Alzheimer’s disease.Alzheimers Dement.20073318619110.1016/j.jalz.2007.04.38119595937
    [Google Scholar]
  4. LiangC.S. LiD.J. YangF.C. TsengP.T. CarvalhoA.F. StubbsB. ThompsonT. MuellerC. ShinJ.I. RaduaJ. StewartR. RajjiT.K. TuY.K. ChenT.Y. YehT.C. TsaiC.K. YuC.L. PanC.C. ChuC.S. Mortality rates in Alzheimer’s disease and non-Alzheimer’s dementias: A systematic review and meta-analysis.Lancet Healthy Longev.202128e479e48810.1016/S2666‑7568(21)00140‑936097997
    [Google Scholar]
  5. BetterM.A. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.1301636918389
    [Google Scholar]
  6. CulbersonJ.W. KopelJ. SeharU. ReddyP.H. Urgent needs of caregiving in ageing populations with Alzheimer’s disease and other chronic conditions: Support our loved ones.Ageing Res. Rev.20239010200110.1016/j.arr.2023.10200137414157
    [Google Scholar]
  7. HoltzmanD.M. MorrisJ.C. GoateA.M. Alzheimer’s disease: The challenge of the second century.Sci. Transl. Med.20113777710.1126/scitranslmed.300236921471435
    [Google Scholar]
  8. SelkoeD.J. SchenkD. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics.Annu. Rev. Pharmacol. Toxicol.200343154558410.1146/annurev.pharmtox.43.100901.14024812415125
    [Google Scholar]
  9. CalabròM. RinaldiC. SantoroG. CrisafulliC. The biological pathways of Alzheimer disease: A review.AIMS Neurosci.2021818613210.3934/Neuroscience.202100533490374
    [Google Scholar]
  10. JellingerK.A. Neuropathology of the Alzheimer’s continuum: An update.Free. Neuropathol.2020113210.17879/freeneuropathology‑2020‑305037283686
    [Google Scholar]
  11. KinghornK.J. WoodlingN.S. GrayS.C. Shifting equilibriums in Alzheimer’s disease: The complex roles of microglia in neuroinflammation, neuronal survival and neurogenesis.Neural Regen. Res.20201571208121910.4103/1673‑5374.27257131960800
    [Google Scholar]
  12. GadhaveK. KumarD. UverskyV.N. GiriR. A multitude of signaling pathways associated with Alzheimer’s disease and their roles in AD pathogenesis and therapy.Med. Res. Rev.20214152689274510.1002/med.2171932783388
    [Google Scholar]
  13. GibsonP.H. TomlinsonB.E. Numbers of Hirano bodies in the hippocampus of normal and demented people with alzheimer’s disease.J. Neurol. Sci.1977331-219920610.1016/0022‑510X(77)90193‑9903782
    [Google Scholar]
  14. ShareenaG. KumarD. Exploring the role of tau proteins in alzheimer’s disease from typical functioning maps to aberrant fibrillary deposits in the brain.Deciphering Drug Targets for Alzheimer’s DiseaseSingaporeSpringer202332134910.1007/978‑981‑99‑2657‑2_14
    [Google Scholar]
  15. KesharwaniP. MalaiyaA. SinghaiM. SinghM. PrajapatiS.K. ChoudhuryH. FatimaM. AlexanderA. DubeyS.K. GreishK. Recent update on the alzheimer’s disease progression, Diagnosis and treatment approaches.Curr. Drug Targets20222310978100110.2174/138945012366622052615514435657283
    [Google Scholar]
  16. IttnerA. KeY.D. EerselJ. GladbachA. GötzJ. IttnerL.M. Brief update on different roles of tau in neurodegeneration.IUBMB Life201163749550210.1002/iub.46721698753
    [Google Scholar]
  17. GendronT.F. PetrucelliL. The role of tau in neurodegeneration.Mol. Neurodegener.2009411310.1186/1750‑1326‑4‑1319284597
    [Google Scholar]
  18. EnginA.B. EnginA. Alzheimer’s disease and protein kinases.Adv. Exp. Med. Biol.202128532110.1007/978‑3‑030‑49844‑3_1133539020
    [Google Scholar]
  19. FerrerI. Gomez-IslaT. PuigB. FreixesM. RibéE. DalfóE. AvilaJ. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies.Curr. Alzheimer Res.20052131810.2174/156720505277271315977985
    [Google Scholar]
  20. ObaT. SaitoT. AsadaA. ShimizuS. IijimaK.M. AndoK. Microtubule affinity–regulating kinase 4 with an alzheimer’s disease-related mutation promotes tau accumulation and exacerbates neurodegeneration.J. Biol. Chem.202029550171381714710.1074/jbc.RA120.01442033020179
    [Google Scholar]
  21. SunW. LeeS. HuangX. LiuS. InayathullahM. KimK.M. TangH. AshfordJ.W. RajadasJ. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer’s disease treatment.Sci. Rep.2016613478410.1038/srep3478427708431
    [Google Scholar]
  22. NazF. AnjumF. IslamA. AhmadF. HassanM.I. Microtubule affinity-regulating kinase 4: Structure, function, and regulation.Cell Biochem. Biophys.201367248549910.1007/s12013‑013‑9550‑723471664
    [Google Scholar]
  23. MillerC.R. OliverK.E. FarleyJ.H. MEK1/2 inhibitors in the treatment of gynecologic malignancies.Gynecol. Oncol.2014133112813710.1016/j.ygyno.2014.01.00824434059
    [Google Scholar]
  24. AlamM. AhmedS. AbidM. HasanG.M. IslamA. HassanM.I. Therapeutic targeting of microtubule affinity-regulating kinase 4 in cancer and neurodegenerative diseases.J. Cell. Biochem.202312491223124010.1002/jcb.3046837661636
    [Google Scholar]
  25. WaseemR. AnwarS. KhanS. ShamsiA. HassanM.I. AnjumF. ShafieA. IslamA. YadavD.K. MAP/microtubule affinity regulating kinase 4 inhibitory potential of irisin: A new therapeutic strategy to combat cancer and alzheimer’s disease.Int. J. Mol. Sci.202122201098610.3390/ijms22201098634681645
    [Google Scholar]
  26. AnnaduraiN. AgrawalK. DžubákP. HajdúchM. DasV. Microtubule affinity-regulating kinases are potential druggable targets for alzheimer’s disease.Cell. Mol. Life Sci.201774224159416910.1007/s00018‑017‑2574‑128634681
    [Google Scholar]
  27. AnwarS. ShahwanM. HasanG.M. IslamA. HassanM.I. Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy.Cell. Signal.20229911043410.1016/j.cellsig.2022.11043435961526
    [Google Scholar]
  28. TrinczekB. BrajenovicM. EbnethA. DrewesG. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes.J. Biol. Chem.200427975915592310.1074/jbc.M30452820014594945
    [Google Scholar]
  29. DrewesG. TrinczekB. IllenbergerS. BiernatJ. MandelkowE.M. MandelkowE. 758 Microtubule Affinity Regulating Kinase (MARK), a potential regulator of the microtubule cytoskeleton.Neurobiol. Aging1996174S18810.1016/S0197‑4580(96)80760‑3
    [Google Scholar]
  30. PangK. WangW. QinJ.X. ShiZ.D. HaoL. MaY.Y. XuH. WuZ.X. PanD. ChenZ.S. HanC.H. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy.Med. Comm.202234e17510.1002/mco2.17536349142
    [Google Scholar]
  31. CarlomagnoY. ChungD.C. YueM. Castanedes-CaseyM. MaddenB.J. DunmoreJ. TongJ. DeTureM. DicksonD.W. PetrucelliL. CookC. An acetylation–phosphorylation switch that regulates tau aggregation propensity and function.J. Biol. Chem.201729237152771528610.1074/jbc.M117.79460228760828
    [Google Scholar]
  32. CookC. CarlomagnoY. GendronT.F. DunmoreJ. ScheffelK. StetlerC. DavisM. DicksonD. JarpeM. DeTureM. PetrucelliL. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance.Hum. Mol. Genet.201423110411610.1093/hmg/ddt40223962722
    [Google Scholar]
  33. DuanY. DongS. GuF. HuY. ZhaoZ. Advances in the pathogenesis of alzheimer’s disease: Focusing on tau-mediated neurodegeneration.Transl. Neurodegener.2012112410.1186/2047‑9158‑1‑2423241453
    [Google Scholar]
  34. AnnaduraiN. DasV. Microtubule affinity regulating kinase 4: A potential drug target from cancers to neurodegenerative diseases.Protein Kinase Inhibitors.Discovery to TherapeuticsUSA202210.1016/B978‑0‑323‑91287‑7.00017‑X
    [Google Scholar]
  35. GuG.J. LundH. WuD. BlokzijlA. ClassonC. von EulerG. LandegrenU. SunnemarkD. Kamali-MoghaddamM. Role of individual MARK isoforms in phosphorylation of tau at Ser 262 in Alzheimer’s disease.Neuromol. Med.201315345846910.1007/s12017‑013‑8232‑323666762
    [Google Scholar]
  36. SultanakhmetovG. KatoI. AsadaA. SaitoT. AndoK. Microtubule-affinity regulating kinase family members distinctively affect tau phosphorylation and promote its toxicity in a Drosophila model.Genes Cells202429433734610.1111/gtc.1310138329182
    [Google Scholar]
  37. AdnanM. DasGuptaD. AnwarS. ShamsiA. SiddiquiA.J. SnoussiM. BardakciF. PatelM. HassanM.I. Mechanistic insights into MARK4 inhibition by galantamine toward therapeutic targeting of Alzheimer’s disease.Front. Pharmacol.202314127617910.3389/fphar.2023.127617937795023
    [Google Scholar]
  38. SackJ.S. GaoM. KieferS.E. MyersJ.E.Jr NewittJ.A. WuS. YanC. Crystal structure of microtubule affinity-regulating kinase 4 catalytic domain in complex with a pyrazolopyrimidine inhibitor.Acta Crystallogr. F Struct. Biol. Commun.201672212913410.1107/S2053230X1502474726841763
    [Google Scholar]
  39. NazF. SamiN. IslamA. AhmadF. HassanM.I. Ubiquitin-associated domain of MARK4 provides stability at physiological pH.Int. J. Biol. Macromol.201693Pt A1147115410.1016/j.ijbiomac.2016.09.08727677563
    [Google Scholar]
  40. DrewesG. EbnethA. PreussU. MandelkowE.M. MandelkowE. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption.Cell199789229730810.1016/S0092‑8674(00)80208‑19108484
    [Google Scholar]
  41. Grundke-IqbalI. IqbalK. TungY.C. QuinlanM. WisniewskiH.M. BinderL.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology.Proc. Natl. Acad. Sci. USA198683134913491710.1073/pnas.83.13.49133088567
    [Google Scholar]
  42. TimmT. MarxA. PanneerselvamS. MandelkowE. MandelkowE.M. Structure and regulation of mark, a kinase involved in abnormal phosphorylation of tau protein.BMS Neurosci.20089S2S910.1186/1471‑2202‑9‑S2‑S919090997
    [Google Scholar]
  43. SchmidtS.H. WengJ.H. AotoP.C. BoassaD. MatheaS. SillettiS. HuJ. WallbottM. KomivesE.A. KnappS. HerbergF.W. TaylorS.S. Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2.Proc. Natl. Acad. Sci. USA202111823e210084411810.1073/pnas.210084411834088839
    [Google Scholar]
  44. ZhongQ. XiaoX. QiuY. XuZ. ChenC. ChongB. ZhaoX. HaiS. LiS. AnZ. DaiL. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications.Med. Comm.202043e26110.1002/mco2.26137143582
    [Google Scholar]
  45. LundH. GustafssonE. SvenssonA. NilssonM. BergM. SunnemarkD. von EulerG. MARK4 and MARK3 associate with early tau phosphorylation in Alzheimer’s disease granulovacuolar degeneration bodies.Acta Neuropathol. Commun.2014212210.1186/2051‑5960‑2‑2224533944
    [Google Scholar]
  46. BasheerN. SmolekT. HassanI. LiuF. IqbalK. ZilkaN. NovakP. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer’s disease? From preclinical studies to the clinical trials.Mol. Psychiatry20232862197221410.1038/s41380‑023‑02113‑z37264120
    [Google Scholar]
  47. LizcanoJ.M. GöranssonO. TothR. DeakM. MorriceN.A. BoudeauJ. HawleyS.A. UddL. MäkeläT.P. HardieD.G. AlessiD.R. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1.EMBO J.200423483384310.1038/sj.emboj.760011014976552
    [Google Scholar]
  48. WangY.T. SalterM.W. Regulation of NMDA receptors by tyrosine kinases and phosphatases.Nature1994369647723323510.1038/369233a07514272
    [Google Scholar]
  49. HooperC. KillickR. LovestoneS. The GSK3 hypothesis of Alzheimer’s disease.J. Neurochem.200810461433143910.1111/j.1471‑4159.2007.05194.x18088381
    [Google Scholar]
  50. HangerD.P. SeereeramA. WendyN. Mediators of tau phosphorylation in the pathogenesis of alzheimer’s disease.Expert Rev. Neurother.20099111647-66
    [Google Scholar]
  51. Llorens-MartínM. JuradoJ. HernándezF. ÁvilaJ. GSK-3β, a pivotal kinase in Alzheimer disease.Front. Mol. Neurosci.201474610.3389/fnmol.2014.0004624904272
    [Google Scholar]
  52. SayasC.L. ÁvilaJ. GSK-3 and tau: A key duet in alzheimer’s disease. Vol. 10.Cells202110472110.3390/cells1004072124904272
    [Google Scholar]
  53. WangJ.W. ImaiY. LuB. Activation of PAR-1 kinase and stimulation of tau phosphorylation by diverse signals require the tumor suppressor protein LKB1.J. Neurosci.200727357458110.1523/JNEUROSCI.5094‑06.200717234589
    [Google Scholar]
  54. PachimaY.I. ZhouL. LeiP. GozesI. Microtubule-tau interaction as a therapeutic target for Alzheimer’s Disease.J. Mol. Neurosci.201658214515210.1007/s12031‑016‑0715‑x26816082
    [Google Scholar]
  55. HoffmannI. ClarkeP.R. MarcoteM.J. KarsentiE. DraettaG. Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis.EMBO J.1993121536310.1002/j.1460‑2075.1993.tb05631.x8428594
    [Google Scholar]
  56. RovinaD. FontanaL. MontiL. NovielliC. PaniniN. SirchiaS.M. ErbaE. MagnaniI. LarizzaL. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) plays a role in cell cycle progression and cytoskeletal dynamics.Eur. J. Cell Biol.2014938-935536510.1016/j.ejcb.2014.07.00425123532
    [Google Scholar]
  57. KaechS. LudinB. MatusA. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins.Neuron19961761189119910.1016/S0896‑6273(00)80249‑48982165
    [Google Scholar]
  58. PaudelY.N. AngelopoulouE. JonesN.C. O’BrienT.J. KwanP. PiperiC. OthmanI. ShaikhM.F. Tau related pathways as a connecting link between epilepsy and Alzheimer’s disease.ACS Chem. Neurosci.201910104199421210.1021/acschemneuro.9b0046031532186
    [Google Scholar]
  59. FišarZ. Linking the amyloid, tau, and mitochondrial hypotheses of alzheimer’s disease and identifying promising drug targets.Biomolecules20221211167610.3390/biom1211167636421690
    [Google Scholar]
  60. IttnerA ChuaSW BertzJ VolkerlingA Van Der HovenJ GladbachA PrzybylaM. BiM. HummelA.V. StevensC.H. IppatiS. SuhL.S. MacmillanA. SutherlandG. KrilJ.J. SilvaA.P.G. MackayJ.P. PoljakA. DelerueF. K.Y.D. IttnerL.M. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in alzheimer’s mice.Science.2016354631490490810.1126/science.aah620527856911
    [Google Scholar]
  61. RúaJ. de ArriagaD. García-ArmestoM.R. BustoF. del ValleP. Binary combinations of natural phenolic compounds with gallic acid or with its alkyl esters: An approach to understand the antioxidant interactions.Eur. Food Res. Technol.201724371211121710.1007/s00217‑016‑2838‑2
    [Google Scholar]
  62. Sanchez-MartinV. Plaza-CalongeM.C. Soriano-LermaA. Ortiz-GonzalezM. Linde-RodriguezA. Perez-CarrascoV. Ramirez-MaciasI. CuadrosM. Gutierrez-FernandezJ. Murciano-CallesJ. Rodríguez-ManzanequeJ.C. SorianoM. Garcia-SalcedoJ.A. Gallic acid: A natural phenolic compound exerting antitumoral activities in colorectal cancer via interaction with g-quadruplexes.Cancers (Basel)20221411264810.3390/cancers1411264835681628
    [Google Scholar]
  63. KhanP. RahmanS. QueenA. ManzoorS. NazF. HasanG.M. LuqmanS. KimJ. IslamA. AhmadF. HassanM.I. Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: In silico and In vitro studies.Sci. Rep.201771947010.1038/s41598‑017‑09941‑428842631
    [Google Scholar]
  64. AnwarS. KhanS. ShamsiA. AnjumF. ShafieA. IslamA. AhmadF. HassanM.I. Structure-based investigation of MARK4 inhibitory potential of Naringenin for therapeutic management of cancer and neurodegenerative diseases.J. Cell. Biochem.2021122101445145910.1002/jcb.3002234121218
    [Google Scholar]
  65. DubeyT. KushwahaP. ThulasiramH.V. ChandrashekarM. ChinnathambiS. Bacopa monnieri reduces Tau aggregation and Tau-mediated toxicity in cells.Int. J. Biol. Macromol.202323412317110.1016/j.ijbiomac.2023.12317136716837
    [Google Scholar]
  66. FatimaU. RoyS. AhmadS. Al-KeridisL.A. AlshammariN. AdnanM. IslamA. HassanM.I. Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications.Biomed. Pharmacother.202215311346910.1016/j.biopha.2022.11346936076495
    [Google Scholar]
  67. Abdul ManapA.S. VijayabalanS. MadhavanP. ChiaY.Y. AryaA. WongE.H. RizwanF. BindalU. KoshyS. Bacopa monnieri, a neuroprotective lead in Alzheimer disease: A review on its properties, mechanisms of action, and preclinical and clinical studies.Drug Target Insights201913.10.1177/117739281986641231391778
    [Google Scholar]
  68. BanerjeeS. AnandU. GhoshS. RayD. RayP. NandyS. DeshmukhG.D. TripathiV. DeyA. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders.Phytother. Res.202135105668567910.1002/ptr.720334254371
    [Google Scholar]
  69. FatimaU. RoyS. AhmadS. AliS. ElkadyW.M. KhanI. AlsaffarR.M. AdnanM. IslamA. HassanM.I. Pharmacological attributes of Bacopa monnieri extract: Current updates and clinical manifestation.Front. Nutr.2022997237910.3389/fnut.2022.972379
    [Google Scholar]
  70. ValottoN.L.J. RevereteD.A.M. MorettiJr. R.C. MendesM.N. JoshiR.K. dos SantosB.D. BarbalhoL.C. DireitoR. FornariL.L. TanakaM. BarbalhoS.M. Investigating the neuroprotective and cognitive-enhancing effects of Bacopa monnieri: A systematic review focused on inflammation, oxidative stress, mitochondrial dysfunction, and apoptosis.Antioxidants202413439310.3390/antiox1304039338671841
    [Google Scholar]
  71. AdnanM. AnwarS. DasGuptaD. PatelM. ElasbaliA.M. AlhassanH.H. ShafieA. SiddiquiA.J. BardakciF. SnoussiM. HassanM.I. Targeting inhibition of microtubule affinity regulating kinase 4 by harmaline: Strategy to combat Alzheimer’s disease.Int. J. Biol. Macromol.202322418819510.1016/j.ijbiomac.2022.10.11536257368
    [Google Scholar]
  72. AlroujiM. DasGuptaD. AshrafG.M. BilgramiA.L. AlhumaydhiF.A. Al AbdulmonemW. ShahwanM. AlsayariA. AtiyaA. ShamsiA. Inhibition of microtubule affinity regulating kinase 4 by an acetylcholinesterase inhibitor, Huperzine A: Computational and experimental approaches.Int. J. Biol. Macromol.202323512383110.1016/j.ijbiomac.2023.12383136870649
    [Google Scholar]
  73. GuoL. SunX. LiaoY. LiW. Neuroprotective effects of Ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.Neural Regen. Res.201712695395810.4103/1673‑5374.20859028761429
    [Google Scholar]
  74. WuK.J. WangS.Q. ShiR.P. QinL.H. AhmedB.Y. LuC.F. WangS-X. WangF-F. WangG. ZhouS. Neuroprotective effect of Ganoderma lucidum polysaccharides in an epileptic rat model.Curr. Top. Nutraceutical Res.202120241642310.37290/ctnr2641‑452X.20:416‑423
    [Google Scholar]
  75. AhmadF. SinghG. SoniH. TandonS. Identification of potential neuroprotective compound from Ganoderma lucidum extract targeting microtubule affinity regulation kinase 4 involved in Alzheimer’s disease through molecular dynamics simulation and MMGBSA.Aging Med. (Milton)20236214415410.1002/agm2.1223237287673
    [Google Scholar]
  76. MajdalawiehA.F. TerroT.M. AhariS.H. Abu-YousefI.A. α-Mangostin: A xanthone derivative in mangosteen with potent anti-cancer properties.Biomolecules20241411138210.3390/biom1411138239595559
    [Google Scholar]
  77. YangA. LiuC. WuJ. KouX. ShenR. A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer’s disease.Eur. J. Pharmacol.202189717395010.1016/j.ejphar.2021.17395033607107
    [Google Scholar]
  78. KhanP. QueenA. MohammadT. Smita KhanN.S. HafeezZ.B. HassanM.I. AliS. Identification of α-mangostin as a potential inhibitor of microtubule affinity regulating kinase 4.J. Nat. Prod.20198282252226110.1021/acs.jnatprod.9b0037231343173
    [Google Scholar]
  79. ParveenI. KhanP. AliS. HassanM.I. AhmedN. Synthesis, molecular docking and inhibition studies of novel 3-N-aryl substituted-2-heteroarylchromones targeting microtubule affinity regulating kinase 4 inhibitors.Eur. J. Med. Chem.201815916617710.1016/j.ejmech.2018.09.03030290280
    [Google Scholar]
  80. ShamsiA. AnwarS. MohammadT. AlajmiM.F. HussainA. RehmanM.T. HasanG.M. IslamA. HassanM.I. MARK4 inhibited by AChE inhibitors, donepezil and rivastigmine tartrate: Insights into alzheimer’s disease therapy.Biomolecules202010578910.3390/biom1005078932443670
    [Google Scholar]
  81. LiF.J. LiuY. YuanY. YangB. LiuZ.M. HuangL.Q. Molecular interaction studies of acetylcholinesterase with potential acetylcholinesterase inhibitors from the root of Rhodiola crenulata using molecular docking and isothermal titration calorimetry methods.J. Biomol. Struct. Dyn.201710452753210.1016/j.ijbiomac.2017.06.06628625836
    [Google Scholar]
  82. NaqviA.A.T. JairajpuriD.S. NomanO.M.A. HussainA. IslamA. AhmadF. AlajmiM.F. HassanM.I. Evaluation of pyrazolopyrimidine derivatives as microtubule affinity regulating kinase 4 inhibitors: Towards therapeutic management of Alzheimer’s disease.J. Biomol. Struct. Dyn.202038133892390710.1080/07391102.2019.166674531512980
    [Google Scholar]
  83. AhmedS. QueenA. IrfanI. SiddiquiM.N. Abdulhameed AlmuqdadiH.T. SetiaN. AnsariJ. HussainA. HassanM.I. AbidM. Vanillin-isatin hybrid-induced mark4 inhibition as a promising therapeutic strategy against hepatocellular carcinoma.ACS Omega2024924259452595910.1021/acsomega.4c0066138911744
    [Google Scholar]
  84. HrubaL. PolishchukP. DasV. HajduchM. DzubakP. An identification of MARK inhibitors using high throughput MALDI-TOF mass spectrometry.Biomed. Pharmacother.202214611254910.1016/j.biopha.2021.11254934923338
    [Google Scholar]
  85. AnwarS. ShamsiA. KarR.K. QueenA. IslamA. AhmadF. Structural and biochemical investigation of MARK4 inhibitory potential of cholic acid: Towards therapeutic implications in neurodegenerative diseases.Int. J. Biol. Macromol.2020161596604
    [Google Scholar]
  86. SamraS. SharmaM. Vaseghi-ShanjaniM Del BelA. ByresK.L LinS. Gain-of-function MARK4 variant associates with pediatric neurodevelopmental disorder and dysmorphism.HGG Adv.20235110025910.1016/j.xhgg.2023.10025938041405
    [Google Scholar]
  87. LiF. LiuZ. SunH. LiC. WangW. YeL. YanC. TianJ. WangH. PCC0208017, a novel small-molecule inhibitor of MARK3/MARK4, suppresses glioma progression in vitro and in vivo. Acta Pharm. Sin. B202010228930010.1016/j.apsb.2019.09.00432082974
    [Google Scholar]
  88. ShamsiA. DasGuptaD. AlhumaydhiF.A. KhanM.S. AlsagabyS.A. Al AbdulmonemW. HassanM.I. YadavD.K. Inhibition of MARK4 by serotonin as an attractive therapeutic approach to combat Alzheimer’s disease and neuroinflammation.RSC Med. Chem.202213673774510.1039/D2MD00053A35814926
    [Google Scholar]
  89. PathakG.A. ZhouZ. SilzerT.K. BarberR.C. PhillipsN.R. Two-stage Bayesian GWAS of 9576 individuals identifies SNP regions that are targeted by miRNAs inversely expressed in Alzheimer’s and cancer.Alzheimers Dement.202016116217710.1002/alz.1200331914222
    [Google Scholar]
  90. BachhavY. MannholdR. BuschmannH. HolenzJ. Targeted drug delivery.Methods and Principles in Medicinal ChemistryNew YorkWiley-VCH GmbH2022143810.1002/9783527827855
    [Google Scholar]
  91. LochheadJ.J. YangJ. RonaldsonP.T. DavisT.P. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders.Front. Physiol.20201191410.3389/fphys.2020.0091432848858
    [Google Scholar]
  92. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  93. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood–brain barrier: Structure, regulation and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w
    [Google Scholar]
  94. JohansonC.E. StopaE.G. McMillanP.N. The blood-cerebrospinal fluid barrier: Structure and functional significance.Methods Mol. Biol.201168610113110.1007/978‑1‑60761‑938‑3_421082368
    [Google Scholar]
  95. ChaharR.K. TiwariC. MalikP. JaiswalP.K. Brain-targeted drug delivery system: A novel approach.J. Drug Deliv. Ther.202212617117810.22270/jddt.v12i6.5776
    [Google Scholar]
  96. JamalA. YuanT. GalvanS. CastellanoA. RivaM. SecoliR. FaliniA. BelloL. RodriguezB.F. DiniD. Insights into infusion-based targeted drug delivery in the brain: Perspectives, challenges and opportunities.Int. J. Mol. Sci.2022236313910.3390/ijms23063139
    [Google Scholar]
  97. ZlokovicB.V. The blood-brain barrier in health and chronic neurodegenerative disorders.Neuron200857217820110.1016/j.neuron.2008.01.00318215617
    [Google Scholar]
  98. CarveyP.M. HendeyB. MonahanA.J. The blood–brain barrier in neurodegenerative disease: A rhetorical perspective.J. Neurochem.2009111229131410.1111/j.1471‑4159.2009.06319.x19659460
    [Google Scholar]
  99. PathakY.Y. KumarL. PathakY.V. Expert opinion on current challenges and future directions of nanocarriers for brain targeted drug delivery.Biomed. Pharmacother.202277779610.1016/B978‑0‑323‑90773‑6.00016‑6
    [Google Scholar]
  100. NguyenT.T. DungN.T.T. VoT.K. TranN.M.A. NguyenM.K. VanV.T. VanV.G. Nanotechnology-based drug delivery for central nervous system disorders.Biomed. Pharmacother.202114311211710.1016/j.biopha.2021.11211734479020
    [Google Scholar]
  101. DuanL. LiX. JiR. HaoZ. KongM. WenX. GuanF. MaS. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases.Polymers (Basel)2023159219610.3390/polym1509219637177342
    [Google Scholar]
  102. SheaT.B. OrtizD. NicolosiR.J. KumarR. WattersonA.C. Nanosphere-mediated delivery of vitamin E increases its efficacy against oxidative stress resulting from exposure to amyloid beta.J. Alzheimers Dis.20057429730110.3233/JAD‑2005‑740516131731
    [Google Scholar]
  103. KarthivashanG. GanesanP. ParkS.Y. KimJ.S. ChoiD.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease.Drug Deliv.201825130732010.1080/10717544.2018.142824329350055
    [Google Scholar]
  104. ChungS. PetersJ.M. DetynieckiK. TatumW. RabinowiczA.L. CarrazanaE. The nose has it: Opportunities and challenges for intranasal drug administration for neurologic conditions including seizure clusters.Epilepsy Behav. Rep.20232110058110.1016/j.ebr.2022.10058136636458
    [Google Scholar]
  105. DuL.N. JinY.G. Brain-targeted nasal drug delivery systems for the treatment of neurodegenerative diseases.J. Int. Pharma. Res.2016431
    [Google Scholar]
  106. HuangQ. ChenX. YuS. GongG. ShuH. Research progress in brain-targeted nasal drug delivery.Front. Agin. Neurosci.202315134129510.3389/fnagi.2023.1341295
    [Google Scholar]
  107. SaunaZ.E. LagasséH.A.D. AlexakiA. SimhadriV.L. KatagiriN.H. JankowskiW. Recent advances in (therapeutic protein) drug development.F1000 Res.2017611310.12688/f1000research.9970.128232867
    [Google Scholar]
  108. ReddyA.S. PatiS.P. KumarP.P. PradeepH.N. SastryG.N. Virtual screening in drug discovery - a computational perspective.Curr. Protein Pept. Sci.20078432935110.2174/13892030778136942717696867
    [Google Scholar]
  109. MukerjeeN. Al-KhafajiK. MaitraS. Suhail WadiJ. SachdevaP. GhoshA. BuchadeR.S. ChaudhariS.Y. JadhavS.B. DasP. HasanM.M. RahmanM.H. AlbadraniG.M. AltyarA.E. KamelM. AlgahtaniM. ShinanK. TheyabA. Abdel-DaimM.M. AshrafG.M. RahmanM.M. SharmaR. Recognizing novel drugs against Keap1 in Alzheimer’s disease using machine learning grounded computational studies.Front. Mol. Neurosci.202215103655210.3389/fnmol.2022.103655236561895
    [Google Scholar]
  110. ŞahinS. A single-molecule with multiple investigations: Synthesis, characterization, computational methods, inhibitory activity against Alzheimer’s disease, toxicity, and ADME studies.Comput. Biol. Med.202214610551410.1016/j.compbiomed.2022.10551435462270
    [Google Scholar]
  111. ChangY. HawkinsB.A. DuJ.J. GroundwaterP.W. HibbsD.E. LaiF. A guide to in silico drug design.Pharmaceutics20231514910.3390/pharmaceutics1501004936678678
    [Google Scholar]
  112. PeerzadaM.N. KhanP. KhanN.S. AvecillaF. SiddiquiS.M. HassanM.I. AzamA. Design and development of small-molecule arylaldoxime/5-nitroimidazole hybrids as potent inhibitors of MARK4: A promising approach for target-based cancer therapy.ACS Omega2020536227592277110.1021/acsomega.0c0170332954123
    [Google Scholar]
  113. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  114. JakiT. ChangC. KuhlemeierA. Van HornM.L. Predicting Individual Treatment Effects: Challenges and Opportunities for Machine Learning and Artificial Intelligence.SwitzerlandKI - Kunstliche Intelligenz202416
    [Google Scholar]
/content/journals/car/10.2174/0115672050358397250126151707
Loading
/content/journals/car/10.2174/0115672050358397250126151707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test